
A Comparative Study of Backbone Architectures for Language Model-Based Intrusion
Detection

Benedikt Pletzer and Jürgen Mottok
Laboratory for Safe and Secure Systems (LaS³)

OTH Regensburg
Regensburg, Germany

email: {benedikt.pletzer, juergen.mottok}@oth-regensburg.de

Abstract—Network based Intrusion Detection Systems (NIDS)
have recently been shown to benefit from techniques developed
for Natural Language Processing (NLP). Specifically, pretrained
models based upon the ubiquitous Transformer backbone ar-
chitecture have been shown to outperform other approaches.
In recent months, promising research aimed at improving the
aforementioned Transformer backbone or even replacing it all
together has been published. This includes low bit quantization
techniques like BitNet, as well as new model types like Mamba.
This study, therefore, evaluates the potential of emerging foun-
dation models, such as BitNet and Mamba, as backbones for
NIDS. For this purpose, a comparative study of these models
as backbone of an otherwise unchanged Language Model (LM)
based NIDS algorithm is performed. Our results indicate that
Mamba outperforms all other models in terms of classification
performance, as well as in inference latency, if Graphics Processing
Unit (GPU) acceleration is available. We also establish that
low-bit-quantized models are able to achieve good classification
accuracies, making them an auspicious option if their potential
in computational efficiency are reached.

Keywords- IDS; Transformer; BitNet; Mamba; MatMul-Free LM.

I. INTRODUCTION

In times of ever-increasing cybersecurity threats, emanating
from state-sponsored entities, as well as criminal groups moti-
vated by profit, countermeasures are in high demand. One of
these countermeasures are Network based Intrusion Detection
Systems (NIDS). Most NIDS currently deployed in industry
use pattern matching methods to compare past attacks in
order to detect them and notify system administrators when an
attack occurs. These systems, however, struggle with detecting
new or evolving threats, making them vulnerable to zero-day
exploits or attackers changing their approach to avoid detection.
Therefore, various machine learning based approaches to NIDS
are researched at present. In [1], Ferrag et al. propose a NIDS
that borrows the concepts currently applied in natural language
processing to analyze network traffic. The authors report that
their approach, based on Language Models (LM), outperforms
the state of the art in attack classification accuracy. Aside
from its performance in detection and classification, there are
other potential upsides of using language modeling techniques
in NIDS. These include the semantic interpretation of threat
detections and the generation of threat responses in natural
language [1][2]. Ferrag et al. utilize the Bidirectional Encoder
Representations from Transformers (BERT) [3] Transformer

as the backbone of their intrusion detection model. BERT,
which has been proposed in 2018, shows strong performance
in sequence classification tasks, but a lot of research has been
done to improve on the standard Transformer architecture since
then. This poses the question whether substituting the BERT
backbone of the IDS model with a more modern one could lead
to improvements either in classification accuracy, inference,
speed or memory consumption. In recent months, various new
model architectures and quantization techniques have been
proposed to either replace the Transformer or improve it in key
characteristics. This publication, therefore, aims to provide a
summary of recent advancements in language modeling and to
examine the validity of these new architectures and techniques
in the field of NIDS. The following four architectures are
chosen for this study:

• Transformer++ [4], [5]
• BitNet [6], [7]
• Mamba [8], [9]
• MatMul-Free LM [10]
Transformer++ serves as baseline, representing the state-of-

the-art Transformer model. This publication provides reference
points of existing implementation of the aforementioned models.
Because some of these techniques can not yet meet their
full potential, i.e., due to unoptimized implementations in
software or the lack of dedicated hardware, the comparison
of actually realized results is followed by a discussion of
untapped potential. The contributions of this publication can
be summarized as follows:

C1: A summary of recent advancements regarding LM
backbones is given.

C2: The performance of these backbones in a NIDS task
are studied comparatively

C3: The (to our knowledge) first NIDS models using
BitNet, and MatMul-Free LM are presented

These three contribution aim to aid with answering the
question: Which backbone architecture is most promising for
the development of language model based NIDS?

This work is structured into a review of current challenges
and recent advances regarding the backbones of language
models, aiming to improve Transformers or replace them
with more capable models, see Section II. Following this,
Section III provides a description of the methodology used to
train our models and evaluate them in regard to classification

125Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

performance and inference speed. In Section IV the results are
stated, once again subdivided into classification performance
and inference speed. The results are then discussed in Section
V, followed by a conclusion and the proposal of future work
regarding LM based NIDS and LMs in cybersecurity in general
in the final Section VI.

II. RELATED WORK

This section will summarize some chosen advances in
language modeling that have been published in recent months.
The following paragraphs aim to inform about the basic
concepts that drive the recent surge of change in foundational
language model architecture. In our view, there are two
foundational concepts that drive the publications described in
this Section. On the one hand there is the low-bit quantization,
on the other there is the emergence of parallelizable recurrent
architectures that blend the properties of classical Recurrent
Neural Networks (RNNs) and Convolutional Neural Networks
(CNNs) [8]. These concepts will now be examined, exploring
their implementation in recent models and their potential impact
on the field of language modeling.

As language models are being released to the public and
used by a wide range of individuals privately, as well as
professionally, the cost associated with their inference becomes
an increasingly urgent topic. Reducing this cost is therefore a
central topic of current language model research. One approach
to this topic is reducing the cost of inference by using less
resource intensive operations within an otherwise unchanged
Transformer model. This process, called quantization, has been
standard practice for years. Customary quantization techniques
involve replacing the floating point values (for example 16 bit
precision floating point) used as weights or activation with
integer values, e.g., 8-bit integers. This achieves a reduction in
computational cost, and therefore energy consumption, as well
as a reduction in consumed memory. Tao et al. show in [11]
that low-bit quantized models can maintain good performance
while reducing cost, provided quantization-aware training is
done right.

The idea of increasing inference efficiency by applying low-
bit quantization to the tried and tested Transformer architecture
has recently been advanced by H. Wang and S. Ma et al. by
proposing BitNet in [7] and further improved in [6]. BitNet
uses the same basic building blocks as standard Transformer
networks, while replacing its linear feedforward components
with the BitLinear layer. This layer uses 1-bit binarized
weights, quantizing every element in the weight matrix to
either one or minus one, while quantizing the activation to 8-
bit. Multiplication of these weight matrices with input vectors
can therefore be performed using addition and subtraction
only. These changes are not applied outside the Transformer
block, meaning input and output components of the network
remain unchanged. Wang and Ma show in [6] that the 1
bit-quantized BitNet can produce competitive results with
regular Transformers, while significantly improving memory
consumption and computational cost of inference.

S. Ma and H. Wang et al. further improve upon the
aforementioned findings in [6] proposing BitNet 1.58, a BitNet
variant that utilizes ternary instead of binary weights. This
extends the values in the weight matrices from {−1, 1} to
{−1, 0, 1}. This change increases the information entropy of
each weight matrix entry to 1.58 bits, hence the name BitNet
1.58, while maintaining BitNet’s main advantage, the omission
of multiplication operations. The authors state the ability to
filter features as an additional advantage of adding zeros to
the weight values. BitNet 1.58 is therefore more expressive
than BitNet without additional computational cost.

The previously mentioned Transformer model [12] with
Attention [13] as its foundational mechanism has been the
dominating network architecture for sequence to sequence tasks
in recent years. This success is a consequence of its ability
to encode complex relations within a set reference window
while maintaining a dense representation of information within
its weights and computational efficiency in inference, as
well as in training. The Transformer architecture, however,
is not without its drawbacks. One of them is the fixed
maximum length of its reference window. This drawback is
further aggravated by the fact that the computational cost
attached to the Transformer scales quadratically with the
length of its reference window. A Transformers’ ability to
extract information from longer sequences is therefore limited,
especially in resource-constrained environments.

Another heavily researched area of improvements to lan-
guage models is the quest for a replacement for the Transformer
architecture that remedies the shortcomings of the latter while
maintaining the abilities that made Transformers successful.
One of the most promising of these alternatives has been
proposed by A. Gu and T. Dao in [9]. The authors present
Mamba, a variant of State Space Models that scales almost
linearly with sequence length while also showing an ability
to reason on long sequences that rivals that of Transformer
Networks. This model architecture also fulfills the requirement
for efficient computations in training and inference because
it can be computed either as linear recurrence (for inference)
or global convolution (for highly parallelized training) [9]. A
NIDS model based on the mamba is described in [14] by Wang
et al.

Zhu et al. combine ideas from the previously described
papers in [10] to create a language model that eliminates
the need for matrix multiplication in inference completely.
They achieve this by adapting the ternary BitLinear layer
from [6] and combining this with the fundamental concept
of Mamba, i.e., replacing the Transformer architecture with
a parallelizable recurrent net. Thus avoiding the fundamental
scaling issue of attention layers. In addition to their conceptual
contribution, they also describe an optimized variant of the
BitLinear layer that fuses the RMS (Root Mean Square) Norm
with the activation function to be executed as a single block in
the faster Static Random-Access Memory (SRAM) of GPUs
reducing latency and memory consumption in comparison to
the original BitLinear implementation.

Following this summary of chosen publications promising to

126Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

improve the current state of language models (C1), a description
of the methodology used to determine the potential of the
aforementioned techniques is given.

III. TEST SETUP AND METHODOLOGY

This publication aims to provide a comparison between the
aforementioned innovations with the language model like NIDS
algorithms in mind. The two most significant criteria in this
field are, according to the authors’ opinion, the classification
performance that can be achieved and the computational cost at
inference needed to do so. The former is the most commonly
described using metrics like precision, recall and F1-Score
as shown in surveys regarding the topic [15][16]. While the
latter is especially crucial in application areas with constrained
computational resources like the Internet of Things (IoT) [17].
This section is, therefore, structured into a description of the
training setup and the classification task used to benchmark
model accuracy, and the setup used to measure inference speed.

A. Training and Classification

The dataset used for our tests is the Edge-IIoTset published
by Ferrag et al. in [18]. We employ the readily extracted
features provided in the CSV format. Due to alignment issues,
the rows with the attack labels Man In The Middle (MITM)
& Distributed Denial Of Service for User Datagram Protocol
(DDOS-UDP) are removed from the dataset, reducing the
number of labels, including normal, from fifteen to thirteen.
This dataset is chosen to facilitate comparisons with similar,
previously published models.

The structure of the NIDS algorithm, as well as the
implemented training process, are borrowed from [1]. The
model consists of an embedding layer that gets tokens as input,
followed by a sequence to sequence model, that is referred to as
backbone in this paper. The output of the sequence to sequence
model is fed into two different Multi Layer Perceptron (MLP)
heads. The first one is a Masked Language Model (MLM)
head with an output shape fitting to reproduce the input tokens.
The other one is a 13 class softmax head used for attack
type classification. Figure 1 shows the previously described
structure.

The training process is accordingly split into two stages.
The first one, in the following referred to as pretraining, is an
unsupervised training stage in which the network is fed with
sequences of partially masked tokens from the training set. That
means that 15 percent of the tokens are replaced with a mask
token and the network is tasked with reproducing the original
unmasked sequence. This allows the network to learn inner
dependencies of the dataset and thus gain an understanding on
how certain tokens relate to each other. In the second training
step, the MLM head is replaced with a classification head
and trained to classify the attack label associated with the
last package in the input sequence in a supervised manner. To
combat the heavily biased dataset, random oversampling is
deployed, resulting in better classification results for classes
with less support. Both training stages take sequences of
tokens as input. The process of obtaining those tokens is the

Backbone Model

Embedding Layer

MLM-Head Classification-Head

Tok
1

Tok
2 <m> Tok

n
...

Tok 1 Tok 2 Tok 3 Tok n...

Tok
1

Tok
2

Tok
3

Tok
n

...

Normal DDoS Attack
n

...

Reconstructed Token Sequence Attack Classification

Figure 1. Structure of the Network in pretraining (left) and finetuning (right).

Privacy-Preserving Fixed-Length Encoding (PPFLE) algorithm
described in [1]. Each entry in the CSV table is concatenated
with the associated column name. The resulting string is then
hashed, creating a fixed length string for each column name
value combination in each line of the CSV. These are then
converted into tokens using the Byte-level-Byte-Pair-Encoding.

The dataset is split into train, test, and validation splits with
the respective sizes of 1272242, 381700, and 163600 entries
each. The test split is used during training to select the most
capable models, while the validation set is used to perform
a final assessment of the models’ performance, creating the
numbers presented in Section IV. Each of the training stages
consists of 1200 batches with a batch size of 256. Each element
of a batch consists of a sequence of 900 tokens. The learning
rate follows a sinus shape overlaid with an exponential decay.
This training regime is chosen because it delivers good results
with all tested backbone architectures.

Tuning the hyperparameters of each model is done by
choosing smaller network sizes as initial reference points. The
parameters of the network are later tweaked to enlarge the
networks’ parameter count. The variations in hyperparameters
that result in noticeable improvement in classification perfor-
mance are kept, and the process is repeated. The enlargement
of the networks is stopped when improvements in classification
performance are negligible. This approach is derived from
LM scaling laws that suggest that a model’s performance
will increase with increasing parameter count as it’s ability to
encode complex information increases. For fixed data sizes,
this trend can be expected to continue until a threshold based
on the available data is reached and a phase of diminishing
returns begins. We try to detect this threshold and determine the

127Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

optimal model size based on the point of diminishing returns.
The backbones included in this comparative study are

selected based on the Related Work presented in Section II.
The baseline of this comparison will be a standard implemen-
tation of a Transformer network, including the improvements
described in Transformer++ [4]. The specific implementation
of this backbone is taken from the repository published with
Meta’s LLaMA [5]. Transformer++/LLaMA is commonly used
as baseline in other publications, i.e., [6], [7], [9].

For the implementation of the low-bit quantization proposed
in [6], [7] the process described in [7] is followed. Therefore,
the LLaMA model used as baseline is adapted by interchanging
the linear layers within the attention and the feed-forward
blocks of the Transformer model with BitLinear layers. As
BitLinear layer, the ternary variant described in [6] is used, as
it outperforms or ties the binary variant in all regards except for
information density in the weight matrices. The implementation
of the BitLinear layer is taken from [10], as it is more efficient
and already part of the project.

For Mamba, two different implementations are used. The first
one is provided by the authors and contains a computationally
efficient selective-scan written in CUDA. This, however, limits
the algorithm to be used on systems that have GPU acceleration
available. In order to also perform tests using CPU, a PyTorch
only implementation is used [19].

The implementation for the final backbone architecture
examined in this study is provided by Zhu et al., the authors
of the paper describing it [10].

B. Inference Benchmarking

The inference speed test runs with CUDA GPU are executed
on a virtual machine hosted on a laboratory server. The virtual
machine has the following specifications:

• 12 core Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz
CPU

• NVIDIA A5000 with 24GB GDDR6 memory
• 128GB system memory

All models are implemented in PyTorch and executed using
version 2.2.1 in half precision mode.

The implementation of Mamba provided by A. Gu and
T. Dao utilizes a memory optimization that reduces copies
between the slower HBM (High-Bandwidth-Memory) and the
faster but smaller SRAM of GPUs. This optimization speeds up
training and inference but requires access to a GPU, preventing
the model from being inferred on CPUs. As many NIDS
applications rely on low-cost devices, that usually do not have
access to a GPU, to perform the classification of network data
we deploy a pure python implementation to compare CPU
inference latencies of Mamba and Transformer++. These tests
are performed on the virtual machine described above but
without access to the A5000 GPU. BitNet and MatMul-Free
LM are omitted in this test the reasoning for this decision is
given in Section IV-B.

IV. RESULTS

This section describes results obtained using the setups
described in the previous section. The results are, like the test-
setup description, structured into classification performance
and inference speed.

A. Classification Results

A collection of metrics comparing the classification per-
formance of the models trained as described in the previous
section is shown in Table I. For a more visual comparison,
selected key metrics are shown in the radar chart depicted in
Figure 2.

Macro Avg Recall

Macro Avg Precision

Macro Avg F1 Score

Cohens Kappa

Bottom 3 Avg F1

0.7
0.8

0.9
1.0

Transformer++
BitNet
Mamba
MatMul-Free LM

Figure 2. Radar chart showing key classification metrics.

Both charts show that the model using Mamba as backbone
performs the best in all chosen metrics. BitNet is second in all
metrics except for Macro Avg Recall, in which it comes third.
The standard Transformer++ implementation and MatMul-Free
LM take last place in all selected metrics. BitNet outperforming
Transformer++ is notable as it only differs from Transformer++
by using BitLinear layers instead of 16 bit floating point linear
layers. This change is primarily done to reduce the resources
necessary to infer it. Comparing the results with the ones
published by Ferrag et al. in [1] shows that all backbone models
outperform the implementation using BERT as backbone. But
it has to be noted that the training process and dataset are not
identical to the ones used by Ferrag et al. as for example the
sequence window is longer and, as described in Section III-A,
two of the classes were removed from our dataset.

B. Inference Speed

Figure 3 shows a violin plot of each networks’ inference
latency on an Nvidia A5000 GPU using CUDA. The plot shows
that Mamba beats the baseline set by Transformer++ by a wide
margin. The latency of Mamba is 34 percent lower than the
one of Transformer++ despite outperforming it in terms of
classification, which makes Mamba the fastest as well as the
most capable model in this comparison.

128Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

TABLE I
TABULAR OVERVIEW OF THE CLASSIFICATION PERFORMANCE

Transformer++ BitNet Mamba MatMul-Free LM

Macro Avg Recall 0.9759 0.9819 0.9953 0.9851

Macro Avg Precision 0.9429 0.9766 0.9818 0.9245

Macro Avg F1 Score 0.9574 0.9791 0.9882 0.9442

Weighted Avg Recall 0.9926 0.9973 0.9988 0.9950

Weighted Avg Precision 0.9933 0.9974 0.9988 0.9961

Weighted Avg F1 Score 0.9928 0.9973 0.9988 0.9954

Cohens Kappa 0.9834 0.9940 0.9972 0.9888

Top 3 Avg F1 0.9985 0.9993 0.9996 0.9980

Bottom 3 Avg F1 0.8668 0.9303 0.9526 0.7803

The two quantized models, BitNet and MatMul-Free LM,
on the other hand, have inference latencies that are larger than
Transformer++’s by a factor of 6 and 4, respectively. These
results can be explained by the method used to implement the
quantized models in PyTorch, which is further discussed in the
next section.

Transformer++ BitNet Mamba MatMul-Free LM
Model

0.002

0.004

0.006

0.008

0.010

0.012

In
fe

re
nc

e
Ti

m
e

(s
ec

on
ds

)

Figure 3. Inference latency on GPU.

Figure 4 shows the violin plots for the CPU inference tests.
BitNet and MatMul-Free LM are not included in this test, as
the GPU tests have already shown that their implementations

are not competitive at the moment. This would not change
on CPUs as the underlying cause of it, which is discussed in
Section V-B, is the same. The plot shows that the advantage
Mamba has over Transformer++ on GPU does not carry over
to CPUs.

Mamba Transformer++
Model

0.01

0.02

0.03

0.04

0.05

0.06

0.07

In
fe

re
nc

e
Ti

m
e

(s
ec

on
ds

)

Figure 4. Inference latency without GPU acceleration, using CPU.

V. DISCUSSION

This section discusses the results presented in Section IV.
In parallel to the preceding section, it is also subdivided into

129Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

classification performance and inference latency.

A. Discussion of Classification Performance

The fact that all the models trained for the purpose of
this study outperform the model described in [1] should not
be solely attributed to the superiority of the more modern
backbones used in our models. Attributing this difference to
the attack classes removed in our tests seems natural, but
does not withstand closer examination. Both classes (MITM
& DDOS-UDP) are classified flawlessly by Ferrag et al.’s
model. The main differentiator between our models and the
reference is the classification performance for the fingerprinting
class (F1 score in [1] 0 and .92 in our Mamba model). This
discrepancy might be explained by omitting the separation of
network traffic into flows. The removal of this step allows
networks to draw connections between suspicious packages
sent to and from different devices in close temporal proximity.
The fingerprinting attack comprised in the Edge-IIoTset [18]
aims at identifying the operating systems of potential victims
in the Network. The attack therefore likely contains similar
messages to different Hosts in the network in short timespans.
Thus making detection easier if inputs are not restricted to one
flow. The added capability of models creating an understanding
of what happens in different parts of a network in combination
with the sub-quadratic scaling of models like Mamba in regard
to input sequence length suggests that non-flow-based NIDS
could be a better choice going forward.

Determining why BitNet outperforms Transformer++ in our
tests requires further experimentation. Besides quantization,
the most notable difference between BitLinear and nn.Linear
layers are the additional RMS Norm added before activation
quantization. This added step, originally done for the sake
of numerical stability, might contribute to this otherwise
counterintuitive finding.

B. Discussion of Inference Latencies

The underwhelming results of BitNet and MatMul-Free LM
can be explained by the fact that their default implementation
use a technique called fake-quantization. This means that they
use standard floating point values that are clipped during
inference to behave like ternary/8-bit quantized operation. This
is done because it is, due to limitations of the PyTorch library,
the most efficient approach. using currently available hard
and software. The usage of floating-point operations, however,
cancels out the theoretical gains in computational load during
inference, and memory requirements. Clipping these floats to
get quantized values even introduces additional operations,
leading to overall worse performance. In order to harness
the full potential, these techniques offer, specialized inference
frameworks like BitBlas or even better hardware accelerators
tailored to these operations would be necessary.

Zhu et al. describe two approaches to dealing with this prob-
lem. One of them is the aforementioned BitBlas library used
to generate their performance latency benchmarks, showing a
reduction of latency by a factor of 3.65. The fused BitLinear
implementation used for these tests are at the moment not

publicly available. These results can therefore not be reproduced
for this study. It has to be noted that BitBlas is intended for the
deployment of large models on powerful hardware. Whether
these results are transferable on the much smaller model sizes
used in this study is yet to be determined.

The same limitations apply to our BitNet model, as it uses
the fused BitLinear layer proposed in [10].

The other approach described in [10] is an implementation
on Hardware using Field-Programmable Gate Arrays (FPGA)
demonstrating the potential speed up and increase in efficiency
that custom hardware tailored to MatMul-Free models would
have. Using FPGAs is however out of the scope of this
publication.

VI. CONCLUSION AND FUTURE WORK

This publication provides a comparison between promis-
ing candidates for language model based NIDS backbones.
Supposed to give researchers in the field guidance on which
backbone to pick for their models. For this purpose, to our
knowledge, the first NIDS using BitNet and MatMul-Free LM
as backbones are presented (C3). A language model based
NIDS using Mamba has been proposed by Wang et al. in
[14]. Our research confirms their finding that constitutes a
capable and efficient backbone for language model NIDS.
Making Mamba the foremost choice as backbone if GPU
acceleration is available. Our Inference tests on CPU show that
basic Transformer++ might still be the best choice if inference
on CPU is mandatory (C2).

We prove that low-bit quantized backbones can provide good
classification performances which makes them an interesting
option for low-power or otherwise resource-constrained ap-
plication, as soon as specialized hardware or better software
implementations for inference are available.

Additionally, we report, to our knowledge, the best classifi-
cation results on the Edge-IIoTset [18] to date, using Mamba
as backbone. The other models proposed in this work also
outperform the baseline set in [1].

Future work in this direction might include expanding
benchmarks by adding different datasets, as well as different
representations of network traffic data, i.e., using raw byte data
as input for the tokenizer.

Promising directions for future work include the development
of better software solutions for low-bit quantized operations.
An investigation into the potential upsides of specialized
hardware accelerators might unlock new possibilities for the
edge deployment of language model based NIDS and language
models in general.

Another promising research field is the generation of detailed
descriptions of security incidents in natural language. Ferrag
et al. propose in [2] a model based on FalconLLM [20]
that generates incidence responses using NIDS classification
results as prompt. This approach, however, limits the generated
incidence responses to general advices on how to counter
certain threats. More detailed outputs might be possible if the
generating language model has access to information from the
hidden states of the NIDS model.

130Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

ACKNOWLEDGMENT

The presented work is part of the research project KRITIS
Scalable Safe and Secure Modules (KRITIS³M), which is
funded by the Project Management Jülich (PtJ) and the German
Federal Ministry for Economic Affairs and Climate Action
(BMWK) under funding code 03EI6089A.

REFERENCES

[1] M. A. Ferrag et al., “Revolutionizing Cyber Threat Detection
With Large Language Models: A Privacy-Preserving BERT-
Based Lightweight Model for IoT/IIoT Devices”, IEEE Access,
vol. 12, pp. 23 733–23 750, 2024, ISSN: 2169-3536. DOI: 10.
1109/ACCESS.2024.3363469.

[2] M. A. Ferrag et al., “Revolutionizing Cyber Threat Detection
with Large Language Models”, 2023. DOI: 10.48550/ARXIV.
2306.14263.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of deep bidirectional transformers for language
understanding”, in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), J. Burstein, C. Doran, and T. Solorio,
Eds., Minneapolis, Minnesota: Association for Computational
Linguistics, Jun. 2019, pp. 4171–4186. DOI: 10.18653/v1/N19-
1423.

[4] P. Thapak and P. Hore, Transformer++, Mar. 2020. arXiv:
2003.04974 [cs, stat].

[5] H. Touvron et al., LLaMA: Open and Efficient Foundation
Language Models, Feb. 2023. arXiv: 2302.13971 [cs].

[6] S. Ma et al., The Era of 1-bit LLMs: All Large Language
Models are in 1.58 Bits, Feb. 2024. arXiv: 2402.17764 [cs].

[7] H. Wang et al., BitNet: Scaling 1-bit Transformers for Large
Language Models, Oct. 2023. arXiv: 2310.11453 [cs].

[8] T. Dao and A. Gu, Transformers are SSMs: Generalized
Models and Efficient Algorithms Through Structured State
Space Duality, May 2024. arXiv: 2405.21060 [cs].

[9] A. Gu and T. Dao, Mamba: Linear-Time Sequence Modeling
with Selective State Spaces, Dec. 2023. arXiv: 2312.00752
[cs].

[10] R.-J. Zhu et al., Scalable MatMul-free Language Modeling,
Jun. 2024. arXiv: 2406.02528 [cs].

[11] C. Tao et al., “Compression of Generative Pre-trained Language
Models via Quantization”, in Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Dublin, Ireland: Association for
Computational Linguistics, 2022, pp. 4821–4836. DOI: 10 .
18653/v1/2022.acl-long.331.

[12] A. Vaswani et al., “Attention is all you need”, in Advances in
Neural Information Processing Systems, I. Guyon et al., Eds.,
vol. 30, Curran Associates, Inc., 2017.

[13] D. Bahdanau, K. Cho, and Y. Bengio, Neural Machine
Translation by Jointly Learning to Align and Translate, May
2016. arXiv: 1409.0473 [cs, stat].

[14] T. Wang et al., NetMamba: Efficient Network Traffic Classifica-
tion via Pre-training Unidirectional Mamba, May 2024. arXiv:
2405.11449 [cs].

[15] T. Saranya, S. Sridevi, C. Deisy, T. D. Chung, and M. Khan,
“Performance Analysis of Machine Learning Algorithms in
Intrusion Detection System: A Review”, Procedia Computer
Science, vol. 171, pp. 1251–1260, 2020, ISSN: 18770509. DOI:
10.1016/j.procs.2020.04.133.

[16] Z. Ahmad, A. S. Khan, C. W. Shiang, J. Abdullah, and F.
Ahmad, “Network intrusion detection system: A systematic
study of machine learning and deep learning approaches”,
Transactions on Emerging Telecommunications Technologies,
vol. 32, no. 1, Jan. 2021, ISSN: 2161-3915, 2161-3915. DOI:
10.1002/ett.4150.

[17] A. Heidari and M. A. Jabraeil Jamali, “Internet of Things
intrusion detection systems: A comprehensive review and future
directions”, Cluster Computing, Oct. 2022, ISSN: 1386-7857,
1573-7543. DOI: 10.1007/s10586-022-03776-z.

[18] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H.
Janicke, “Edge-IIoTset: A New Comprehensive Realistic Cyber
Security Dataset of IoT and IIoT Applications for Centralized
and Federated Learning”, IEEE Access, vol. 10, pp. 40 281–
40 306, 2022, ISSN: 2169-3536. DOI: 10.1109/ACCESS.2022.
3165809.

[19] J. Ma, Mamba-minimal, https : / / github . com / johnma2006 /
mamba-minimal, Feb. 2024.

[20] E. Almazrouei et al., The Falcon Series of Open Language
Models, Nov. 2023. arXiv: 2311.16867 [cs].

131Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

https://doi.org/10.1109/ACCESS.2024.3363469
https://doi.org/10.1109/ACCESS.2024.3363469
https://doi.org/10.48550/ARXIV.2306.14263
https://doi.org/10.48550/ARXIV.2306.14263
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2003.04974
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2402.17764
https://arxiv.org/abs/2310.11453
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2406.02528
https://doi.org/10.18653/v1/2022.acl-long.331
https://doi.org/10.18653/v1/2022.acl-long.331
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2405.11449
https://doi.org/10.1016/j.procs.2020.04.133
https://doi.org/10.1002/ett.4150
https://doi.org/10.1007/s10586-022-03776-z
https://doi.org/10.1109/ACCESS.2022.3165809
https://doi.org/10.1109/ACCESS.2022.3165809
https://github.com/johnma2006/mamba-minimal
https://github.com/johnma2006/mamba-minimal
https://arxiv.org/abs/2311.16867

	Introduction
	Related Work
	Test Setup and Methodology
	Training and Classification
	Inference Benchmarking

	Results
	Classification Results
	Inference Speed

	Discussion
	Discussion of Classification Performance
	Discussion of Inference Latencies

	Conclusion and Future Work

