
Fingerprinting and Tracing Shadows: The Development and Impact of Browser
Fingerprinting on Digital Privacy

Alexander Lawall
IU International University of Applied Science

Erfurt, Thüringen, Germany
alexander.lawall@iu.org

Abstract—Browser fingerprinting is a growing technique for
identifying and tracking users online without traditional methods
like cookies. This paper gives an overview by examining the
various fingerprinting techniques and analyzes the entropy and
uniqueness of the collected data. The analysis highlights that
browser fingerprinting poses a complex challenge from both
technical and privacy perspectives, as users often have no control
over the collection and use of their data. In addition, it raises
significant privacy concerns as users are often tracked without
their knowledge or consent.

Keywords-browser fingerprinting; device fingerprinting; track-
ing; privacy.

I. INTRODUCTION

In the increasingly digitized world, the issues of online
privacy and data security are becoming more complex. Partic-
ularly in tracking — monitoring users and their devices across
different web servers — browser fingerprinting has emerged
as an effective technique for creating detailed user profiles.
Unlike the storage of information via cookies, which requires
explicit user consent as mandated by the European General
Data Protection Regulations (GDPR) guidelines, fingerprinting
does not require such consent. A browser fingerprint can be
generated in the background without any obvious signs to the
end user, leaving them unaware of whether and to what extent
they are being tracked.

It is possible to manipulate a device locally to alter its fin-
gerprint. This is often not feasible for all users, unlike deleting
cookies. This invisible threat is not apparent to the general
public and raises significant privacy concerns, as individuals
can be tracked unnoticed. These profiles can contain private
information, depending on the server operators, including age
group, ethnic origin, social circles, and interests of the affected
person.

Browser fingerprinting poses a threat to the privacy of the
general public. Contrary to being a threat, it is an opportunity
to provide valuable information to enhance the authentication
mechanisms. Both perspectives are explored throughout this
paper. The focus will be on the various techniques of finger-
printing to understand how accurate and detailed user profiles
can be created. The main research questions that this paper
seeks to answer are:

RQ1 “What methods are used in browser fingerprinting and
what user data are collected in the process?”

RQ2 “How has the development of browser fingerprinting as
a user identification method influenced user privacy and
data protection in the digital space?”

The paper is structured as follows: Section I introduces
browser fingerprinting and its privacy implications. In Section
II, the theoretical background explains how fingerprinting
works and its legal challenges. Section III outlines techniques
like HTTP Headers, Canvas, and WebGL Fingerprinting. Sec-
tion IV examines the impact of fingerprinting on privacy and
the regulatory landscape. Section V concludes with a summary
of the findings, emphasizing the need for stronger privacy
measures and further research on countermeasures.

II. THEORETICAL BACKGROUND

A. Fingerprinting

Browser fingerprinting refers to collecting characteristic
information that the browser directly or indirectly reveals
about itself. Often used to track users, this technology has
also found applications in IT security, such as fraud detection.
Unlike tracking methods like cookies, browser fingerprinting
does not require storing data on the user’s computer, allowing
the process to occur secretly and without consent [1, p. 1].
Consequently, creating a new identity, similar to deleting
cookies, is not easily achievable, and GDPR privacy laws
often provide little protection. Unlike cookie tracking, browser
fingerprinting is not explicitly mentioned in the GDPR. It
should fall under the collection of identifiable information
but website operators frequently claim “legitimate interest”,
enabling such data collection without the user’s consent [2].

Active transmission of data is not required for browser
fingerprinting, as loading a webpage can transmit various
pieces of information, such as the user’s preferred language,
within the HTTP headers. This passive data collection pro-
vides only a limited amount of information, so it is often
supplemented with active data collection methods. An active
approach typically employs JavaScript to interface with the
browser and gather information, such as screen resolution,
installed add-ons, and graphics card data, merging them into
a unique fingerprint [3, pp. 1, 3].

Similar to human fingerprints, browser fingerprinting relies
on the uniqueness of browser characteristics, which typically
do not change significantly with regular use. This allows for
accurate user identification over extended periods [3, p. 2].
However, not all collected data points are equally unique or
stable, necessitating careful selection of information to achieve
accurate results. The fingerprinting algorithm combines both
passively and actively collected data into a unique string.
Depending on the operator’s goals, adjustments can be made;

132Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

for instance, using cookies, the fingerprint might be less stable
but more unique, while tracking users without cookies requires
high stability [4, pp. 1-5]. Eckersley’s study showed that
participant browsers already had high entropy, indicating many
unique characteristics sufficient for accurate fingerprinting,
though not stable enough for long-term accuracy. In recent
years, potential entropy has increased with new techniques
like HTML Canvas, WebGL-based hardware fingerprints, au-
dio API fingerprints, plug-in-based fingerprints, and methods
utilizing mouse movements or differences in HTML parsing
between browsers, making cross-browser user identification
possible [3, pp. 4-5].

B. Concerns for Digital Privacy

Historically, the greatest threat to online tracking was posed
by cookies, along with other technologies like Flash cookies,
which have lost significance in recent years. Changes by
browser manufacturers, such as Mozilla, which rendered many
exploited technologies, so-called “super-cookies”, ineffective
[5], and additional browsers planning to block or eliminate
third-party cookies in the coming years [6], have shifted the
landscape. Following the GDPR, the use of non-essential cook-
ies has been further restricted and standardized for the first
time, defining how users share their data through cookies [7].
In contrast, browser fingerprinting occurs in the background
and leaves no stored information on the user’s computer. Thus,
the use of fingerprints not only circumvents previous issues
related to local storage, such as privacy laws and technical
limitations but also persists even when local data is deleted or
when incognito mode is used.

A 2021 study of the Alexa Top 100,000 websites found that
nearly 10% of the sites used scripts to generate fingerprints
[8, pp. 11-12]. Comparing this to a similar 2014 study,
which recorded 5.5% of the top 100,000 sites using canvas
fingerprinting scripts, reveals an almost doubling of usage over
seven years [9]. This suggests a shift towards online tracking
using this technology, which is much harder to detect and
prevent compared to cookies. The creation of a fingerprint is
imperceptible to the user, with no simple way to effectively
change or delete their fingerprint. Cookie banners give a false
sense of security while tracking continues in the background
without consent.

Thus, browser fingerprinting poses an active threat to pri-
vacy, as users often have no control over the collection and
use of their data. This stands in opposition to many current
data protection principles, such as the GDPR.

III. METHODS OF BROWSER FINGERPRINTING

In the context of browser fingerprinting techniques, the
methods of data collection are varied and comprehensive.
Therefore, specific properties and criteria are used to select
techniques. The following sections will encompass the ex-
planation of the techniques in terms of their functionality
and their applications will be discussed to provide a detailed
understanding of their use. An evaluation based on the advan-
tages and disadvantages of each technique is also included to

weigh their effectiveness and potential risks. Given the ever-
increasing number of techniques, only the most commonly
used, established, or novel methods will be presented here.

A. HTTP Header Attributes

1) Definition and Basics: The HTTP request header is a
part of every HTTP request exchanged between a client (web
browser) and a server, transmitting various functional and
compatibility-related information [10]. Although individual
attributes are not unique, they can be combined to distinguish
a client. This explanation is based on HTTP version 1.1, with
HTTP/2 maintaining most attributes within a modified header
frame [11].

2) Analysis: HTTP request headers include attributes that
differ by browser and version. Effective fingerprinting re-
quires selecting attributes that remain consistent over time.
Reliable fields include User-Agent, Accept, Content-Encoding,
and Content-Language, which provide valuable identification
information [4, p. 5] [12, p. 880]. The User-Agent, despite
lacking standardization, offers high uniqueness due to its
detailed browser and OS information [13].

3) Advantages: The main advantage of using HTTP head-
ers is their passive information collection, which occurs
automatically with each request. This method is efficient,
unobtrusive, and compatible with most web servers, processing
data on the server side without a noticeable impact on the
client.

4) Disadvantages: HTTP header information is limited,
as most attributes provide minimal details. The User-Agent,
while informative, can be easily altered by browser extensions,
reducing its reliability (i.e. User-Agent Switcher for Chrome).
Furthermore, using such technologies without consent can
violate GDPR regulations, necessitating legal review before
implementation [14].

B. Enumeration of Browser Plugins

1) Definition and Basics: Browser plugins, whether pre-
installed or user-added, have been a method for recognizing
systems, along with font detection. Most browser features are
indirectly modified, except for extensions. The demand for
accurate enumeration of these extensions is high [12, pp. 878-
880].

2) Analysis: Many information-rich plugins, like Flash,
have disappeared over the years. Since 2016, most browsers,
including Firefox, no longer support the Netscape Plugin
Application Programming Interface (NPAPI) plugin interface,
leading to the navigator.plugins object in modern browsers
showing only standard plugins like PDF viewers [15]. This
limitation reduces the impact of plugins on fingerprinting but
still allows differentiation between systems and browsers. The
direct detection of user-installed add-ons is not possible, lim-
iting the data’s significance [12, pp. 886-887]. However, new
methods to enumerate extensions have emerged. Chromium-
based browsers can access extension settings via a local URL.
A GitHub project exploits this to check for over 1,000 exten-
sions by requesting internal resources and checking the status

133Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

codes [16]. Additionally, ad blockers’ behavior in removing
unwanted content can be detected by creating elements they
typically block and checking for changes, revealing active
blocklists [17]. Another method involves reading the status
of handler protocols to identify installed programs like Skype
and Zoom.

3) Advantages: User-installed extensions offer high unique-
ness and stability due to the number of extensions.

4) Disadvantages: Insights into users’ privacy, including
sensitive information like health conditions, religion, and polit-
ical views, can be inferred [18, pp. 11-12]. The fingerprinting
process relies on limited methods, making it prone to errors,
and requires continuous updates to maintain reliability.

C. Canvas Fingerprinting

1) Definition and Basics: Canvas fingerprinting involves
generating a digital fingerprint using the Canvas element intro-
duced in HTML5. It utilizes the Canvas API to draw a hidden
2D graphic in the background. Variations in how different
browsers and devices handle this image due to differences
in hardware acceleration, installed fonts, and graphic libraries
result in a highly stable and unique fingerprint [1, pp. 1-3].

2) Analysis: A script embedded in a webpage adds an
invisible Canvas element that draws a predetermined 2D
graphic in the background. Text can also be drawn using the
Canvas context, employing various fonts and sizes. WebFonts
enable dynamic loading of fonts from the internet, allowing
specific fonts to be chosen to test for uniqueness in font
rendering. The resulting image data can be extracted using
functions like getImageData and toDataURL, which can then
be hashed to form a fingerprint, typically using a hashing
algorithm. This hash is sent via a web request to a server
for processing and storage. Besides storing the fingerprint
for later identification, another application method involves
comparing the fingerprint with an extensive database of known
fingerprints and corresponding system configurations, enabling
reliable system profiling [1, pp. 2-4].

3) Advantages: Mowery and Shacham demonstrated that
implementing Canvas fingerprinting is straightforward, re-
quiring minimal lines of client-side code. It leverages basic
JavaScript functions and can be deployed across all major
web applications. The fingerprinting process is discrete for
users and challenging to block because Canvas operations are
common in web applications, making it difficult to distinguish
normal operations from fingerprinting scripts. The simplicity
of fingerprint creation enables high speed, stability, unique-
ness, and entropy, making it particularly valuable for real-time
tracking applications [1, pp. 1-5].

4) Disadvantages: Changes in browser environments, such
as updates or graphic settings, can affect the stability of the
fingerprint. Variability in hardware and software configurations
can lead to inconsistencies. As an active technique, executing
code on the client side is necessary, posing risks of detection
and potential blockage by blocklists targeting known finger-
printing scripts [1, pp. 3-7]. While imperceptible to users,
the limited interfaces to retrieve generated Canvas data can

be monitored and manipulated by extensions. Add-ons like
CanvasBlocker allow users to prevent data retrieval or manip-
ulate Canvas data, continuously generating new fingerprints
to prevent identification [19]. Finally, while implementing
Canvas fingerprinting is “relatively simple”, analyzing and
interpreting the data can be complex and may require expertise
in the field [1, pp. 6-8].

D. WebGL Fingerprinting

1) Definition and Basics: WebGL fingerprinting is a tech-
nique utilizing the WebGL JavaScript API, based on OpenGL
ES 2.0, allowing web applications to render both 2D and
3D graphics with high performance by directly accessing the
GPU [20]. Unlike Canvas fingerprinting, which focuses on 2D
graphics and identifies software differences mainly through
fonts and graphic libraries, WebGL fingerprinting provides
deeper and more precise detection capabilities. It captures
unique hardware information, particularly details about the
graphics processor, distinguishing it significantly from Can-
vas fingerprinting and broadening its application for tracking
purposes [1, p. 4].

2) Analysis: WebGL fingerprinting uses a Canvas ele-
ment to access the API. Similar to Canvas fingerprinting,
it creates an invisible element performing 3D operations
in the background to collect data without user interac-
tion. A straightforward application involves accessing spe-
cific variables, such as UNMASKED VENDOR WEBGL and
UNMASKED RENDERER WEBGL, using the getParameter
function in the WebGL context. These variables provide in-
formation about the graphics hardware manufacturer (Vendor)
and model (Renderer). For example, a Vendor entry like
“Intel” indicates an integrated graphics unit, while “Nvidia”
combined with “GeForce GTX 970” as Renderer indicates a
dedicated graphics card. These details can reveal insights into
the system being used [21, p. 17]. Privacy concerns have led
browsers like Apple’s WebKit to provide generic information
instead of specific data to protect user privacy. Since 2020,
WebKit has masked Vendor and Renderer information, as
well as shading language details [22]. Firefox similarly groups
graphics processor models into categories instead of displaying
specific models. In practice, this means that a Nvidia card
from the 900 series onward, for example, is reported as
“GeForce GTX 980”. In summary, research investigating hard-
ware fingerprinting using HTML5 demonstrated the capability
to identify devices based on GPU performance. It utilizes the
graphics processor’s clock frequency and clock skew to render
complex 3D graphics, measuring GPU performance based on
the number of frames rendered within a period, providing
insights into the GPU’s frequency and core count [23, pp.
3-4].

3) Advantages: As demonstrated by Cao et al., WebGL can
offer high uniqueness and stability [24]. Its direct interface
with the system ensures consistency across browsers, making
it challenging for users to evade identification through simple
browser changes or reinstalls. Despite changes to enhance
WebGL’s resistance to fingerprinting, it reliably identifies

134Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

users. The successor to WebGL, WebGPU, is currently in
development, promising even more privacy risks due to its
closer hardware access, allowing for classifications with up
to 98% accuracy in 150 milliseconds, a reduction from the 8
seconds WebGL took [25].

4) Disadvantages: The complexity of WebGL fingerprint-
ing is significantly higher compared to previous techniques,
necessitating careful consideration whether a simpler Canvas
approach combined with other methods might be accurate
enough for specific use cases. Intensive tasks in a 3D envi-
ronment can also strain the target system, leading to longer
fingerprint creation times [1, p. 4]. Implementing WebGL
requires caution, as shown by the cases of Laperdrix et al.
and Cao et al., and opting for a ready-made solution might
be advisable. Moreover, WebGL shares Canvas’s vulnerability
to blocked or misread data if detection methods rely on
differences in rendered graphics. Even novel methods like
DrawnApart can be mitigated through countermeasures, such
as limiting to a single EU [26, p. 12]. WebGL may also
not be available or disabled on some devices, necessitating
consideration of alternatives, such as using the 2D Canvas.

E. Audio Fingerprinting

1) Definition and Basics: The Web Audio API is a
JavaScript interface for processing and synthesizing audio sig-
nals in the web browsers, part of the HTML5 standard. It can
identify systems through manufacturing differences in audio
hardware. Methods analyze signal processing characteristics,
hardware differences, and system responses to specific audio
signals for fingerprinting [27, pp. 1107-1109].

2) Analysis: Audio fingerprinting involves various acoustic
measurements to create a unique device fingerprint. It requires
an AudioContext linking an AudioBuffer, Oscillator, and Com-
pressor. The AudioBuffer represents a small audio segment,
while the Oscillator generates a waveform at a defined fre-
quency. The Compressor manipulates the audio signal. The
unique waveform generated and manipulated reflects system
characteristics, allowing a unique fingerprint to be created
using a hash function on the final waveform. This method,
known as “Dynamic Compressor (DC)”, is highly stable,
producing the same fingerprint for the user each time using a
reliable hash function [27, pp. 1109-1111].

Another method is the “Fast Fourier Transform” (FFT), con-
verting audio signals from the time domain to the frequency
domain. It measures hardware implementation differences to
identify characteristics. FFT is less stable than DC, often
requiring multiple attempts for consistent results. DC and FFT
are often used together for more reliable outcomes [27, pp.
1111-1114]. Researchers compared the techniques, including
custom-designed ones, alongside DC and FFT. These included
creating “Custom Signals”, “Merged Signals”, and analyzing
generated AM and FM waves. All techniques showed good
stability, averaging two to four attempts for fingerprint match-
ing [28, pp. 3-5].

3) Advantages: The generated fingerprints are highly sta-
ble and can differentiate systems based on their properties.

Queiroz and Feitosa showed that mobile devices using Firefox
could be consistently recognized and grouped by their stable
fingerprints [27, p. 1119]. Techniques like DC are simple
to implement and offer high stability. Other promising tech-
niques, especially when used together, could enhance potential
but are more challenging to implement [28, pp. 1-3].

4) Disadvantages: While audio fingerprinting offers high
stability, it lacks uniqueness and accuracy on its own and
should be used with other fingerprinting techniques [27, p.
1119]. Additionally, the Web Audio API can be disabled on
devices or manipulated by add-ons like “Canvas Blocker”,
which also blocks and manipulates Canvas and WebGL.

F. Font Fingerprinting

1) Definition and Basics: Font fingerprinting is a browser
fingerprinting technique that identifies devices by recognizing
installed fonts. This method creates unique digital fingerprints
by combining fonts with other data points, which can be used
for tracking and identification purposes [29, p. 314].

2) Analysis: After the end of Adobe Flash, a new method
for font recognition was needed. JavaScript uses a fallback
mechanism to recognize fonts by comparing the dimensions
of texts in specific fonts with expected values. Invisible div
elements and the canvas element are used to identify installed
fonts [29, p. 311] [30, p. 12]. The experimental Local Font
Access API requires user consent and is therefore not suitable
for fingerprinting [31].

3) Advantages: Font recognition offers high entropy and
stability since fonts are rarely changed. This allows the
identification of the operating system and installed software
packages like Office or Photoshop [3, p. 7].

4) Disadvantages: Without Flash, font recognition is done
through “brute-force” methods, reducing accuracy if unknown
fonts are installed. Similar fonts can lead to false positives.
Extensions and adjustments, such as those in Apple’s WebKit,
can manipulate or restrict recognition [24, p. 10] [29, p. 311].

G. Screen Fingerprinting

1) Definition and Basics: Screen fingerprinting identifies
a device by analyzing various screen-related characteristics,
including screen resolution, pixel depth, color depth, and
browser window size. This method leverages the uniqueness
of screen configurations and browser modifications, which can
create rare resolution combinations [32, p. 20].

2) Analysis: JavaScript provides attributes for screen and
browser window characteristics through the window.screen ob-
ject, offering details like color depth (colorDepth), screen ori-
entation (screenOrientation), and screen dimensions (screen-
Height, screenWidth). Values, such as window.innerWidth and
window.innerHeight, determine the browser window’s inner
area, which can be altered by toolbars or bookmark bars [24,
p. 3].

3) Advantages: Screen and window resolution information
typically have high entropy, making them useful for stabiliz-
ing fingerprints when combined with other techniques. This
method is particularly effective for distinguishing between

135Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

desktop, tablet, and mobile devices, as these have distinct
resolutions and aspect ratios compared to standardized desktop
screens [27, p. 277].

4) Disadvantages: Since values are derived from browser
attributes rather than hardware tests, they can be limited or
altered by extensions or privacy settings. Browsers like TOR
set the window to a fixed size of 1000x1000 pixels, reducing
uniqueness, and browsers like Firefox always report a color
depth of 24. Additionally, users with multiple monitors or
those using zoom functions can affect the accuracy of screen
fingerprinting, as there is no reliable way to determine the
zoom factor directly, which reduces entropy [24, p. 10].

H. WebRTC Fingerprinting

1) Definition and Basics: WebRTC is a standard and ac-
cessible JavaScript interface available in most browsers. It
facilitates real-time communication over stateless HTTP by
establishing direct connections between participants, allowing
the extraction of local network adapter information. This can
reveal private and public IP addresses, which can be used for
fingerprinting or identifying users behind proxies or VPNs [30,
p. 12]. It also provides information about connected devices,
such as microphones, webcams, and speakers.

2) Analysis: Unlike other browser mechanisms like camera
or microphone access, establishing a WebRTC connection
requires no permissions or user notifications. After connecting
to the target computer via a Session Traversal Utilities for
NAT (STUN) server, IP addresses can be read from the
RTCPeerConnection object as iceCandidates [33, p. 667]. This
data can be used for fingerprinting, and WebRTC can further
enumerate the local network to build a unique profile of
the target’s environment. It can also read all local adapter
addresses, including those for VPNs and virtual machines
[33, p. 667-668]. The DetectRTC project [34] demonstrates
WebRTC’s capabilities, highlighting information about micro-
phones, webcams, and speakers. While exact device names
require permissions, WebRTC can read Media Device IDs,
which can contribute to unique fingerprints.

3) Advantages: Extracting private and public IPs provides
deep insights, especially for identifying targets behind VPNs
or proxies. No other technique can silently reveal addresses
behind Network Address Translation (NAT) [35, p. 273]. The
collected data is highly unique; a study with 80 devices found
over 97% uniqueness using only WebRTC [33, p. 668].

4) Disadvantages: WebRTC might be disabled in the target
browser, or extensions might block its usage without user
consent. Accessing Media Device IDs requires permission,
alerting users to potential background activities, making it
unsuitable for stealth operations. Additionally, WebRTC relies
on STUN servers, either self-hosted or third-party, adding
dependency considerations for its use.

I. CSS Fingerprinting

1) Definition and Basics: Different to the active finger-
printing techniques using JavaScript, CSS fingerprinting is
a passive method. CSS is a stylesheet language primarily

used to enhance the presentation of HTML elements. Over
time, the CSS specification has expanded to include selectors
and filters, enabling limited dynamic selections, which this
technique leverages [36, p. 10].

2) Analysis: Until 2010, the :visited selector could identify
if a website had been visited by changing the link color,
detectable via JavaScript. After this was patched, researchers
explored time-based methods to read user history, but these
required JavaScript and were impractical [37, p. 4]. In 2015,
Takei et al. introduced a JavaScript-free method using CSS
properties and multiple @media queries to fetch URLs based
on defined rules. The server could then identify system proper-
ties like screen dimensions, resolution, touchscreen presence,
installed fonts, browser, and OS from the requesting IP address
and URL parameters [38, p. 3-5]. A current GitHub project
demonstrates this method’s practical capabilities [39].

3) Advantages: CSS fingerprinting’s independence from
JavaScript allows it to identify even cautious users who block
JavaScript or use extensions like NoScript. This technique can
even detect if JavaScript is disabled via noscript tags [38, p.
2]. Due to its limited use and lesser-known status, no effective
user solutions currently exist to prevent it.

4) Disadvantages: Takei et al.’s method provides limited
data, which, without JavaScript, can only be supplemented by
techniques like header analysis. Oliver Brotchie notes in his
project repository that the method is not currently scalable, as
each request requires over 1MB of CSS files to be downloaded.
However, he warns that upcoming CSS Values 4 implemen-
tation could reduce download sizes significantly, making the
method more practical. Additionally, font recognition relies on
brute-forcing, which can be noticeable in network traffic.

J. Additional JavaScript Attributes

1) Definition and Basics: Most of the previously dis-
cussed techniques actively use JavaScript to extract infor-
mation from various interfaces. Additional possibilities are
briefly mentioned here to provide a more comprehensive
picture. Since these techniques share many characteristics with
other JavaScript-based methods, listing their pros and cons is
omitted.

2) Analysis: The navigator object in browsers provides
information, such as DoNotTrack status, user agent details,
platform, languages, cookies usage, granted and available per-
missions, and time zone [29, p. 9]. JavaScript implementation
varies between browsers and versions, and Mowery et al.
demonstrated that these differences are measurable and can
indicate the software and hardware used [1].

Additionally, there are differences in the availability and
execution of functions, which offers an alternative way to
detect user agents if manipulated by extensions. Another
technique that caused concern among Tor users is the use of
the getClientRects function to obtain precise DOM element
data, even with Canvas disabled. These factors can vary based
on implementation, font sizes, and screen resolutions, enabling
identification in the otherwise anonymous browser [40]. This

136Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

vulnerability has been fixed in Tor but remains exploitable in
other browsers [41].

3) Advantages: JavaScript-based fingerprinting techniques
are highly versatile and widely applicable since JavaScript
is essential for web functionality. These methods can collect
a broad range of information, such as user agent details,
time zones, and system settings, often without requiring user
consent or visibility. The stealthy nature of JavaScript fin-
gerprinting allows it to operate in the background, making
it difficult for users to detect. Moreover, JavaScript-based
attributes work consistently across different browsers, enabling
effective cross-browser tracking.

4) Disadvantages: However, JavaScript fingerprinting is
limited by browser-specific implementations, which can result
in inconsistent data collection. Privacy-focused browsers like
Tor or extensions, such as NoScript, actively block or obscure
JavaScript-based tracking, reducing its effectiveness. Addition-
ally, users are becoming more aware of privacy risks and in-
creasingly use tools to disable or modify JavaScript functions.
Finally, updates to browsers may close vulnerabilities or alter
features that JavaScript fingerprinting relies on, decreasing its
long-term viability.

K. Advanced Techniques Using Machine Learning

1) Definition and Basics: Most active techniques discussed
so far use JavaScript to gather hardware and software in-
formation. They rely on unique data combinations based
on implementation quirks or directly available information.
Newer methods often employ “side-channels”, capturing addi-
tional data by observing behavioral differences during various
operations within the execution environment. Methods like
plugin enumeration (cf. Section III-B), font fingerprinting (cf.
Section III-F), and CSS fingerprinting (cf. Section III-I) use
this approach in simple forms by testing known combinations
to gain indirect information. These side-channel methods can
be implemented with minimal effort but can also be used
in more sophisticated ways with machine learning to gather
otherwise unobtainable information [42, p. 1].

2) Analysis: Wang et al. explored using cache usage, mem-
ory consumption, and CPU activity to identify visited web-
sites. Previously, CSS selectors were used to reveal browsing
history, posing significant privacy risks and leading to prompt
fixes. Side-channel techniques employ various tricks to ana-
lyze system behavior more accurately. Complex calculations
stress the hardware in the background, and machine learning
models categorize the results with expected values from known
sites. Tests showed 80-90% accuracy in identifying websites
[42, p. 3-5]. Further research is needed, but implementations
using WebAssembly [43] and the Performance API [44] are
conceivable.

3) Advantages: This method is invisible to the user and
provides insightful information not available through conven-
tional means. Currently, there are no methods to protect users
from such techniques [42, pp. 1-3].

4) Disadvantages: While previous techniques aimed to
identify a user over time, this method could offer dangerous

insights into the person’s behavior behind the screen. However,
the technique is still in its initial stage and remains a theoretical
approach not yet tested in the real world. It is unlikely to be
reliably used by actors in the near future [42, p. 6].

IV. DISCUSSION

Browser fingerprinting can be used positively for security,
as shown by technologies like BrFast and private, passive
user recognition methods. However, there’s a risk of misuse,
especially in advertising. Personalized ads significantly impact
Generation Z, who discover products primarily through social
media. The advertising industry, driven by creating accurate
user profiles, heavily invests in digital advertising, with data-
driven ads accounting for 60-70% of digital ad revenue in
Germany. Traditionally, data collection relied on cookies, but
users developed ways to avoid tracking, such as deleting
cookies or using incognito mode. Unlike cookies, browser
fingerprints are collected in the background and are not easily
altered. GDPR regulations mandate user consent for data
collection, but enforcement is inconsistent, and compliance
with fingerprinting guidelines remains unclear, even with new
laws like Germany’s TTDSG [45].

Online tracking is ubiquitous, affecting nearly all user
groups. A 2016 study of the top 1 million websites revealed
extensive tracking, with services like Google and Facebook
present on over 10% of sites. Post-GDPR, fingerprinting
scripts increased to 68.8% of the top 10,000 sites. A study with
234 participants found that demographics like age, gender,
education, IT background, and privacy awareness influenced
trackability, with men and those with higher education being
less trackable. Despite understanding fingerprinting, many par-
ticipants believed they could protect themselves from it. The
AmIUnique study, with over 100,000 fingerprints, indicated
a bias towards more privacy-aware internet users. Current
research from Friedrich-Alexander-University shows that most
study participants are male and well-educated, suggesting that
while almost everyone is affected by browser fingerprinting,
only a small, informed group actively researches and under-
stands it [46].

Browser fingerprinting, as explored through various meth-
ods in this paper (cf. Table I), represents a comprehensive
and evolving threat to digital privacy. Each fingerprinting
technique, from HTTP Header Attributes to more sophisticated
approaches like Canvas and WebGL Fingerprinting, offers
unique data points, but their power lies in their combinatorial
use. While individual methods may not be highly unique or
stable, their integration enables more persistent and accurate
user identification across devices and browsers. Techniques
like WebRTC and Font Fingerprinting complement traditional
methods by exposing additional layers of system and network
data. Furthermore, the advancement of machine learning-
based fingerprinting is pushing the boundaries of tracking,
allowing for the analysis of side-channel behaviors, such as
CPU or memory usage. This convergence of methods creates
a powerful, multi-dimensional profiling system that is increas-
ingly resistant to countermeasures, challenging both privacy

137Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

TABLE I
OVERVIEW OF FINGERPRINTING METHODS

Fingerprinting Method Uniqueness Stability Entropy Impact on User Privacy Defense Techniques

HTTP Header
Attributes Low Moderate Low

Moderate impact: limited detail but
useful when combined with other
methods.

Altering or masking headers (e.g.,
randomizing User-Agent).

Enumeration of Browser
Plugins Moderate High High High impact: reveals sensitive data,

such as installed plugins.
Disabling plugin enumeration,
avoiding unnecessary add-ons.

Canvas Fingerprinting High Moderate High High impact: generates unique fin-
gerprints based on rendering.

CanvasBlocker extension to block
or manipulate rendering.

WebGL Fingerprinting High High High High impact: collects detailed
hardware data for tracking.

Block or manipulate WebGL out-
puts.

Audio Fingerprinting Moderate High Moderate High impact: captures unique audio
processing details.

Disable Web Audio API, use pri-
vacy extensions.

Font Fingerprinting High High Moderate High impact: identifies installed
fonts, making it persistent.

Limit font access with privacy-
focused browsers (e.g., Tor).

Screen Fingerprinting Moderate High Low
Moderate impact: uses screen res-
olution and window size but less
effective on mobile devices.

Fix window size or limit resolution
reporting with privacy browsers.

WebRTC Fingerprinting Very High High Very High Very high impact: exposes real IP
addresses, even behind VPNs.

Disable WebRTC, use extensions
that block data collection.

CSS Fingerprinting Low Moderate Low Low impact: provides limited sys-
tem and style information.

Limit or disable CSS fingerprinting
through extensions or scripts.

JavaScript Attributes Moderate High Moderate Moderate impact: uses various
browser features for tracking.

Disable unnecessary JavaScript
functions or use privacy extensions.

Advanced Machine
Learning Fingerprinting Very High Very High Very High

Very high impact: uses side-
channel data (e.g., CPU/cache) for
tracking.

Limit access to Performance API
and WebAssembly, emerging de-
fenses needed.

frameworks and user efforts to remain anonymous online.
Therefore, the future of browser fingerprinting lies in this
synergistic exploitation of both passive and active methods,
making it a critical issue in the broader context of digital
surveillance and privacy regulation.

V. CONCLUSION

A. Summary of the Research Outcome

This contribution has examined browser fingerprinting, a
growing technique in online tracking. It has demonstrated that
browser fingerprinting is a sophisticated method for identifying
and tracking users online without traditional methods like
cookies.

The analysis highlighted that browser fingerprinting poses
a complex challenge from both technical and privacy per-
spectives. While it provides companies and advertisers with
detailed insights into user behavior for targeted advertising, it
raises significant privacy concerns as users are often tracked
without their knowledge or consent. Despite stricter privacy
laws like the GDPR in the EU, browser fingerprinting remains
a grey area. Anti-fingerprinting techniques are limited and
continually evolving to keep up with new tracking methods.

In conclusion, browser fingerprinting plays and will con-
tinue to play a significant role in the digital landscape.
Both users and regulatory bodies must increase awareness of
browser fingerprinting practices and their implications.

B. Implications for Practice

Consent and Cookies: Always accept only the necessary
cookies in cookie banners and regularly delete cookies to hin-
der tracking and fingerprinting. This is particularly important

for news sites, which often misuse collected data without user
consent.

Blending in with the Masses: Reducing APIs and data
sources for fingerprinting can ironically make users more iden-
tifiable [47]. Thus, widely adopted browsers and protection
mechanisms should be used to stay less conspicuous.

Browser Choice: Choose browsers with robust privacy pro-
tections. On iOS, Safari is recommended due to its advanced
tracking protection and large user base [48]. For Android,
the Mull browser is highly rated for fingerprinting protection,
while Brave is a good, widely-used alternative. On desktops,
Brave, Librewolf, and Mullvad browsers are recommended for
their privacy features and user bases [49].

Browser Extensions: Limit the use of browser extensions,
as they can become sources of unique information. While some
extensions block known trackers or modify API outputs, these
protections are often already built into recommended browsers
like Brave and Librewolf [18] [47].

C. Future Research

Future research in browser fingerprinting should focus on
several key areas. First, countermeasures and defense mech-
anisms need to be explored further, especially in mitigating
the newer techniques that leverage machine learning and
side-channel attacks. These advanced methods can bypass
traditional privacy safeguards, such as disabling JavaScript or
using incognito modes, making the development of more ro-
bust anti-fingerprinting technologies imperative. Additionally,
research should explore the ethics and regulatory frameworks
surrounding fingerprinting, examining how existing privacy
and data protection laws like GDPR can be adapted to better
address fingerprinting practices. Another promising direction

138Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

is improving cross-device tracking prevention by understand-
ing how fingerprinting works across different platforms and
hardware. Lastly, investigating user awareness and educational
tools on fingerprint privacy risks will help empower the general
public to protect their digital identities more effectively. Thus,
future research should focus on developing more effective
privacy techniques to balance commercial interests and user
privacy rights.

REFERENCES

[1] K. Mowery and H. Shacham, “Pixel perfect: Fingerprinting canvas in
HTML5,” Proceedings of W2SP, vol. 2012, 2012.

[2] K. Szymielewicz and B. Budington. (2018) The GDPR
and Browser Fingerprinting: How It Changes the Game for
the Sneakiest Web Trackers. Accessed: 2024-09-27. [Online].
Available: https://www.eff.org/de/deeplinks/2018/06/gdpr-and-browser-
fingerprinting-how-it-changes-game-sneakiest-web-trackers

[3] D. Zhang, J. Zhang, Y. Bu, B. Chen, C. Sun, and T. Wang, “A
Survey of Browser Fingerprint Research and Application,” Wireless
Communications and Mobile Computing, vol. 2022, no. 1, p. 3363335,
2022. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1155/2022/3363335

[4] P. Eckersley, “How unique is your web browser?” in Privacy Enhancing
Technologies, M. J. Atallah and N. J. Hopper, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 1–18.

[5] S. Englehardt and A. Edelstein. (2021) Firefox 85 Cracks Down
on Supercookies. Accessed: 2024-09-27. [Online]. Available: https:
//blog.mozilla.org/security/2021/01/26/supercookie-protections/

[6] E. Woollacott. (2021) Browser fingerprinting more prevalent on the
web now than ever before. Accessed: 2024-09-27. [Online]. Avail-
able: https://portswigger.net/daily-swig/browser-fingerprinting-more-
prevalent-on-the-web-now-than-ever-before-research

[7] R. Koch. (2019) Cookies, the GDPR, and the ePrivacy Directive.
Accessed: 2024-09-27. [Online]. Available: https://gdpr.eu/cookies/

[8] U. Iqbal, S. Englehardt, and Z. Shafiq, “Fingerprinting the Fingerprint-
ers: Learning to Detect Browser Fingerprinting Behaviors,” in 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 05 2021, pp.
1143–1161.

[9] G. Acar. (2014) Browser Fingerprinting and the Online-
Tracking Arms Race. Accessed: 2024-09-27. [Online]. Avail-
able: https://www.esat.kuleuven.be/cosic/news/the-web-never-forgets-
persistent-tracking-mechanisms-in-the-wild/

[10] “Request header,” accessed: 2024-09-27. [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Glossary/Request header

[11] “HTTP/2 fingerprinting: A relatively-unknown method for web
fingerprinting,” accessed: 2024-09-27. [Online]. Available: https:
//lwthiker.com/networks/2022/06/17/http2-fingerprinting.html

[12] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the Beast:
Diverting Modern Web Browsers to Build Unique Browser Fingerprints,”
in 2016 IEEE Symposium on Security and Privacy (SP), 2016, pp. 878–
894.

[13] “User-Agent,” accessed: 2024-09-27. [Online]. Available: https://
developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent

[14] B. Wolford. (2024) What are the GDPR consent requirements?
Accessed: 2024-09-27. [Online]. Available: https://gdpr.eu/gdpr-
consent-requirements/

[15] “Navigator: plugins property,” accessed: 2024-09-27. [On-
line]. Available: https://developer.mozilla.org/en-US/docs/Web/API/
Navigator/plugins

[16] “Extension Detector,” accessed: 2024-09-27. [Online]. Available:
https://github.com/z0ccc/extension-detector

[17] “How ad blockers can be used for browser fingerprinting,” accessed:
2024-09-27. [Online]. Available: https://fingerprint.com/blog/ad-
blocker-fingerprinting/

[18] S. Karami, P. Ilia, K. Solomos, and J. Polakis, “Carnus: Exploring the
Privacy Threats of Browser Extension Fingerprinting,” in 27th Annual
Network and Distributed System Security Symposium, NDSS 2020, San
Diego, California, USA, February 23-26, 2020. The Internet Society,
2020.

[19] “CanvasBlocker,” accessed: 2024-09-27. [Online]. Available: https:
//github.com/kkapsner/CanvasBlocker

[20] “WebGL: 2D and 3D graphics for the web,” accessed: 2024-09-27.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/API/
WebGL API

[21] T. Stephenson, “A Comparative Study on Analyses of Browser Finger-
printing,” Ph.D. dissertation, Wesleyan University, 2023.

[22] “WebKit,” accessed: 2024-09-27. [Online].
Available: https://github.com/WebKit/WebKit/commit/
ae710d34c23858295b385e3f95ad7f6edd29f9d7

[23] G. Nakibly, G. Shelef, and S. Yudilevich, “Hardware Fingerprinting
Using HTML5,” arXiv preprint arXiv:1503.01408, 03 2015.

[24] Y. Cao, S. Li, and E. Wijmans, “(Cross-)Browser Fingerprinting via
OS and Hardware Level Features,” in Network and Distributed System
Security Symposium, 2017.

[25] M. Mantel. (2022) Browser-Fingerprinting: PCs, Smartphones & Co.
lassen sich über die GPU tracken. Accessed: 2024-09-27. [Online].
Available: https://www.heise.de/news/Browser-Fingerprinting-PCs-
Smartphones-Co-lassen-sich-ueber-die-GPU-tracken-6345233.html

[26] Laor et al., “DRAWNAPART: A Device Identification Technique
based on Remote GPU Fingerprinting,” ArXiv, vol. abs/2201.09956,
2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:
246276013

[27] J. S. Queiroz and E. L. Feitosa, “A Web Browser Fingerprinting Method
Based on the Web Audio API,” Comput. J., vol. 62, pp. 1106–1120,
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
86644316

[28] S. Chalise and P. Vadrevu, “A Study of Feasibility and Diversity of Web
Audio Fingerprints,” arXiv preprint arXiv:2107.14201, 2021.

[29] A. Gómez-Boix, P. Laperdrix, and B. Baudry, “Hiding in the Crowd:
an Analysis of the Effectiveness of Browser Fingerprinting at Large
Scale,” in Proceedings of the 2018 World Wide Web Conference, ser.
WWW ’18. Republic and Canton of Geneva, CHE: International
World Wide Web Conferences Steering Committee, 2018, p. 309–318.
[Online]. Available: https://doi.org/10.1145/3178876.3186097

[30] S. Englehardt and A. Narayanan, “Online Tracking: A 1-million-site
Measurement and Analysis,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: Association for Computing Machinery, 2016,
p. 1388–1401. [Online]. Available: https://doi.org/10.1145/2976749.
2978313

[31] “Local Font Access API,” accessed: 2024-09-27. [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/API/Local Font
Access API

[32] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine, “Browser
Fingerprinting: A Survey,” ACM Trans. Web, vol. 14, no. 2, apr 2020.
[Online]. Available: https://doi.org/10.1145/3386040

[33] A. Reiter and A. Marsalek, “WebRTC: your privacy is at risk,” in
Proceedings of the Symposium on Applied Computing, ser. SAC ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
664–669. [Online]. Available: https://doi.org/10.1145/3019612.3019844

[34] “DetectRTC,” accessed: 2024-09-27. [Online]. Available: https://github.
com/muaz-khan/DetectRTC

[35] V. Bernardo and D. Domingos, “Web-based Fingerprinting
Techniques,” in Proceedings of the 13th International Joint
Conference on E-Business and Telecommunications, ser. ICETE
2016. Setubal, PRT: SCITEPRESS - Science and Technology
Publications, Lda, 2016, p. 271–282. [Online]. Available:
https://doi.org/10.5220/0005965602710282

[36] T. Bujlow, V. Carela-Español, J. Solé-Pareta, and P. Barlet-Ros, “A
Survey on Web Tracking: Mechanisms, Implications, and Defenses,”
Proceedings of the IEEE, vol. 105, no. 8, pp. 1476–1510, 2017.

[37] L. Olejnik, C. Castelluccia, and A. Janc, “Why Johnny Can’t Browse
in Peace: On the Uniqueness of Web Browsing History Patterns,” 12th
Privacy Enhancing Technologies Symposium (PETS 2012), 07 2012.
[Online]. Available: https://petsymposium.org/2012/papers/hotpets12-4-
johnny.pdf

[38] N. Takei, T. Saito, K. Takasu, and T. Yamada, “Web Browser Finger-
printing Using Only Cascading Style Sheets,” in 2015 10th International
Conference on Broadband and Wireless Computing, Communication and
Applications (BWCCA), 2015, pp. 57–63.

[39] “CSS-Fingerprint,” accessed: 2024-09-27. [Online]. Available: https:
//github.com/OliverBrotchie/CSS-Fingerprint

[40] “Advanced Tor Browser Fingerprinting,” accessed: 2024-09-
27. [Online]. Available: http://jcarlosnorte.com/security/2016/03/06/
advanced-tor-browser-fingerprinting.html

139Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

https://www.eff.org/de/deeplinks/2018/06/gdpr-and-browser-fingerprinting-how-it-changes-game-sneakiest-web-trackers
https://www.eff.org/de/deeplinks/2018/06/gdpr-and-browser-fingerprinting-how-it-changes-game-sneakiest-web-trackers
https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/3363335
https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/3363335
https://blog.mozilla.org/security/2021/01/26/supercookie-protections/
https://blog.mozilla.org/security/2021/01/26/supercookie-protections/
https://portswigger.net/daily-swig/browser-fingerprinting-more-prevalent-on-the-web-now-than-ever-before-research
https://portswigger.net/daily-swig/browser-fingerprinting-more-prevalent-on-the-web-now-than-ever-before-research
https://gdpr.eu/cookies/
https://www.esat.kuleuven.be/cosic/news/the-web-never-forgets-persistent-tracking-mechanisms-in-the-wild/
https://www.esat.kuleuven.be/cosic/news/the-web-never-forgets-persistent-tracking-mechanisms-in-the-wild/
https://developer.mozilla.org/en-US/docs/Glossary/Request_header
https://developer.mozilla.org/en-US/docs/Glossary/Request_header
https://lwthiker.com/networks/2022/06/17/http2-fingerprinting.html
https://lwthiker.com/networks/2022/06/17/http2-fingerprinting.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://gdpr.eu/gdpr-consent-requirements/
https://gdpr.eu/gdpr-consent-requirements/
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/plugins
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/plugins
https://github.com/z0ccc/extension-detector
https://fingerprint.com/blog/ad-blocker-fingerprinting/
https://fingerprint.com/blog/ad-blocker-fingerprinting/
https://github.com/kkapsner/CanvasBlocker
https://github.com/kkapsner/CanvasBlocker
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://github.com/WebKit/WebKit/commit/ae710d34c23858295b385e3f95ad7f6edd29f9d7
https://github.com/WebKit/WebKit/commit/ae710d34c23858295b385e3f95ad7f6edd29f9d7
https://www.heise.de/news/Browser-Fingerprinting-PCs-Smartphones-Co-lassen-sich-ueber-die-GPU-tracken-6345233.html
https://www.heise.de/news/Browser-Fingerprinting-PCs-Smartphones-Co-lassen-sich-ueber-die-GPU-tracken-6345233.html
https://api.semanticscholar.org/CorpusID:246276013
https://api.semanticscholar.org/CorpusID:246276013
https://api.semanticscholar.org/CorpusID:86644316
https://api.semanticscholar.org/CorpusID:86644316
https://doi.org/10.1145/3178876.3186097
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2976749.2978313
https://developer.mozilla.org/en-US/docs/Web/API/Local_Font_Access_API
https://developer.mozilla.org/en-US/docs/Web/API/Local_Font_Access_API
https://doi.org/10.1145/3386040
https://doi.org/10.1145/3019612.3019844
https://github.com/muaz-khan/DetectRTC
https://github.com/muaz-khan/DetectRTC
https://doi.org/10.5220/0005965602710282
https://petsymposium.org/2012/papers/hotpets12-4-johnny.pdf
https://petsymposium.org/2012/papers/hotpets12-4-johnny.pdf
https://github.com/OliverBrotchie/CSS-Fingerprint
https://github.com/OliverBrotchie/CSS-Fingerprint
http://jcarlosnorte.com/security/2016/03/06/advanced-tor-browser-fingerprinting.html
http://jcarlosnorte.com/security/2016/03/06/advanced-tor-browser-fingerprinting.html

[41] “Investigate impact of fingerprinting via getClientRects(),” accessed:
2024-09-27. [Online]. Available: https://gitlab.torproject.org/tpo/
applications/tor-browser/-/issues/18500

[42] H. Wang, H. Sayadi, A. Sasan, P. D. Sai Manoj, S. Rafatirad, and
H. Homayoun, “Machine Learning-Assisted Website Fingerprinting At-
tacks with Side-Channel Information: A Comprehensive Analysis and
Characterization,” in 2021 22nd International Symposium on Quality
Electronic Design (ISQED), 2021, pp. 79–84.

[43] “WebAssembly,” accessed: 2024-09-27. [Online]. Available: https:
//developer.mozilla.org/en-US/docs/WebAssembly

[44] “High precision timing,” accessed: 2024-09-27. [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/API/Performance
API/High precision timing

[45] “Browser Fingerprinting und das TDDDG: Erlaubt oder nicht? [Browser
Fingerprinting and the TDDDG: Allowed or not?],” accessed: 2024-09-
27. [Online]. Available: https://dr-dsgvo.de/browser-fingerprinting-und-
das-ttdsg/

[46] G. Pugliese, C. Riess, F. Gassmann, and Z. Benenson, “Long-Term
Observation on Browser Fingerprinting: Users’ Trackability and Per-
spective,” Proceedings on Privacy Enhancing Technologies, vol. 2020,
pp. 558–577, 05 2020.

[47] N. Al-Fannah and C. Mitchell, “Too little too late: can we control
browser fingerprinting?” Journal of Intellectual Capital, vol. ahead-of-
print, 01 2020.

[48] K. Kollnig, A. Shuba, M. Van Kleek, R. Binns, and N. Shadbolt,
“Goodbye Tracking? Impact of iOS App Tracking Transparency and
Privacy Labels,” in Proceedings of the 2022 ACM Conference on
Fairness, Accountability, and Transparency, ser. FAccT ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p.
508–520. [Online]. Available: https://doi.org/10.1145/3531146.3533116

[49] X. Lin, F. Araujo, T. Taylor, J. Jang, and J. Polakis, “Fashion Faux
Pas: Implicit Stylistic Fingerprints for Bypassing Browsers’ Anti-
Fingerprinting Defenses,” in 2023 IEEE Symposium on Security and
Privacy (SP), 2023, pp. 987–1004.

140Copyright (c) IARIA, 2024. ISBN: 978-1-68558-206-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2024 : The Eighteenth International Conference on Emerging Security Information, Systems and Technologies

https://gitlab.torproject.org/tpo/applications/tor-browser/-/issues/18500
https://gitlab.torproject.org/tpo/applications/tor-browser/-/issues/18500
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/Web/API/Performance_API/High_precision_timing
https://developer.mozilla.org/en-US/docs/Web/API/Performance_API/High_precision_timing
https://dr-dsgvo.de/browser-fingerprinting-und-das-ttdsg/
https://dr-dsgvo.de/browser-fingerprinting-und-das-ttdsg/
https://doi.org/10.1145/3531146.3533116

	Introduction
	Theoretical Background
	Fingerprinting
	Concerns for Digital Privacy

	Methods of Browser Fingerprinting
	HTTP Header Attributes
	Definition and Basics
	Analysis
	Advantages
	Disadvantages

	Enumeration of Browser Plugins
	Definition and Basics
	Analysis
	Advantages
	Disadvantages

	Canvas Fingerprinting
	Definition and Basics
	Analysis
	Advantages
	Disadvantages

	WebGL Fingerprinting
	Definition and Basics
	Analysis
	Advantages
	Disadvantages

	Audio Fingerprinting
	Definition and Basics
	Analysis
	Advantages
	Disadvantages

	Font Fingerprinting
	Definition and Basics
	Analysis
	Advantages
	Disadvantages

	Screen Fingerprinting
	Definition and Basics
	Analysis
	Advantages
	Disadvantages

	WebRTC Fingerprinting
	Definition and Basics
	Analysis
	Advantages
	Disadvantages

	CSS Fingerprinting
	Definition and Basics
	Analysis
	Advantages
	Disadvantages

	Additional JavaScript Attributes
	Definition and Basics
	Analysis
	Advantages
	Disadvantages

	Advanced Techniques Using Machine Learning
	Definition and Basics
	Analysis
	Advantages
	Disadvantages

	Discussion
	Conclusion
	Summary of the Research Outcome
	Implications for Practice
	Future Research

	References

