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Abstract—Distributed analytics, such as federated learning,
involve collaborative computation across multiple decentralized
devices. This approach not only reduces data transfer costs but also
offers some degree of protection for privacy-sensitive information.
To achieve a higher level of privacy protection, it is recommended
to use more advanced privacy-preserving technologies, such as
homomorphic encryption. However, the use of homomorphic
encryption schemes results in high computational costs. In this
study, we evaluate the performance characteristics of threshold
fully homomorphic encryption, a technique that can be effectively
applied in multi-user environments and distributed analytics
scenarios. We present results from the performance evaluation of
the Cheon-Kim-Kim-Song scheme.
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tion; multi-party computation; distributed analytics.

I. INTRODUCTION

Homomorphic encryption [1] is a form of encryption that
allows computations to be carried out on ciphertext, generating
an encrypted result which, when decrypted, matches the result
of operations performed on the plaintext. This unique property
of homomorphic encryption makes it highly valuable in the
field of data privacy and distributed analytics, e.g. federated
learning, where sensitive data are processed.

The first practical Fully Homomorphic Encryption (FHE)
scheme was proposed by Craig Gentry in 2009 [2]. Subse-
quently, various homomorphic encryption schemes have been
introduced in the literature, all aiming to enhance computational
efficiency [3]–[6]. Initially, these schemes were proposed as
single-key homomorphic encryption methods. While these
schemes are useful for several scenarios, they are not suitable
for distributed analytics. In distributed analytics, different
clients need their own unique secret keys to ensure protection
of their data, making single-key systems inapplicable.

This problem is attempted to be addressed through Multi-Key
Homomorphic Encryption (MKHE) [7]–[9], where each client
holds its own secret key. However, current MKHE schemes
are not yet practical for most applications due to their high
computational cost. The key generation is computationally
expensive, and the size of the generated ciphertext increases
in proportion to the number of clients.

Threshold homomorphic encryption [10]–[13] is another
multi-key scheme that addresses the issue of ciphertext expan-
sion. As a result, it can be effectively utilized in distributed
analytics. Currently, several standardization bodies, such as
the National Institute of Standards and Technology (NIST),

the International Organization for Standardization (ISO), and
Homomorphic Encryption Standardization, have initiated their
efforts on threshold cryptography and homomorphic encryption
with the goal of establishing guidelines and recommendations
for threshold cryptosystems and promoting wider adoption of
these technologies [14]–[16]. While extensive research has
been done exploring this approach, its practical application
remains limited thus far. Hence, it is important to assess the
practical applicability of threshold homomorphic encryption
schemes.

In our previous work [17], we outlined the main components
and directions for implementing privacy-preserving federated
learning using threshold homomorphic encryption. In this
ongoing study, we have evaluated a number of parameters to
understand the practicality of this approach. These parameters
include the size of the keys used in the threshold process,
the runtime differences between computations on encrypted
and plaintext data, and the key generation runtime for varying
multiplicative depths.

The remainder of the paper is organized as follows. After
presenting an overview of related work in Section II, we discuss
a representative scenario in Section III. Evaluation setup and
results are given in Section IV, before discussing future work
and concluding in Section V.

II. RELATED WORK

The threshold multi-key encryption methods are based upon
Learning With Errors (LWE) problem [18] and its more efficient
version the Ring-LWE problem [19]. These problems belong
to the category of lattice-based cryptography, also known to
be post-quantum resistant.

In these methods, each party contributes a portion of the
encryption key, and a specific threshold number of parties must
be established before the data can be decrypted.

The clients generate their own secret key shares and
collaborate to generate evaluation and joint public keys. The
evaluation keys are sent to the server to perform calculations
on encrypted data, and the generated joint public key is shared
among the participants and used for data encryption. Each
data owner encrypts their data using the joint public key, and
the result is computed by the server in encrypted form using
the evaluation keys. The clients collectively decrypt the result
using their own secret key shares.
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Several threshold multi-key homomorphic encryption
schemes have been introduced in the literature and are available
as open-source libraries [20], [21]. The Brakerski-Gentry-
Vaikuntanathan (BGV) [3] and the Brakerski/Fan-Vercauteren
(BFV) [4], [22] schemes rely on the Ring-LWE problem. The
BGV scheme optimizes homomorphic operations by effectively
managing the ciphertext’s noise, primarily through enhancing
the modulus switching technique. The BFV scheme is a scale-
invariant construction with the same noise growth as in the BGV
scheme. Both schemes are designed to support computations
over integer arithmetic circuits.

The Ducas-Micciancio (FHEW) [23] and the Chillotti-
Gama-Georgieva-Izabachene (CGGI) [5] schemes support the
encryption of small bit-width integers and are constructed for
Boolean circuit evaluation. In the FHEW scheme, the authors
introduced a new bootstrapping technique that reduces the noise
level. The CGGI scheme achieves faster bootstrapping by imple-
menting programmable bootstrapping, which is a computational
operation on a ciphertext performed during bootstrapping. This
reduces the noise while processing ciphertexts.

Another threshold homomorphic encryption scheme, known
as the Cheon-Kim-Kim-Song (CKKS) scheme [24], features
approximate homomorphic computations over real and complex
numbers. This scheme uses a rescaling operation to reduce noise
growth from multiplications. Due to its support for arithmetic
operations on real or complex numbers, the CKKS scheme is
particularly well-suited to tackle a wide range of data analytics
problems and is therefore chosen for the purpose of this study.

III. REPRESENTATIVE SCENARIO

To demonstrate the applicability of threshold homomorphic
encryption schemes, we consider a federated learning scenario
where a group of clients collaboratively participates in the
training and updating of machine learning models. Federated
learning is a distributed machine learning approach that enables
on-device model training using client-specific data, with further
aggregation of the obtained local model updates on a central
server, as depicted in Figure 1. Instead of sending data for
centralized processing, this data is used locally to train the
model. Subsequently, the model updates are sent to the central
server to refresh the central model. The updated model is then
sent back to the clients for the next update step.

Federated aggregation is a key process in federated learning.
Cross-silo aggregation and cross-device aggregation are two
concepts used in federated learning architectures. Cross-silo
refers to the process of integrating, sharing, or collaborating
on data and information across different departments or orga-
nizations (silos). On the other hand, cross-device aggregation
involves the collection and integration of data from multiple
devices, such as those in the Internet of Things (IoT).

These two approaches have different requirements. In the
case of IoT devices, computing power and storage capacities
are crucial. However, these parameters do not pose a challenge
for institutions involved in cross-silo aggregation.

Federated averaging and weighted federated averaging are
the most commonly used aggregation algorithms due to their

efficiency [25]. In these methods, a subset of clients is selected
to perform updates using stochastic gradient descent over
several iterations. The process alternates between multiple
local stochastic gradient updates and the exchange of their
averaged weights for updates of the global model. Since
these updates could potentially expose sensitive information
and are susceptible to privacy attacks [26], [27], we employ
homomorphic encryption to secure the data.

Figure 1. Cross-silo federated aggregation involving three clients and a central
unit. The clients calculate their model updates using their own data and share
these updates with the central unit. The central unit then generates a new
model, which is sent back to the clients for the next iteration.

IV. EVALUATION

A. Evaluation Setup

To perform the evaluation, we used the OpenFHE library
[20]. This library is implemented in C++ and includes Python
bindings, which simplify its integration with machine learning
and data analytics platforms. The library supports threshold
FHE for BGV, BFV, and CKKS schemes.

In our evaluation, we utilized the CKKS scheme. This
scheme supports computations over real numbers and, therefore,
can serve as a basis for developing data protection mechanisms
for distributed analytics applications

B. Evaluation Results

Both key generation and general computations have been
evaluated. Key generation was assessed for sets of 3, 4, 5, 6,
7, and 8 keys, across multiplicative depths of 5, 10, 15, and
20. The multiplicative depth refers to the maximum number of
sequential multiplications that can be performed. Table I below
shows the runtime for key generation in seconds at different
multiplicative depths.

A larger multiplicative depth increases the time required to
generate the same amount of keys. Additionally, it enlarges the
size of the serializations of the cryptocontext and various keys,
introducing further overhead for most applications since the
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TABLE I. RUNTIME FOR DIFFERENT MULTIPLICATIVE DEPTHS.

Number
of keys
generated

Runtime in seconds
MultDepth
5

MultDepth
10

MultDepth
15

MultDepth
20

3 12.28 17.02 48.93 61.67
4 14.98 22.80 64.58 82.07
5 18.23 27.88 81.28 101.52
6 21.52 33.59 98.63 123.64
7 25.11 39.02 112.34 141.71
8 28.55 44.47 129.62 163.07

cryptocontext and keys must be deserialized before use. Storage
space might also become an issue, as each user must store
the cryptocontext, the joint public key, the multiplication key,
and their own secret key. See Table II below for a breakdown
of file sizes at various multiplicative depths. Due to the costs

TABLE II. FILE SIZES FOR DIFFERENT MULTIPLICATIVE DEPTHS.

Multiplicative depth 5 10 15 20
Cryptocontext 21 KB 30 KB 40 KB 49 KB
Joint public key 41 MB 66 MB 189 MB 238 MB
Multiplication key 131 MB 209 MB 600 MB 757 MB
Secret key 14 MB 23 MB 65 MB 84 MB

associated with higher multiplicative depths, it is recommended
to keep them as small as possible. Even if large computations
are needed, it is possible to save on multiplicative depth by
employing more efficient techniques, such as computing powers
of two. OpenFHE also supports bootstrapping to reduce the
depth of a ciphertext; however, the bootstrapping process itself
requires some available depth and further increases runtime.

Evaluation has been done for computing averages, both on
plaintext and encrypted data, using both weighted and un-
weighted approaches. Ten datasets were used, each containing
from 1 to 10 elements, with values ranging from 1 to 100.
Across all tests, the sum of the values was 2976, and the
total number of elements across the datasets was 55. Table
III presents a breakdown of the runtime in seconds and the
estimated precision for the encrypted results.

TABLE III. RUNTIME AND PRECISION ESTIMATION FOR PLAINTEXT AND
CIPHERTEXT

Operation Runtime
(s)

Estimated
precision
(bits)

Average on ciphertext, total 11.71 42Average on ciphertext, computa-
tions only 1.19

Average on plaintext 0.017 N/A
Weighted average on ciphertext, to-
tal 15.43 28
Weighted average on ciphertext,
computations only 6.29

Weighted average on plaintext 0.017 N/A

The runtime on encrypted data does not include the time
needed to generate the keys, which are assumed to have been
generated in advance. The runtime marked with ’computations
only’ also does not include the time needed to load the
cryptocontext and keys, nor the time used for encryption and

decryption. Thus, while the runtime is higher for encrypted
data, much of the increase comes from other processes that
are not directly related to the computation itself.

Both types of averages utilize the OpenFHE function
EvalMult, and the weighted average also utilizes the function
EvalDivide. EvalMult takes a ciphertext and either another
ciphertext, a plaintext, or a constant, and computes the product
of these. This computation is done per element for inputs that
contain more than one element. Meanwhile, EvalDivide takes
a ciphertext and computes its inverse.

In the unweighted average, EvalDivide is not used since the
number of elements in a dataset is not encrypted. Based on
the runtime results shown in Table III, it can be concluded
that EvalDivide is slower than EvalMult. Moreover, using
EvalDivide negatively affects the estimated precision of the
results: the unweighted average has an estimated precision of
around 42 bits, while the weighted average has an estimated
precision of about 28 bits.

The precision of EvalDivide can be improved by increasing
the degree parameter; however, this also increases the runtime.
Additionally, a larger degree parameter requires a higher
multiplicative depth, which, as previously noted, increases
overhead for most applications.

V. CONCLUSION AND FUTURE WORK

This paper introduces an ongoing study that utilizes threshold
fully homomorphic encryption to protect sensitive data within
the context of distributed analytics applications. It presents
preliminary results from the performance evaluation of the
CKKS scheme, as implemented in the OpenFHE library. The
aim was to evaluate the efficiency of computing averages and
weighted averages for federated aggregation on encrypted data.

The results show that due to a large size of cryptocontext
data and time required for encryption and decryption, applying
this method is challenging for cross-device aggregation. For IoT
devices, which have limited processing power and memory,
handling large cryptocontext data can be unfeasible. Cross-
silo scenarios, on the other hand, involve the collaboration
of various institutions where processing power and storage
capabilities do not pose a bottleneck. Therefore, they can
effectively apply these methods.

Future work will involve several steps, including: (1) further
design and analysis of extended scenarios and use cases; (2)
development of a testing platform to evaluate the applicability
of threshold homomorphic encryption schemes to various
scenarios; and (3) analysis, implementation, and testing of
communication protocols, mechanisms, and key generation
processes.

Distributed analytics and homomorphic encryption require
significant computational resources and may be slower com-
pared to conventional methods. As the number of devices and
the volume of data grow, scaling these technologies presents a
substantial challenge. Research is needed to develop methods
for scalable, decentralized learning and efficient homomorphic
encryption. Therefore, a more comprehensive analysis and
evaluation of available threshold fully homomorphic encryption
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schemes and libraries will be conducted, alongside integration
with existing federated aggregation methods, and modification
of these methods if required.
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