
Generating an Ontology Specific Editor

Hannes Niederhausen, Sven Windisch, Lutz Maicher
Topic Maps Lab

University of Leipzig
Leipzig, Germany

{niederhausen, windisch, maicher}@informatik.uni-leipzig.de

Abstract—Semantic technologies like Topic Maps provide a
generic way of structured data representation. These technolo-
gies can be used to create data stores of any kind. To use them,
it is necessary to fill them with data and therefore an editor is
needed which provides input masks for the data. In this paper
we present an Editor Generator Toolkit that enables developers
to easily create small and fast editor applications for multiple
platforms that allow easy collation of data.

Keywords-Topic Maps, ontology, editor, TMCL, Eclipse RCP

I. INTRODUCTION

Semantic technologies provide a generic way of structured
data representation and thus are highly applicable as data
stores for applications of all kinds. Beyond that, data stores
must be filled with data and as most data is not available
in an easily transformable format, an editor application is
needed for the manual handling of the data.

In this paper, we present an Editor Generator Toolkit that
allows the generation of ontology specific editor applications
for topic map ontologies in a flexible multi-step process. The
whole wizard-driven process is based on an ontology that is
specified by the user as a Topic Maps schema and leads the
user to the finished editor desktop application.

The Editor Generator Toolkit is an extension for the
well-known Eclipse IDE, which not only provides the en-
vironment to develop applications in many programming
languages, but also provides a basic architecture for stand-
alone desktop applications. This architecture, the so-called
Eclipse RCP, is used by the Editor Generator Toolkit as the
basic application framework and is extended by an ontology
specific domain model.

Section III contains an overview of the Editor Generator
Toolkit architecture and its individual parts. Section IV
describes the workflow that leads from the initial Topic
Maps schema to the finished editor application. In Section V
we introduce the Yacca editor as an example application.
Section VI summarizes our results and provides an outlook
on future work.

II. STATE OF THE ART

The tool we present here is no ontology editor in terms of
products like Protégé or OntoStudio. Whereas these products
offer features for creation and editing of knowledge bases
with one of the popular ontology languages as OWL or

RDFS, we present a toolchain to create an instance editor
as a desktop application for a specific Topic Maps schema
ontology [1]. However, an ontology editor is required to
create the basic Topic Maps schema from which the editor
application is built. This can be done with another Eclipse
extension, called Onotoa [2], [3].

All currently existing Topic Maps domain editors like
Ontopoly or Topincs are web-based applications and thus
require both a central application server and a reliable
network connection. As these requirements are not always
available, we focus on desktop applications to avoid any
obstacles for the users of the editor application.

Furthermore, we separate the process of ontology creation
from the process of editing the actual data, so that users
without knowlegde of the Topic Maps schema language are
able to use the editor application that was previously created
by a topic maps expert.

III. ARCHITECTURE

The editor applications that are provided through the
Editor Generator Toolkit consist of several components and
are based on the Eclipse RCP. See Figure 1 for an overview
of these components. The individual components, which
were developed at the Topic Maps Lab, will be explained in
this section.

Eclipse RCP

Aranuka Kuria

Topic Maps
Engine

Generic
Editor

Components

Generated
Domain Specific

Component

Figure 1. The components of a generated editor application. Based on
the Eclipse RCP, Aranuka handles the mapping of the domain model to
the Topic Map engine while Kuria, the generic editor components, and the
generated domain specific component provide the visible parts of the editor
application.

A. Eclipse RCP
Eclipse is a plug-in based software development system

which initially was created as integrated development en-
vironment (IDE) for Java. The environment is enhanced

145

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

regularly by the work of the large community that grew
around Eclipse. With version 3.0, the Eclipse Foundation
released the Eclipse RCP (Rich Client Platform), which
consists of a stripped version of the IDE and can be used to
create new applications that make use of the architecture of
Eclipse. The Eclipse RCP components form the foundation
of the editor applications that are generated with the Editor
Generator Toolkit.

Using the Eclipse RCP also results in platform inde-
pendent applications. The Standard Widget Toolkit (SWT)
is a Eclipse plugin and responsible for rendering the user
interface. It is directly connected to the platform specific user
interface libraries. The Eclipse Foundation provides a set of
bindings for a lot of platforms, which can be used to create
Eclipse RCP applications for different operating systems
and hardware architectures. A complete description how to
develop Eclipse RCP applications can be found in [4].

B. Aranuka

Semantic technologies like Topic Maps provide a generic
way to represent data. On top of that, programming inter-
faces of Topic Maps engines like the Topic Maps Application
Programming Interface (TMAPI) [5] need to be generic too
and therefore developers must have a good understanding
of Topic Maps even if they are supposed to write a domain
specific application.

Aranuka, an open source project from the Topic Maps
Lab, provides a way to map a domain model that was de-
veloped in Java to an underlying Topic Maps engine [6]. The
developer then uses his model classes and a helper class from
Aranuka called Session. This Session is able to retrieve top-
ics from the topic map and persist topics back into the topic
map. Aranuka uses connectors to associate Aranuka to a spe-
cific Topic Maps engine. These connectors bind the Aranuka
core to any TMAPI supporting Topic Maps engine. Right
now, Aranuka was tested with the Topic Maps engines tiny-
TiM and Ontopia and works flawlessly with both of them.

The configuration of the domain model is done via
Java annotations. For every construct of the Topic Maps
Data Model (TMDM) an specific annotation can be used
in classes or attributes. Every annotation contains several
properties which can be used to configure the mapping. The
annotation @Occurrence for instance, has a type property
that specifies the subject identifier of the occurrence type
of the mapped attribute. More information about Aranuka
annotations and its use can be found in [7].

After annotating the model classes a Configurator instance
is used to tell Aranuka which classes should be mapped to
topics and which connector should be used. It is also possible
to add names to the types specified in the annotations. This is
done via an internal mapping between the subject identifier
set of the annotation and the value of the name that should
be added to the used topic type. The Configurator provides
additional methods for adding and removing prefixes, too.

These prefixes can be used in any URI which is used as
identifier in annotations and instances. Every instance which
is mapped to a topic must have at least one identifier which
should be a URI.

C. Kuria

The W3C created a group to analyze the need of model-
based user interfaces (see [8]). In its report the groud states
that the development of web applications should use utilities
to build the final user interface based on the model of the
application and the target platform. Instead of developing for
different platforms, a description language based on XML
should be used to map the domain model to specific user
interface elements. With this description different layouts
and designs can be generated, based on the target platform,
which could be a mobile device or a standard browser.

A similar approach is implemented with Kuria, an open
source project from the Topic Maps Lab [9]. Instead of web
applications, Kuria generates input masks for desktop ap-
plications. It is modularized to support different approaches
of declaration and generation. The Editor Generator Toolkit
uses three Kuria modules, the Kuria Runtime module, the
Kuria Annotation module, and the Kuria SWTGenerator
module.

Kuria Runtime: The Kuria Runtime module is the core
of Kuria. User interfaces are composed of elements like
buttons, windows, labels, dialogs, which are called widgets.
For every widget exists a descriptor, which is called binding.
Bindings contain the model specific information of the
widget, for instance which text is valid for a text field and an
accessor and mutator method. With the binding it is possible
to set the value of an attribute of an object instance. In
addition, bindings for tree nodes and table columns exists.

Kuria Annotation: The Kuria Annotation module is used
to create widget bindings based on annotations on the model
classes. If no annotation exists, a binding based on the
datatype and the name of the field is created. It is also
possible to hide an attribute, which can be done with the
annotation @Hidden. For a complete list of annotations and
their attributes refere to [10].

Kuria SWTGenerator: The Standard Widget Toolkit
(SWT) was developed by IBM to create an efficient Java
widget toolkit which uses the libraries of the underlying
operating system. One other well known user interface (UI)
library for Java is Swing, which is part of the Java SDK.
Swing renders UI elements by itself, which results in a
consistent look and feel, because applications using Swing
look very much the same on every system. However, these
applications look kind of alien in most operating systems.

In contrast, the SWT wraps UI elements of the operating
system, and thus all applications that rely on SWT need
platform dependent libraries for every system. Though this
has the advantage of providing the look and feel of the

146

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

Figure 2. Empty editor window. On the left side is the modelview. On the right side, for every opened model instance an editor tab is opened.

underlying operating system. Another advantage is the in-
creased speed that comes while using the operating system’s
native libraries, which is much faster than using the emulated
ones, like Swing does.

The SWTGenerator module is used to generate a user
interface based on the widget bindings using SWT. In
addition, it provides methods to easyly generate tree and
table widgets. To create an input mask for an instance, the
SWTGenerator uses the parent widget and the class of the
instance. The SWTGenerator then checks whether a binding
for the class exists and generates the input mask according
to the bindings.

The Editor Generator Toolkit produces Kuria annotations
for every generated domain model. In the resulting editor
application, the overview tree and all input masks are
generated by Kuria.

D. Generic Editor Components

The Generic Editor Components provide the containers
for the user interfaces. These components are fixed and
configured by the generated annotated domain model.

In Figure 2, an empty application window is shown. On
the left side is the ModelView. This window contains a tree
representing the model. For every type in the ontology a

node exists and its children are the instances of the type.
New instance of a model type can be created with the
provided context menu. Alternatively, the view provides a
menu on the left side of the title bar with options for
every topic type. Already existing instances can be edited
by simply clicking on them.

The individual editors for the instances are placed on the
right side. It is possible to open multiple editors. If an editor
is activated the Save-button in the toolbar persists the edited
instance into the topic map. Every editor provides a Save
and Close button inside the editor window which persists
the instance in the topic map and closes the editor.

Generated Domain Specific Component: The last com-
ponent of the Editor Generator Toolkit (cf. Figure 1) is
the Generated Domain Specific Component. This plug-in
contains the generated domain model classes and additional
product configurations. The latter are necessary for the
configuration of the Eclipse IDE and contain information
about the plug-ins that are part of the editor and thus
must be exported together with the editor application. The
configuration of Aranuka is also part of this plug-in and
can be found in the ModelHandler class. After generating
the code, the names for types can be added there. The
selection of the Aranuka connector is also possible in this

147

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

class and can be changed any time after the generation
process.

IV. GENERATE AN EDITOR

This chapter explains how to generate an editor appli-
cation, what prerequisites are needed and what steps are
necessary to create the application. An overview of the steps
are shown in Figure 3.

Prerequisites

The Editor Generator Toolkit consists of a set of Eclipse
plug-ins that add the generation facility to the Eclipse IDE.
In order to work with these plug-ins, a working Eclipse with
the Java Development Toolkit (JDT) is needed. To create the
base ontology, it is strongly recommended to use the Topic
Maps schema editor Onotoa.

Create the Ontology

The first step is to create the ontology. This can be done
via text editors writing plain TMCL in CTM-notation or

Figure 3. Chain of activities to develop generate an ontology specific
editor.

any visual editor. We advise to use Onotoa, a visual editor
which can be installed directly into the Eclipse development
environment.

After creating the model in Onotoa it should be exported
to TMCL which is indicated by step 2 in the activity diagram
in Figure 3.

Create an Editor Project

The Editor Generator Toolkit adds a new wizard to the
New Project Wizard list of Eclipse. Create a new project
and fill in all required data into the first page of the wizard.
This page asks for a project name, which should have a form
like a Java package name. The name of the application will
be used in the title bar of the application. It will be used as
name of the executable binary of the application, too. The
third entry is a drop box which allows selection of the used
Topic Maps engine.

In the second editor page the name of the schema file is
required. If this field is empty no model will be created and
the developer has to create it on his own.

Modify Generated Code and Add Additional Functionality

The generated domain model is a set of Java classes
which are generated on the basis of the topic types in
the given TMCL schema. In addition, these classes have
attributes annotated for Kuria and Aranuka. The generated
classes can be revised and modified to tailor the editor and
receive the expected input masks for the models. Examples
for modifications are:

• A topic has an occurrence of type string. In the class
an attribute is generated with a @Textfield annotation
of Kuria. This annotation indicates the use of a text
field with one line. To have a multiline text area an
additional attribute must be added to the annotation.

• For topics with associations in every generated class an
attribute for the counter player exists. This is because of
the bidirectional nature of associations in topic maps.
In most cases, only one direction is needed in the
editor interface. It is recommended to remove one of
the counter player attributes.

The generated editor is an eclipse application and there-
fore provides some possibilities to extend the application.
These can be done inside the generated domain specific
plug-in or in additional plug-ins. All new dependencies
should be added to the product configuration, which is
responsible for the correct export of every required plug-
in. Developing additional functionality is optional and not
needed to export a working editor application.

Export the Application

The editor for the product configuration provides an
export function, which is a link in the first page of the
editor. By activating the link, a wizard opens and asks
for the target directory and the desired target platforms.

148

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

Figure 4. The Yacca ontology as it was created with Onotoa.

After the export is finished, the target directory contains the
created applications, one for each platform, which can then
be deployed to the target machines.

V. EXAMPLE EDITOR: YACCA

In this section, we present an example on how a generated
editor application can be used in the developmental process
of Topic Maps driven web applications. The example we
provide is called Yacca and was voted into top ten at the
2010 ESWC AI Mashup challenge.

In Yacca, the power of structured data – that comes with
the use of Topic Maps – as data store is combined with
the flexibility of TMQL as a query language that allows to
extract just the desired amount of data from the Topic Map.
The so called ”Yacca cards“ are HTML snippets, produced
from the structured data and provided by Maiana, the social
Topic Maps explorer from the Topic Maps Lab [11]. The
topic map for the data store was created with an editor that
was generated with the Editor Generator Toolkit.

The Yacca topic map contains three topic types and two
associations (cf. Figure 4). Based on this Topic Map schema,
the editor in Figure 5 was created. The ModelView shows the
three topic types that are now classes in the Java application.
On the right side, an editor for a player is visible. The dialog
on the left contains another input mask for the position topic.
This dialog opens when pushing the New button next to the
position field in the editor. A similar dialog opens for the
team of the player.

The Yacca editor has an additional feature: An import of
players from a comma separated file. This function was used
after creating the team and position topics.

After creating the topic map with the editor, it was
uploaded to Maiana [12]. The editor is still used for updating
the topic map, for instance in case a player gets injured and
can not play.

VI. CONCLUSION AND FUTURE WORK

Summary
The Editor Generator Toolkit provides an simple and

fast way to generate small and fast Topic Maps editor
applications that are feasible for easy collation of data.
Based on the popular Eclipse Platform it integrates into
most established development processes. With the used base
technologies – Eclipse RCP and the Standard Widget Toolkit
– the generated editor can be used on almost every platform.
With our approach, Topic Maps experts with little to no
experience in Java programming are able to build editor
applications based on their Topic Maps schema.

In this paper, we have explained the architecture of the
Editor Generator Toolkit and its base modules. Furthermore,
we showed the process of creating the editor application and
have given an example for successful use of a generated
editor.

Future Work
The generated editor is an application with a simple user

interface. Especially with a lot of topics the tree in the Mod-
elView gets to large. Search facilities can be implemented
to provide ways to find topics with a specific property. This
could be done by specifying the property inside a dialog or
entering a TMQL query [13].

In the current state, the generator produces default Kuria
annotations and attributes for every site of an association.
In future release some additional schema elements in form
of reification or occurrences of specific types should be
introduces and supported by the schema editor. With these
additional elements the manual modification of the generated
code would be unnecessary.

REFERENCES

[1] M. Weiten, Semantic Knowledge Management. Springer,
2009, ch. OntoSTUDIO as a Ontology Engineering Environ-
ment, pp. 51–60.

149

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

Figure 5. The Yacca editor application with ModelView, Editor and Dialog to create a new position.

[2] H. Niederhausen, “Onotoa – TMCL-basierter grafischer
Schema-Editor für Topic Maps,” Master’s thesis, University
of Leipzig, 2009.

[3] H. Niederhausen, Onotoa Handbook, last checked: July 19
2010. [Online]. Available: http://docs.topicmapslab.de/onotoa

[4] J. McAffer and J.-M. Lemieux, Eclipse Rich Client Platform.
Addison-Wesley Professional, 2005.

[5] L. Heuer and J. Schmidt, “Tmapi 2.0,” in TMRA – Subject
Centric Computing, 2008, p. 129.

[6] H. Niederhausen, Aranuka Project Site, last checked: July 19
2010. [Online]. Available: http://code.google.com/p/aranuka

[7] H. Niederhausen, “Aranuka documentation,” last checked:
July 19 2010. [Online]. Available: http://docs.topicmapslab.
de/aranuka

[8] J. M. C. Fonseca, “W3C Incubator Group Report
04 May 2010,” 2010, last checked: July 19
2010. [Online]. Available: http://www.w3.org/2005/Incubator/
model-based-ui/XGR-mbui-20100504/

[9] H. Niederhausen, Kuria Project Site, last checked: July 19
2010. [Online]. Available: http://code.google.com/p/kuria

[10] H. Niederhausen, “Kuria Documentation,” last checked: July
19 2010. [Online]. Available: http://docs.topicmapslab.de/
kuria

[11] Topic Maps Lab, Maiana, last checked: July 19 2010.
[Online]. Available: http://maiana.topicmapslab.de

[12] Sven Windisch, Yacca Topic Map, last checked: July 19
2010. [Online]. Available: http://maiana.topicmapslab.de/u/
yacca/tm/yacca

[13] L. M. Garshol and R. Barta, “Topic maps query language,”
last checked: July 19 2010. [Online]. Available: http:
//www.isotopicmaps.org/tmql/tmql.html

150

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

http://docs.topicmapslab.de/onotoa
http://code.google.com/p/aranuka
http://docs.topicmapslab.de/aranuka
http://docs.topicmapslab.de/aranuka
http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui-20100504/
http://code.google.com/p/kuria
http://docs.topicmapslab.de/kuria
http://docs.topicmapslab.de/kuria
http://maiana.topicmapslab.de
http://maiana.topicmapslab.de/u/yacca/tm/yacca
http://maiana.topicmapslab.de/u/yacca/tm/yacca
http://www.isotopicmaps.org/tmql/tmql.html
http://www.isotopicmaps.org/tmql/tmql.html

	Introduction
	State of the Art
	Architecture
	Eclipse RCP
	Aranuka
	Kuria
	Generic Editor Components

	Generate an Editor
	Example Editor: Yacca
	Conclusion and Future Work
	References

