
Temporal RDF System for Power Utilities

Mohamed Gaha, Arnaud Zinflou, Alexandre Bouffard, Luc Vouligny,
Mathieu Viau, Christian Langheit and Etienne Martin

Institut de Recherche
d’Hydro-Québec

Varennes, QC, Canada
Email: {gaha.mohamed|zinflou.arnaud|bouffard.alexandre|vouligny.luc}@ireq.ca

{viau.mathieu|langheit.christian|martin.etienne}@ireq.ca

Abstract—Temporal data is a critical component in many ap-
plications. This is especially true in analytical applications for
the smart grid. The analytical process often requires uncovering
and analysing data and complex relationships from heterogeneous
and distributed data sources that change over time. A common
approach for this task is the use of relational databases or even
data warehouses, which unfortunately do not allow reasoning
and inference. Ontologies and semantic technologies are proving
useful to leverage the value already embodied in existing systems
without replacing the enterprise systems. In this paper, we
describe how the usage of a formal representation of knowledge
can support elaborated processes such as storing and extracting
temporal data. The first example uses a semantic approach to
capture and manage time series changes. The second example is
a direct application of the first one. It consists on an efficient
RapidMiner extension that allows end users to transparently
extract temporal data from heterogeneous data sources.

Keywords–Ontology; Heterogeneous data source; Versioning;
Data-Mining tools; Temporal data.

I. INTRODUCTION

As more smart technologies are deployed across the electri-
cal grid, it generates unprecedented data volume. To manage
and use this information, utility companies such as Hydro-
Québec must be capable of high-volume data management
and advanced analytics designed to transform data into ac-
tionable insights. In this context, it is often necessary that
the analysis process spans across multiple heterogeneous data
sources. Ontologies and semantic metadata standards help and
facilitate the aggregation and the integration of this content
[1]. In addition, standard models for metadata representation
on the World Wide Web, such as the Resource Description
Framework (RDF), model relationships as first class objects
making it very natural to query and analyze entities based on
their relationships.

With the advent of semantic technologies and widely
shared ontologies, it becomes possible to build an enterprise
unified information view over heterogeneous and distributed
data sources [2]. In the electric power industry, there exists
the Common Information Model (CIM) [3] ontology that has
been adopted by the International Electrotechnical Commis-
sion (IEC). It is the most complete and widely accepted ontol-
ogy that offers a common language to exchange information
between applications in the electrical field domain. The CIM
is defined through a set of IEC international standards, mainly
61970-301 and 61968-11. The first release was standardized
in 2003 and now contains more than a thousand concepts

covering generation, transmission and distribution of power
utilities.

The use of a common language like the CIM presents
a significant opportunity to overcome the semantic barriers
between existing information islands. The CIM can reap
advantages from a formal representation of knowledge in
order to support complex processes. So far, ontologies like
the CIM and semantic analytics tools have primarily focused
on static data, in the sense that entities represented in these
ontologies do not change over time. However, in real context,
temporal data are often critical to analyze because they refer
to evolving phenomena. As a consequence, managing temporal
data are necessary for an effective application of ontologies and
semantic technologies in the power industry.

In this paper, we investigate the use of ontologies and
semantic technologies to support the storage and the extraction
of temporal data in industrial context. Two significant issues
have been explored: a versioning mechanism for the RDF data
and a method to extract the temporal datasets, successfully
applied to several sources in a transparent way for the end user.
To the best of our knowledge, despite the proposal of different
approaches to support RDF versioning [4], and capture and
monitor changes [5], a real application on large scale problems
was still missing. We describe concrete examples from the
power industry.

This paper is divided as follows: Section 2 presents a non
exhaustive literature review of recent ontology evolution and
versioning techniques. Section 3 describes the context where
our research occurs. Section 4 presents the basis for storing
RDF versions in triple store according to previous work. In
Section 5, we describe our experimental results and we present
an application that combines a semantic triple store and a time
series database. Finally, we end with a conclusion and future
work.

II. BACKGROUND

This section reviews the existing work on ontology evolu-
tion and versioning. Most of the studies on ontology versioning
focus on the validity, interoperability and management of all
versions. OntoView [6] allows ontology engineers to compare
versions of an ontology and to specify how the ontology
concepts in two versions are related. SemVersion [7] is an
RDF-based ontology versioning system that supports query
answering across multiple versions and the differences between
arbitrary versions. PromptDiff [8] compares different versions

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing

of ontologies using heuristics, and provides the user with
their deltas. However, all these versioning systems store all
snapshots in a repository so that the deltas between ver-
sions must be recomputed on the fly whenever the change
information is required. In other words, they do not consider
the space overhead in supporting versions. That is, if we
redundantly store every version in a separate storage space,
the space requirement would be enormous, especially in a large
scale ontology system. Furthermore, this approach also has a
limitation in that it recalculates the changes between versions
whenever the user queries the ontology.

Tzitzikas et al. [9] focus on the storage space in the RDF
repositories and propose a storage index, called Partial Order
Index (POI), which provides an efficient RDF version insertion
algorithm in main memory. Since this storage scheme is based
on partial orders of triple sets, it is the most efficient for storage
space in which the new version is a subset or superset of
the existing versions. However, the new version cannot be
a subset or superset when it has both added and removed
triples compared to the existing versions. In addition, in order
to construct a specific version, it needs to traverse all the
ancestor elements of the given element in the POI. Thus, it
is not scalable as the data size increases.

Recently, IM et al. [10] proposed a versioning framework
for the RDF data model based on relational databases. This
scheme stores the original RDF version and the deltas between
each two consecutive versions. They store the deltas separately
in a delete and insert tables, and construct a logical version
on the fly using SQL statements that join the version from the
original version and the relevant delta tables. The proposed
framework is promising but needs to be implemented in
a relational database and not in a triple store. Therefore,
inference and reasoning is not directly allowed on all versions.

III. CONTEXT

In this work, our application context is the Hydro-Québec
Distribution network Division (HQD). We used four hetero-
geneous datasets from the HQD systems. These systems are
IRD (French acronym for Inventory of Distribution Network),
GSS (French acronym for Underground Structure Management
System), GIS (Geographic Information System) and SAP-BW
(SAP Business Information Warehouse). The four systems
contain data on the distribution network, such as: connectivity,
equipment, geographical position, electrical characteristics,
etc.

The data of the four systems is not static, but rather changes
as a function of time. For each database, a new data dump
takes place every weekend. Hence, every week, all the four
systems are updated with new datasets. In accordance with
the weekly updates, we map the four relational databases to
the CIM ontology and incrementally export the resulting triples
into Oracle 12c RDF Semantic Graph (OSG) triple store. The
export process is done by using the D2R dump-rdf tool [11].
All the RDF data is bulk loaded into the OSG triple store.
The latter was installed on a HP Xeon E7-2830 (2.13 GHz,
8 cores with hyper-threading) processors with 2TB of RAM
and 4 ioDrive2 flash block devices of 1.2TB each managed
with Oracle ASM. OSG is a secure and scalable platform that
supports large RDF graphs of billions of triples and includes
capabilities for using forward-chaining inference via RDFS,

RDFS++, OWL-SIF, OWL-Prime, OWL2-RL and user-defined
rules. It also supports parallel queries.

The weekly stream of new data generates a huge volume
(more than 200,000,000 triples) of data and leads to an increase
in the complexity of processing. To make valuable business
decisions over changing and evolving databases, we decided
at the research center of Hydro-Québec (IREQ) to build an
architecture capable of dealing efficiently with a vast amount
of heterogeneous time series. We developed a set of tools to
allow non IT experts to extract and process the time series.

In the next section, we will test three versioning mecha-
nisms, and we will share our experiences on effective means of
building a semantic application for heterogeneous time series.

IV. RDF VERSIONING MANAGEMENT IN A TRIPLE STORE

In this section, we do not propose a new RDF versioning
system, but rather the basis for storing RDF versions in a triple
store according to previous work presented in Section II.

In the context of an RDF triple store, there are a number
of ways in which to implement a version control system.
A primary choice and probably the simplest is to store the
different versions in separate spaces. This approach called the
All Snapshots approach [12] is very effective for querying
but requires excessive storage space. A second choice is to
use a Delta-Based approach to overcome the excessive space
requirements of the All Snapshots approach. Two kinds of
delta can be implemented: the Sequential Delta [12] and the
Aggregated Delta [10].

The Sequential Delta approach consists in storing an origi-
nal version and the delta of each subsequent version separately.
Formally, given the original version Vi, let Vi+1 be the logical
version and ∆i,i+1 be the set of change operations between
Vi and Vi+1. Then, Vi+1 can be represented as follow:

[Vi+1 = ∆i,i+1(Vi)] (1)

Thus, in order to access a specific logical version, we must
construct the logical version on the fly by applying the deltas
between the original version and the logical version.

Instead of executing all the in-between deltas in sequence,
the aggregated delta can create a logical version directly by
storing all of the possible deltas in advance. In other words,
given a sequential delta ∆i,i+1,∆i+1,i+2, ...,∆j−1,j between
Vi and Vi+1, an aggregated delta is defined as follow:

[

j−1∑
n=i

∆n,n+1 =

j−1∑
n=i

∆−n,n+1 ∪
j−1∑
n=i

∆+
n,n+1, (i < j)] (2)

[∆g(i,j) =

j−1∑
n=i

∆n,n+1 − Ct] (3)

Where Ct is the set of change operations with overlapped
triples in all stored delta.

V. EXPERIMENTS

A. Experimental settings
We implemented all the version schemes in OSG. Table I

summarizes the characteristics of our real data sets. The
datasets used in the experiments have between 35,000,000 and
125,000,000 triples.

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing

TABLE I. SIZE OF DATASETS

IRD GSS GIS SAP-BW
#triples 100,000,000 3,560,230 90,155,000 125,236,540

B. Versioning and monitoring temporal data changes
In this section, we compare the performance of three

RDF version management methods for our application context:
the All Snapshots approach (as used in SemVersion [7]),
the Sequential Delta (based on the change detection between
consecutive versions) and the Aggregated Delta.

For this part of the experiment we consider only the power
transformer equipments from the IRD dataset. This category
of equipments represent more than 600,000 equipments in the
distribution network, and the delta, the difference between each
week, is less than 1%.

Figure 1 shows the number of triples required to store
power transformers for each RDF versioning approach. The
number of triples of each scheme includes the total number
of triples in all the versions and, if any, all the deltas schema.
In Sequential Delta and Aggregated Delta, we consider the
first version as the original version. With the All Snapshots
approach, as shown in Figure 1, the number of triples increases
linearly as the number of versions increases, since this scheme
stores all the version snapshots in the triple store. In contrast,
the Sequential Delta and Aggregated Delta approaches require
less triples than the All Snapshots, because they store only
the original version and the deltas. When we compare the
Sequential Delta and the Aggregated Delta to each other, we
notice in Figure 2 that the Aggregated Delta requires more
triples than the Sequential Delta. This is because there are
duplicated triples stored by the aggregated delta procedure.
In terms of number of triples, the Sequential Delta procedure
requires less storage space than the Aggregated Delta.

Figure 1. Number of triples for the version management

Figure 3 shows the construction time of versions in the
Sequential Delta and the Aggregated Delta. The y-axis rep-
resents the construction time of versions in seconds, and the
x-axis denotes the specific versions to be constructed. In order
to generate versions which are not stored physically, we need to
construct logical versions on the fly from the original version.
As shown in Figure 3, while the construction time in the
Sequential Delta is proportional to the number of versions we
need to trace backwards, the Aggregated Delta can compute
any specific version at almost a constant time. This is because

Figure 2. Number of triples for the Sequential Delta vs the Aggregated Delta

the Aggregated Delta recreates any version by applying only a
corresponding aggregated delta to the original version. Since
the relevant version needs to be constructed on the fly for a
given query and it occurs very frequently, the Sequential Delta
performance is very critical.

Figure 3. Construction time for the Delta-Based versioning approaches

We also evaluated the query performance of various version
storage schemes using the queries in Table II. All the queries
are in SPARQL. The SPARQL Query Language is a language
for querying the RDF data [13]. Basically, the queries in Table
II simply count the number of power transformers for a specific
version. Figure 4 shows the average response time of ten
executions of the queries of Table II. We notice that the All
Snapshots approach is superior to both Delta-Based methods
for these queries except for the first version. This can be easily
explained by the fact that the sample queries used here require
the computation in a specific version and the All Snapshots
approach physically stores all the versions. With the Delta-
Based approaches, we first need to construct the version on
the fly and then query against it.

C. Managing heterogeneous time series
With the advent of the smart meters in the distribution

network, power system engineers and utility operators began

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing

TABLE II. SAMPLE QUERY

Method Query
All Snapshot SELECT (count(?s) as ?total) where {?s a cim:PowerTransformer}

Seq. delta SELECT (count(?s) as ?total) where {
graph <V0>{ ?s a cim:PowerTransformer}
minus {graph <delete v3 v4>{ ?s a cim:PowerTransformer}}
union {graph <insert v3 v4 >{ ?s a cim:PowerTransformer }}
minus {graph <delete v0 v1 >{ ?s a cim:PowerTransformer}}
union {graph <insert v0 v1>{ ?s a cim:Terminal}}
}

Aggre. delta SELECT (count(?s) as ?total) where {
graph <V0 >{?s a cim:PowerTransformer}
minus {graph <delete v0 v4 >{ ?s a cim:PowerTransformer}}
union {graph <insert v0 v4>{ ?s a cim:PowerTransformer}}
}

Figure 4. Computation time for the version management.

to extensively study the electrical measures of smart meters. In
the province of Québec, there will be a total of 4 million smart
meters installed. To make things even more challenging, one
smart meter can produce a dozen measurements per customer
in a short period of time (approximately every 15 minutes). In
fact, it can record dozens of values such as the voltage, the
current and the energy consumption. Thus, the huge amount
of data newly generated has to be computed in order to make
it highly accessible and available for electrical engineers to
conduct electrical studies.

One way to deal with the vast volume of data generated
by smart meters is to store the time series in a specialized
infrastructure. We used the PI historian by OSIsoft for the
management of real-time data and events. The PI system is
widely used in the power industry.

As stated previously, the data related to the power dis-
tribution network, such as the equipment connectivity, the
equipment location and their characteristics is stored in the
OSG semantic database. On the other hand, the measurement
data is stored in the PI historian. The latter is a real-time data
infrastructure solution that can capture, store and analyze real-
time data. It intends to deal with a massive amount of data
while being able to offer a good velocity. At IREQ, we use
the PI historian as the main repository for time series such as
electrical measurements.

To take advantage of PI scalability and OSG flexibility, it
becomes important to bind the two technologies. In fact, OSG
is not optimized to efficiently store time series, and PI has not

Figure 5. OSG and PI application

an evolved inference engine as the semantic data base. Thus,
the data of the distribution network has to remain in OSG and
the measurements in PI.

To bridge the gap between the distribution network data
and measurement values, we have decided to develop an
application that combines the power of both OSG and PI.
In Figure 5, we present a high level view of our application
composed by four modules, as follows.

The Java Code module (1) is responsible for processing
SPARQL user queries. It can read and alter the user queries in
order to detect which data are located in external data sources.
We use the Dublin Core Metadata Initiative (DCMI) [14] and
W3C Provenance meta-ontology [15] to inform where the data
is located and how to extract it from external data sources. The
Oracle Semantic Graph Triplestore (2) maintains the ontology
snapshot and the meta-ontology of the distribution network.
The DLL module (3) is a C# DLL COM service that behaves
as web services. It receives custom queries from the Java code
module and extracts values from the PI module (4). The latter
receives a query from the DLL module with the parameters
of the smart meters identifiers and the time duration of the
measurement values to extract.

To help the reader understand how the two data sources
are binded, we describe step by step the execution trace of
our system. We show how the SPARQL user query is shared
between the data sources and how the results are merged.
Step 1: The Java code receives an initial query from the user
(see Table III).
Step 2: The original user query is altered and optional triples
are added to detect if the data is located within external data
sources via the property cim:UsagePoint (see Table III).
Step 3: The external data sources are described using the
DCMI and W3C-Provenance ontology.
Step 4: A subset of the ontology extracted from OSG contains
part of the user query results and the related metadata.
Step 5: The Java code reads and analyzes the metadata. The
latter describes how to extract the external data and what to
extract (i.e., the PI tag names). As a consequence, the Java
code sends a compact query to the DLL component with
the following parameters: the beginning date, the duration
(in days), the measurement type (the voltage in the current
example) and the PI tag names (see Table III). The PI tag

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing

names are the unique identifiers for the smart meters and
the time duration represents the beginning and the end-time
markers of the measurement values.
Step 6: The DLL component queries the PI infrastructure and
extracts the related measurement values.
Step 7: The DLL component formats the values and sends them
back to the Java code. The data is sructured in order to reduce
the amount of data transmitted between the DLL component
and the Java code (see Table III).
Final Step 8: The Java code converts the received values into
an RDF ontology and merges it with the resulting ontology of
Step 2. The original user query is applied to the newly merged
ontology and the result is returned to the user.

TABLE III. QUERY EXECUTION TRACES

Step Query
1 SELECT ?c ?v where {

?c cim:MeterReading.IntervalBlocks ?iB.
?iB cim:IntervalBlock.IntervalReadings ?iR;
rdf:label ”Volts”.
?iR cim:IntervalReading.value ?v.}

2 CONSTRUCT { ?c cim:UsagePoint ?p. ?v cim:UsagePoint ?p. }
where { ?c cim:MeterReading.IntervalBlocks ?iB.
?iB cim:IntervalBlock.IntervalReadings ?iR;
rdf:label ”Volts”. ?iR cim:IntervalReading.value ?v.}
OPTIONAL { ?c a cim:IntervalReading; cim:UsagePoint ?p. }
OPTIONAL { ?v a cim:IntervalReading; cim:UsagePoint ?p. }
}

5 query:[2013/01/01 12:00; 1; [V]; [smartMeter1,smartMeter2,...]] {

7 smartMeter1:[V;[2013/01/01 12:00,...,2013/01/02 12:00];[220, 219, ...]]
smartMeter2:[V;[2013/01/01 12:00,...,2013/01/02 12:00];[219, 219, ...]]

We embedded our application with RapidMiner [16], a
code free modern analytics platform that includes machine
learning, data mining, text mining, predictive analytics and
business analytics. According to the 15th annual KDnuggets
Software Poll [17], released in 2014, RapidMiner remains the
most-used free dataming tool. Data mining is the process of
analyzing and turning large collections of data into useful
knowledge. It can be seen as a natural evolution of informa-
tion technology, where huge volumes of data accumulated in
databases are analyzed, classified and characterized over time.

In Figure 6, we can see the visual interface of the Rapid-
Miner extension. The begin date and the end date inform
about the time duration and the query window allows the
user to edit a SPARQL query. We tested our RapidMiner
extension by detecting via a K-Nearest Neighbors (K-NN) all
the outlier voltage measurements for a subset of customers
during one week. The K-NN Global Anomaly Score assigns
an anomaly score to each instance prior to the distance between
the instance and a K number of neighbors. The higher is the
score and the more likely the instance is an outlier. Visually,
we can see in Figure 7 that some voltage measurements were
detected by the K-NN algorithm as outliers; the bubbles size
are proportional to the outlier score.

By combining RapidMiner to a temporal RDF ontology,
our goal is to support advanced analytics process and to
transform data into actionable insights. In fact, data mining
tools offer methods and algorithms that help organizations
analyzing large amount of data in order to extract valuable
knowledge. For Hydro-Québec, analyzing complex situations
and identifying the best solutions for forecasting demand,

Figure 6. RapidMiner extension

Figure 7. Voltage outliers detection

shaping customer usage patterns, preventing outages, optimiz-
ing assets and more is extremely valuable. Transforming a high
volume of data into valuable decisions becomes a reality for
any business that intends to succeed.

VI. CONCLUSION

The obtained results are promising and highlight the po-
tential of using an ontology-based approach in an industrial
context like electric power utilities. In addition to federate
heterogeneous data sources across multiple enterprise systems,
the semantic architecture proposed by IREQ goes well beyond
that. The use of semantic technologies and versioning offers
a new way of analyzing information. It gives a better idea on
how information changes and evolves over the time. In fact,
when heterogeneous data sources are adequately federated and
versioned, it becomes possible to monitor the changes between
the data sources and to take corrective actions when required.

Finally, the use of a common semantic model enables
additional valuable information and knowledge to be inferred

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing

and extracted. The number of databases and information sys-
tems in use by utilities reveals the importance of a common
language and semantic. This is particularly true for electric
power utilities where information is growing fast and will
continue to increase because of the introduction of smart grid
technologies.

As future work, we are planning to improve the RDF ver-
sioning system in order to be efficient both in time and space
needed for storage. We also plan to include No-SQL (Hadoop,
Cassandra, etc.) data sources in our federated approach.

ACKNOWLEDGMENT

The authors would like to thank all the individuals who
participated in the design and development of the architecture.

REFERENCES

[1] A. Zinflou, M. Gaha, A. Bouffard, L. Vouligny, C. Langheit, and
M. Viau, “Application of an ontology-based and rule-based model in
electric power utilities,” in 2013 IEEE Seventh International Conference
on Semantic Computing, Irvine, CA, USA, September 16-18, 2013,
2013, pp. 405–411.

[2] M. Gaha, A. Zinflou, C. Langheit, A. Bouffard, M. Viau, and
L. Vouligny, “An ontology-based reasoning approach for electric power
utilities,” in Web Reasoning and Rule Systems - 7th International Con-
ference, RR 2013, Mannheim, Germany, July 27-29, 2013. Proceedings,
2013, pp. 95–108.

[3] W. W. Group. Cim primer for network models. [Online]. Available:
http://cimug.ucaiug.org/default.aspx [retrieved: 04, 2015]

[4] N. Popitsch and B. Haslhofer, “Dsnotify - a solution for event detection
and link maintenance in dynamic datasets.” J. Web Sem., vol. 9, no. 3,
2011, pp. 266–283.

[5] T. Käfer, J. Umbrich, A. Hogan, and A. Polleres, “Dyldo: Towards
a dynamic linked data observatory.” in LDOW, ser. CEUR Workshop
Proceedings, C. Bizer, T. Heath, T. Berners-Lee, and M. Hausenblas,
Eds., vol. 937. CEUR-WS.org, 2012.

[6] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov, “Ontology ver-
sioning and change detection on the web,” in Knowledge Engineering
and Knowledge Management: Ontologies and the Semantic Web, ser.
Lecture Notes in Computer Science, A. Gómez-Pérez and V. Benjamins,
Eds. Springer Berlin Heidelberg, 2002, vol. 2473, pp. 197–212.

[7] M. Völkel and T. Groza, “Semversion: Rdf-based ontology versioning
system,” in In Proceedings of the IADIS International Conference
WWW/Internet 2006 (ICWI 2006), 2006. [VKZ + 05, 2006.

[8] N. F. Noy and M. A. Musen, “Promptdiff: A fixed-point algorithm for
comparing ontology versions,” in Eighteenth National Conference on
Artificial Intelligence (AAAI-2002), 2002, pp. 744–750.

[9] Y. Tzitzikas, Y. Theoharis, and D. Andreou, “On storage policies for
semantic web repositories that support versioning,” in The Semantic
Web: Research and Applications, ser. Lecture Notes in Computer
Science, S. Bechhofer, M. Hauswirth, J. Hoffmann, and M. Koubarakis,
Eds. Springer Berlin Heidelberg, 2008, vol. 5021, pp. 705–719.

[10] D.-H. IM, S.-W. Lee, and H.-J. Kim, “A version management framework
for rdf triple stores,” International Journal of Software Engineering and
Knowledge Engineering, vol. 22, no. 01, 2012, pp. 85–106.

[11] R. Cyganiak. Accessing relational databases as virtual rdf graphs.
[Online]. Available: http://d2rq.org/ [retrieved: 04, 2015]

[12] D. Zeginis, Y. Tzitzikas, and V. Christophides, “On the foundations
of computing deltas between rdf models,” in The Semantic Web, ser.
Lecture Notes in Computer Science, K. Aberer, K.-S. Choi, N. Noy,
D. Allemang, K.-I. Lee, L. Nixon, J. Golbeck, P. Mika, D. Maynard,
R. Mizoguchi, G. Schreiber, and P. Cudré-Mauroux, Eds. Springer
Berlin Heidelberg, 2007, vol. 4825, pp. 637–651.

[13] A. Seaborne and E. Prud’hommeaux, “SPARQL query language
for RDF,” W3C, W3C Recommendation, January 2008,
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.

[14] D. Core. Dublin core metadata initiative. [Online]. Available:
http://dublincore.org/ [retrieved: 04, 2015]

[15] W. W. Group. An overview of the prov family of documents. [Online].
Available: http://www.w3.org/TR/prov-overview/ [retrieved: 04, 2015]

[16] RapidMnier. Rapidminer - analytics for anyone. [Online]. Available:
https://rapidminer.com/ [retrieved: 04, 2015]

[17] G. Piatetsky. Kdnuggets 15th annual analytics, data min-
ing, data science software poll: Rapidminer continues
to lead. [Online]. Available: http://www.kdnuggets.com/2014/06/
kdnuggets-annual-software-poll-rapidminer-continues-lead.html [re-
trieved: 04, 2015]

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing

