
τOWL-Manager: A Tool for Managing Temporal Semantic Web Documents
in the τOWL Framework

Abir Zekri, Zouhaier Brahmia
University of Sfax

Sfax, Tunisia
emails: abir.zekri@fsegs.rnu.tn,
zouhaier.brahmia@fsegs.rnu.tn

Fabio Grandi
University of Bologna

Bologna, Italy
email: fabio.grandi@unibo.it

Rafik Bouaziz
University of Sfax

Sfax, Tunisia
email: raf.bouaziz@fsegs.rnu.tn

Abstract—Several semantic web-based applications (e.g., e-
commerce, e-government and e-health applications) require
temporal versioning of ontology instances, in order to
represent, store and retrieve time-varying ontologies. However,
commercial systems do not provide any support for creating
and updating temporal ontologies. In this paper, we propose a
prototype system, named Temporal OWL 2 Web Ontology
Language Manager (τOWL-Manager), which implements our
τOWL framework and supports temporal versioning of
ontology instances. It allows (i) creating and validating a
temporal semantic web document, by augmenting an OWL 2
ontology schema with a set of logical and physical annotations,
and (ii) creating and maintaining time-varying ontology
instance documents, by generating a new timestamped version
of each ontology instance document when updates are applied.

Keywords–Semantic Web; Ontology; OWL 2; τXSchema;
Logical annotations; Physical annotations; Temporal database;
XML Schema; XML

I. INTRODUCTION

Due to the dynamic nature of the Web, ontologies [2]—
like other components of the Web 3.0 including databases
and Web pages—evolve over time to reflect and model
changes occurring in the real-world. Furthermore, several
Semantic Web-based applications (like e-commerce, e-
government and e-health applications) require keeping track
of ontology evolution and versioning with respect to time, in
order to represent, store and retrieve time-varying ontologies.

Unfortunately, while there is a sustained interest for
temporal and evolution aspects in the research community
[3], existing Semantic Web [4] standards, state-of-the-art
ontology editors and knowledge representation tools do not
provide any built-in support for managing temporal
ontologies. In particular, the W3C OWL 2 recommendation
[5][6] lacks explicit support for time-varying ontologies, at
both schema and instance levels. Thus, a Knowledge Base
Administrator (KBA), i.e., a knowledge engineer or a
maintainer of semantics-based Web resources, must use ad
hoc techniques when there is a need, for example, to specify
an OWL 2 ontology schema for time-varying ontology
instances.

On the other hand, in order to handle temporal ontology
evolution in an effective and systematic manner and to allow
historical queries to be efficiently executed on time-varying
ontologies, a built-in temporal ontology management system

is needed. For that purpose, we proposed in our previous
work [1] a framework, called τOWL, for managing temporal
Semantic Web documents, through the use of a temporal
OWL 2 extension. In fact, we want to introduce with τOWL
a principled and systematic approach to the temporal
extension of OWL 2, similar to that Snodgrass and
colleagues did with their Temporal XML Schema
(τXSchema) [7][8] to the eXtensible Markup Language
(XML) and XML Schema [9]. τXSchema is a powerful
framework (i.e., a data model equipped with a suite of tools)
for managing temporal XML documents, well known in the
database research community and, in particular, in the field
of temporal XML [10]. Moreover, in the previous work [11],
with the aim of completing the framework, we augmented
τXSchema by defining necessary schema change operations.

Being defined as a τXSchema-like framework, τOWL
allows creating a temporal OWL 2 ontology from a
conventional (i.e., non-temporal) OWL 2 ontology
specification and a set of logical (or temporal) and physical
annotations. Logical annotations identify which components
of a Semantic Web document can vary over time; physical
annotations specify how the time-varying aspects are
represented in the document. By using temporal schema and
annotations to introduce temporal aspects in the conventional
Semantic Web, our framework (i) guarantees logical and
physical data independence [12] for temporal ontologies and
(ii) provides a low-impact solution since it requires neither
modifications of existing Semantic Web documents nor
extensions to the OWL 2 recommendation and Semantic
Web standards.

Furthermore, while there is a lot of research works on
managing temporal ontologies [13][14][15][16], only two
research tools have been proposed to handle some particular
aspects: Stock Recommendations Aggregation System
(SRAS) [17], which is centered around the aggregation of
stock recommendations and financial data, and CHRONOS
[18], which is a reasoner over temporal information in OWL
ontologies. Current commercial solutions in the Semantic
Web area (Oracle Semantic Technology [19], IBM Scalable
Ontology Repository (SOR) [20], and IBM DB2 Resource
Description Framework (RDF) [21]) do not include features
for supporting time in ontologies.

In order to (i) show the feasibility of our τOWL
approach [1], (ii) facilitate a KBA when he/she has to create
a temporal ontology and manipulate its instances, and (iii)

56Copyright (c) IARIA, 2015. ISBN: 978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing

fill the lack of support noticed in commercial knowledge
management systems, we propose in this paper a prototype
system, named τOWL-Manager, which allows a KBA (i) to
create and validate τOWL ontology schemata, and (ii) to
create and update τOWL ontology instance documents.
When modified, instance documents are augmented with
timestamps to support temporal versioning.

With regard to our previous work [1], the current one
focuses on implementing our τOWL framework; the result,
τOWL-Manager, could be a first step towards providing
commercial support for temporal ontologies.

The remainder of the paper is organized as follows.
Section II describes our τOWL framework, previously
proposed in [1]: the architecture of τOWL is presented and
details on all its components and support tools are given.
Section III illustrates the use of τOWL through an example.
Section IV proposes our prototype tool, τOWL-Manager: its
architecture and some screenshots showing its functioning
are provided. Section V provides a summary of the paper and
some remarks about our future work.

II. THE τOWL FRAMEWORK

In this section, we present our τOWL framework for
handling temporal Semantic Web documents. We describe
the overall architecture of τOWL. Since τOWL is a
τXSchema-like framework, we were inspired by the
τXSchema architecture and tools while defining the
architecture and tools of τOWL. More details on our
framework can be found in [1] and [22].

The τOWL framework allows a KBA to create a
temporal OWL 2 schema for temporal OWL 2 instances
from a conventional OWL 2 schema, logical annotations,
and physical annotations. Since it is a τXSchema-like
framework, τOWL use the following principles: separation
between (i) the conventional (i.e., non-temporal) schema and
the temporal schema, and (ii) the conventional instances and
the temporal instances; (iii) use of logical and physical
annotations to specify temporal and physical aspects,
respectively, at schema level.

Figure 1 illustrates the architecture of τOWL. The
framework is based on the OWL 2 language [5][6], which is
a W3C standard ontology language for the Semantic Web. It
allows defining both schema (i.e., entities, axioms, and
expressions) and instances (i.e., individuals) of ontologies.

The KBA starts by creating the conventional schema
(box 7), which is an OWL 2 ontology that models the
concepts of a particular domain and the relations between
these concepts, without any temporal aspect. To each
conventional schema corresponds a set of conventional OWL
2 instances (box 12). As recommended in the the OWL 2
specification [6], τOWL deals with OWL 2 ontologies with
an RDF/XML syntax [23].

After that, the KBA augments the conventional schema
with logical and physical annotations, which allow him/her
to express, in an explicit way, all requirements dealing with
the representation and the management of temporal aspects
associated to the components of the conventional schema, as
described in the following.

Figure 1. Overall architecture of τOWL.

57Copyright (c) IARIA, 2015. ISBN: 978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing

Logical annotations [8] allow the KBA to specify (i)
whether a conventional schema component varies over valid
time and/or transaction time, (ii) whether its lifetime is
described as a continuous state or a single event, (iii) whether
the component may appear at certain times (and not at
others), and (iv) whether its content changes.

Physical annotations [8] allow the KBA to specify the
timestamp representation options chosen, such as where the
timestamps are placed and their kind (i.e., valid time or
transaction time) and the kind of representation adopted.
Timestamps can be located either on time-varying
components (as specified by the logical annotations) or
somewhere above such components. Two OWL 2 documents
with the same logical information will look very different if
we change the location of their physical timestamps.

Finally, when the KBA finishes annotating the
conventional schema and asks the system to save his/her
work, this latter creates the temporal schema (box 8) in order
to provide the linking information between the conventional
schema and its corresponding logical and physical
annotations. The temporal schema is a standard XML
document which ties the conventional schema, the entity
annotations, the axiom annotations, and the expression
annotations together. In the τOWL framework, the temporal
schema is the logical equivalent of the conventional OWL 2
schema in a non-temporal context. This document contains
sub-elements that associate a series of conventional schema
definitions with entity annotations, axiom annotations, and
expression annotations, along with the time span during
which the association was in effect. The schema for the
temporal schema document is the XML Schema Definition
document TSSchema (box 3).

To complete the picture, after creating the temporal
schema, the system creates a temporal document (box 14) in
order to link each conventional ontology instance document
(box 12), which is valid to a conventional ontology schema
(box 7), to its corresponding temporal ontology schema (box
8), and more precisely to its corresponding logical and
physical annotations (which are referenced by the temporal
schema). A temporal document is a standard XML document
that maintains the evolution of a non-temporal ontology
instance document over time, by recording all of the versions
(or temporal slices) of the document with their corresponding
timestamps and by specifying the temporal schema
associated to these versions. This document contains sub-
elements that associate a series of conventional ontology
instance documents with logical and physical annotations (on
entities, axioms, and expressions), along with the time span
during which the association was in effect. Thus, the
temporal document is very important for making easy the
support of temporal queries working on past versions or
dealing with changes between versions. The schema for the
temporal document is the XML Schema Definition document
TDSchema (box 2).

III. ILLUSTRATIVE EXAMPLE

In order to show the functioning of the τOWL approach
and how management of temporal ontology document
versions is dealt with in it, we provide an example

concerning the evolution of an ontology based on Friend Of
A Friend (FOAF). The FOAF [24] project is creating a Web
of machine-readable pages describing people, the links
between them and the things they create and do.

Suppose that a Web site “Society-Web” publishes the
FOAF definition for their users and that the webmaster of
this Web site wants to keep track of the changes performed
on FOAF RDF [25] information. We will focus in this
example on one user whose name is “Khalid Sinan”.

Suppose that on January 15, 2014, the KBA creates a
conventional ontology schema, named
“PersonSchema_V1.owl” (Figure 2), and a conventional
ontology instance document, named “Persons_V1.rdf”
(Figure 3), which is valid with respect to this schema. We
assume that the KBA defines also a set of logical and
physical annotations, associated to that conventional schema;
they are stored in an ontology annotation document titled
“PersonAnnotations_V1.xml” as shown in Figure 4.

Notice that the conventional (i.e., non-temporal) schema
(Figure 1) for the FOAF RDF document (Figure 2) is the
schema for an individual version, which allows updating and
querying individual versions. The conventional ontology
instance document describes, according to the FOAF
ontology, the personal information of “Khalid Sinan” (i.e.,
name and nickname) and the information about his online
accounts on diverse sites (i.e., the home page of the site, and
the account name of the user). In this example, we only
consider the user account on the “Facebook” Web site.

<rdf:RDF>

<owl:Ontology rdf:about="http://purl.org/
 az/foaf#">

<rdfs:Class rdf:about="#Person">
<rdf:type rdf:resource="http://www.w3.org/

 2002/07/owl#Class"/>
</rdfs:Class>
<rdf:Property rdf:about="#holdsAccount">

<rdf:type rdf:resource="http://www.w3.org/
 2002/07/owl#ObjectProperty"/>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#OnlineAccount"/>

</rdf:Property>
<rdf:Property rdf:about="#accountName">

<rdf:type rdf:resource="http://www.w3.org/
 2002/07/owl#DatatypeProperty"/>
<rdfs:domain rdf:resource="#OnlineAccount"/>

</rdf:Property>
…

</rdf:RDF>

Figure 2. An RDF/XML extract from the OWL 2 FOAF ontology.

…
<foaf : Person rdf:ID="#Person1">

<foaf : name>Khalid Sinan</ foaf : name>
<foaf : nick >Khal</ foaf : nick >
<foaf : holdsAccount >

<foaf : OnlineAccount rdf:about="
 https://www.facebook.com/Khalid.Sinan">

<foaf : accountName >Khal_Sinan
</ foaf : accountName >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >
…

Figure 3. A fragment of Khalid FOAF RDF document on January 15, 2014.

58Copyright (c) IARIA, 2015. ISBN: 978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing

<?xml version=”1.0” encoding=”UTF-8”?>
<ontologyAnnotationSet >

<logicalAnnotations >
<item target=”/Person/nick”>

<validTime kind=”state” content=”varying”
 existence=”constant”/>
</ item >

</ logicalAnnotations >
<physicalAnnotations >

<stamp target=”Person/nick”
 dataInclusion=”expandedVersion”>

<stampkind timeDimension=”validTime”
 stampBounds=”extent”/>
</ stamp >

</ physicalAnnotations >
</ ontologyAnnotationSet >

Figure 4. The annotation document on January 15, 2014.

After that, the system creates the temporal ontology
schema in Figure 5 (that ties “PersonSchema_V1.owl” and
“PersonAnnotations_V1.xml” together), which is stored in
an XML file named “PersonTemporalSchema.xml”.
Consequently, the system uses the temporal ontology schema
of Figure 5 and the conventional ontology document in
Figure 3 to create a temporal document as in Figure 6, that
lists both versions (i.e., temporal “slices”) of the
conventional ontology documents with their associated
timestamps. The squashed version of this temporal
document, which could be generated by the Temporal
Instances Generator, is provided in Figure 7.

<?xml version=”1.0” encoding=”UTF-8”?>
<temporalOntologySchema >

<conventionalOntologySchema >
<sliceSequenc e>

<slice location=” PersonSchema_V1.owl ”
 begin=”2014-01-15” />
</ sliceSequence >

</ conventionalOntologySchema >
<ontologyAnnotationSet >

<sliceSequence >
<slice location=” PersonAnnotations_V1.xml ”

 begin=”2014-01-15” />
</ sliceSequence >

</ ontologyAnnotationSet >
</ temporalOntologySchema >

Figure 5. The temporal schema on January 15, 2014.

<?xml version=”1.0” encoding=”UTF-8”?>
<td:temporalRoot temporalSchemaLocation=

 ”PersonTemporalSchema.xml ”/>
<td:sliceSequence >

<td:slice location =”Persons_V1.rdf ”
 begin=”2014-01-15” />

</ td:sliceSequence >
</ td:temporalRoot >

Figure 6. The temporal document on January 15, 2014.

On February 08, 2014, Khalid modified his nickname
from “Khal” to “Elkhal” and his account name of Facebook
from “Khal_Sinan” to “Elkhal_Sinan”. Thus, the system
updates the conventional ontology document
“Persons_V1.rdf” to produce a new conventional ontology
document named “Persons_V2.rdf” (Figure 8). Since the
conventional ontology schema (i.e., PersonSchema_V1.owl)
and the ontology annotation document (i.e.,

PersonAnnotations_V1.xml) are not changed, the temporal
ontology schema (i.e., PersonTemporalSchema.xml) is
consequently not updated. However, the Temporal Instances
Generator tool updates the temporal document, in order to
include the new slice of the conventional ontology
document, as shown in Figure 9. The squashed version of the
updated temporal document is provided in Figure 10.

Obviously, each one of the squashed documents (Figure
7 and Figure 10) must conform to a particular schema, that is
the representational schema, which is generated by the
Representational Schema Generator from the temporal
schema shown in Figure 5.

<foaf : Person rdf:ID="#Person1">

<foaf : name>Khalid Sinan</ foaf : name>
<nick_RepItem >

<nick_Version >
<timestamp_ValidExtent begin=”2014-01-15”
 end=”now” />
<foaf : nick >Khal</ foaf : nick >

</ nick_Version >
</ nick_RepItem >
<foaf : holdsAccount >

<foaf : OnlineAccount rdf:about="
 https://www.facebook.com/Khalid.Sinan">

<accountName_RepItem >
<accountName_Version >

<timestamp_ValidExtent
 begin=”2014-01-15” end=”now” />
<foaf : accountName >Khal_Sinan
</ foaf : accountName >

</ accountName_Version >
</ accountName_RepItem >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >

Figure 7. The squashed document correponding to the temporal document
on January 15, 2014.

…
<foaf: Person rdf:ID="#Person1">

<foaf : name>Khalid Sinan</ foaf : name>
<foaf : nick >Elkhal</ foaf : nick >
<foaf : holdsAccount >

<foaf : OnlineAccount rdf:about="
 https://www.facebook.com/Khalid.Sinan">

<foaf : accountName >Elkhal_Sinan
</ foaf : accountName >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >
…

Figure 8. A fragment of Khalid FOAF RDF document on February 08,
2014.

<?xml version=”1.0” encoding=”UTF-8”?>
<td:temporalRoot temporalSchemaLocation=

 ”PersonTemporalSchema.xml ”/>
<td:sliceSequence >

<td:slice location =”Persons_V1.rdf ”
 begin=”2014-01-15” />

<td:slice location =”Persons_V2.rdf ”
 begin=”2014-02-08” />

</ td:sliceSequence >
</ td:temporalRoot >

Figure 9. The temporal document on February 08, 2014.

59Copyright (c) IARIA, 2015. ISBN: 978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing

<foaf : Person rdf:ID="#Person1">
<foaf : name>Khalid Sinan</ foaf : name>
<nick_RepItem >

<nick_Version >
<timestamp_ValidExtent begin=”2014-01-15”
 end=”2014-02-07” />
<foaf : nick >Khal</ foaf : nick >

</ nick_Version >
<nick_Version >

<timestamp_ValidExtent begin=”2014-02-08”
 end=”now” />
<foaf : nick >Elkhal</ foaf : nick >

</ nick_Version >
</ nick_RepItem >
<foaf : holdsAccount >

<foaf : OnlineAccount rdf:about="
 https://www.facebook.com/Khalid.Sinan">

<accountName_RepItem >
<accountName_Version >

<timestamp_ValidExtent begin=”2014-01-15”
 end=”2014-02-07”/>
<foaf : accountName >Khal_Sinan
</ foaf : accountName >

</ accountName_Version >
<accountName_Version >

<timestamp_ValidExtent begin=”2014-02-08”
 end=”now” />
<foaf : accountName >Elkhal_Sinan
</ foaf : accountName >

</ accountName_Version >
</ accountName_RepItem >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >

Figure 10. The squashed document correponding to the temporal document
on February 08, 2014.

IV. IMPLEMENTATION

In this section, we describe a prototype system, named
τOWL-Manager, which implements our τOWL approach and
shows its feasibility. It allows (i) the specification and
validation of τOWL ontologies schemata, and (ii) the
creation and maintenance of τOWL ontology instance
documents. Each update operation on an instance document

gives rise to a new version of this document with its
corresponding timestamp.
τOWL-Manager is a Java (JDK 1.7) application,

developed in the Integrated Development Environment
(IDE) “Eclipse Helios”, using (i) the OWL Application
Programming Interface (API) [26], which is a Java API and a
reference implementation, for creating and manipulating
OWL ontologies, and (ii) the Java Document Object Model
(JDOM) API for creating and manipulating XML files. In
the following, we first describe the architecture of τOWL-
Manager and then provide some screenshots showing its use.
Notice that these screenshots deal with the same example
presented in Section III.

A. Architecture of τOWL-Manager

The overall architecture of τOWL-Manager is depicted in
Figure 11. It is composed of three layers: presentation layer,
business layer, and storage layer.

The presentation layer includes an interface for
constructing temporal ontologies and an interface for
creating and updating ontology instances.

The business layer contains two modules: one for
managing temporal ontologies, named “Temporal Ontology
Manager”, and the other for managing ontology instances,
named “Ontology Instance Document Manager”. The
“Temporal Ontology Manager” first generates the files
corresponding to the temporal ontology schema, that is the
conventional schema file and the annotation document file,
from the specifications expressed by the KBA in its
interface. Then, it checks the validity of the generated files
and creates the temporal schema file, which ties together the
two other files.

The storage layer contains the repository of resources
making up temporal ontologies and associated instances,
named τOWL Repository.

Figure 11. Architecture of τOWL-Manager.

60Copyright (c) IARIA, 2015. ISBN: 978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing

B. Screenshots of τOWL-Manager

Currently, τOWL-Manager allows a KBA to perform two
activities: (i) creating and validating temporal ontologies,
and (ii) creating and updating ontology instances. In the
following, we illustrate its functioning and show its use for
each one of the two activities, via the example of Section III.

1) Constructing and validating temporal ontologies
To construct a new temporal ontology, the KBA has to

perform the following tasks:
i) He/she starts by creating a τOWL project. To this aim,

the KBA has to provide a reference to an existing valid
conventional ontology schema (definition of an ontology
schema from scratch is not supported in the current version
of τOWL-Manager). Assume here that the KBA has chosen
the FOAF ontology.

ii) After that, the KBA annotates the new conventional
ontology schema by some logical and physical annotations.
Figure 12 shows the specification of some logical
annotations on the class “Person” and Figure 13 shows the
specification of some physical annotations on the same class.

Notice that a τOWL project is a set of folders:
• Annotations: it contains the file corresponding to the

logical and physical annotation document of a τOWL
ontology;

• Conventional Ontology Instance Documents: it stores
all the versions of conventional ontology instance
documents;

• Conventional Ontology Schema: it includes the
conventional ontology schema file of a τOWL

ontology;
• Representational Schema: it stores the

representational schema file;
• Temporal Document: it includes the temporal

document (which is generated automatically);
• Temporal Ontology Instance Documents: it contains

all the versions of temporal ontology instance
documents.

• Temporal Schema: it contains the temporal schema
file.

2) Creating and versioning ontology instance documents
We show in Figure 14 an ontology instantiation. After

the KBA has chosen a τOWL ontology schema, he/she can
create its instances (Figure 14). Finally, he/she should save
his/her work, through the “Save” button. Consequently, the
system generates an RDF file corresponding to the
conventional ontology instances which have been created.
Such a file is generated using the OWL API and validated
using the Pellet reasoner. Furthermore, the system
automatically updates the temporal document in order to add
a new slice corresponding to the new version of the ontology
instance document.

Moreover, τOWL-Manager allows keeping track of
ontology instances when they evolve over time. Figures 15
and 16 show an example of maintaining the history of an
ontology instance evolution: first the KBA chooses
“Persons_V1.rdf” as the ontology instance document version
that must be updated (Figure 15).

Figure 12. Specifying some logical annotations on the conventional ontology schema.

61Copyright (c) IARIA, 2015. ISBN: 978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing

Figure 13. Specifying some physical annotations on the conventional ontology schema.

Figure 14. Populating a conventional ontology.

62Copyright (c) IARIA, 2015. ISBN: 978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing

Figure 15. Showing the chosen conventional ontology instance document version.

Figure 16 shows that the KBA has modified the chosen
ontology instance document version (by modifying the nick
and the account name of the Person “Khalid Sinan”). Thus,
the system automatically generates a new version of the
ontology instance document. After verifying that the new
ontology instance document version is different from its

predecessor, the system adds it to the folder “Conventional
Ontology Instance Documents” of the τOWL project.
Moreover, the creation of a new version of an ontology
instance document causes an automatic update of the
temporal document.

Figure 16. Updating the chosen conventional ontology instance document version (changing the nick and the account name of Khalid).

63Copyright (c) IARIA, 2015. ISBN: 978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented τOWL-Manager, a
prototype tool for specifying temporal ontologies and
temporal instance versioning, in the τOWL framework,
demonstrating its feasibility. It helps a KBA to create
temporal ontologies and manipulate its instances,
overcoming the lack of support detected in state-of-the-art
commercial knowledge management systems and research
tools. Thus, it could be considered as a first step towards
providing commercial support for temporal ontologies.

Our future work aims at extending τOWL-Manager to
also support temporal versioning of the schema itself, in the
τOWL framework. Such extension requires, as a first step,
the definition of necessary schema change operations, that is
operations acting on conventional schema, annotations and
temporal schema. A subset of these operations has been
defined in our recent work [27].

REFERENCES
[1] A. Zekri, Z. Brahmia, F. Grandi, and R. Bouaziz, “τOWL: A

Framework for Managing Temporal Semantic Web
Documents,” Proceedings of the 8th International Conference
on Advances in Semantic Processing (SEMAPRO 2014),
Rome, Italy, 24-28 August 2014, pp. 33-41.

[2] N. Guarino (Ed.), Formal Ontology in Information Systems,
IOS Press, Amsterdam, 1998.

[3] F. Grandi, “Introducing an Annotated Bibliography on
Temporal and Evolution Aspects in the Semantic Web,”
SIGMOD Record, vol. 41, December 2012, pp. 18-21.

[4] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic
Web,” Scientific American, vol. 284, May 2001, pp. 34-43.

[5] W3C, OWL 2 Web Ontology Language – Primer (Second
Edition), W3C Recommendation, 11 December 2012.
<http://www.w3.org/TR/owl2-primer/> [retrieved: June,
2015]

[6] W3C, OWL 2 Web Ontology Language – Document
Overview (Second Edition), W3C Recommendation, 11
December 2012. <http://www.w3.org/TR/owl2-overview/>
[retrieved: June, 2015]

[7] F. Currim, S. Currim, C. E. Dyreson, and R. T. Snodgrass, “A
Tale of Two Schemas: Creating a Temporal XML Schema
from a Snapshot Schema with tXSchema,” Proceedings of
EDBT’2004, Heraklion, Crete, Greece, 14-18 March 2004,
pp. 348-365.

[8] R. T. Snodgrass, C. E. Dyreson, F. Currim, S. Currim, and S.
Joshi, “Validating Quicksand: Schema Versioning in
τXSchema,” Data and Knowledge Engineering, vol. 65, May
2008, pp. 223-242.

[9] W3C, XML Schema Part 0: Primer Second Edition, W3C
Recommendation, 28 October 2004.
<http://www.w3.org/TR/2004/REC-xmlschema-0-
20041028/> [retrieved: June, 2015]

[10] C. E. Dyreson and F. Grandi, “Temporal XML,” in L. Liu and
M. T. Özsu (Eds.), Encyclopedia of Database Systems,
Springer US, 2009, pp. 3032-3035.

[11] Z. Brahmia, F. Grandi, B. Oliboni, and R. Bouaziz, “Schema
Change Operations for Full Support of Schema Versioning in
the τXSchema Framework,” International Journal of
Information Technology and Web Engineering, vol. 9, April-
June 2014, pp. 20-46.

[12] T. Burns et al., “Reference Model for DBMS Standardization,
Database Architecture Framework Task Group (DAFTG) of

the ANSI/X3/SPARC Database System Study Group,”
SIGMOD Record, vol. 15, March 1986, pp. 19-58.

[13] C. Gutiérrez, C. A. Hurtado, and A. A. Vaisman, “Introducing
time into RDF,” IEEE Transactions on Knowledge and Data
Engineering, vol. 19, February 2007, pp. 207-218.

[14] F. Grandi and M. R. Scalas, “The valid ontology: A simple
OWL temporal versioning framework,” Proceedings of the 3rd
International Conference on Advances in Semantic Processing
(SEMAPRO 2009), Sliema, Malta, 11-16 October 2009, pp.
98-102.

[15] M. J. O’Connor and A. K. Das, “A method for representing
and querying temporal information in OWL,” In Biomedical
Engineering Systems and Technologies, volume 127 of
Communications in Computer and Information Science, pp.
97-110. Springer-Verlag, Heidelberg, Germany, 2011.

[16] V. Milea, F. Frasincar, and U. Kaymak, “tOWL: A Temporal
Web Ontology Language,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B, vol. 42, February 2012, pp.
268-281.

[17] V. Milea, F. Frasincar, and U. Kaymak, “Knowledge
Engineering in a Temporal Semantic Web Context,”
Proceedings of the 8th International Conference on Web
Engineering (ICWE 2008), Yorktown Heights, New York,
USA, 14-18 July 2008, pp. 65-74.

[18] E. Anagnostopoulos, S. Batsakis, and E. G. M. Petrakis,
“CHRONOS: A Reasoning Engine for Qualitative Temporal
Information in OWL,” Proceedings of the 17th International
Conference in Knowledge-Based and Intelligent Information
& Engineering Systems (KES 2013), Kitakyushu, Japan, 9-11
September 2013, pp. 70-77.

[19] Z. Wu et al., “Implementing an Inference Engine for
RDFS/OWL Constructs and User-Defined Rules in Oracle”,
Proceedings of the 24th International Conference on Data
Engineering (ICDE 2008), Cancún, México, 7-12 April 2008,
pp. 1239-1248.

[20] J. Lu et al., “SOR : a practical system for ontology storage,
reasoning and search”, Proceedings of the 33rd International
Conference on Very Large Data Bases (VLDB 2007),
University of Vienna, Austria, 23-27 September 2007, pp.
1402-1405.

[21] IBM, “Developing RDF Applications for IBM Data Servers”,
January 2013.
<ftp://ftp.software.ibm.com/ps/products/db2/info/vr101/pdf/e
n_US/DB2DevRDFdb2rdfe1011.pdf> [retrieved: June, 2015]

[22] A. Zekri, Z. Brahmia, F. Grandi, and R. Bouaziz, “τOWL: A
Framework for Managing Temporal Semantic Web
Documents Supporting Schema Versioning,” International
Journal On Advances in Software, in press.

[23] W3C, RDF/XML Syntax Specification (Revised), W3C
Recommendation, 10 February 2004.
<http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-
20040210/> [retrieved: June, 2015]

[24] The Friend of a Friend (FOAF) project. <http://www.foaf-
project.org/> [retrieved: June, 2015]

[25] W3C, Resource Description Framework (RDF), Semantic
Web Standard. <http://www.w3.org/RDF/> [retrieved: June,
2015]

[26] M. Horridge and S. Bechhofer, “The OWL API: A Java API
for OWL Ontologies”, Semantic Web, vol. 2, February 2011,
pp. 11-21.

[27] A. Zekri, Z. Brahmia, F. Grandi, and R. Bouaziz, “Temporal
Schema Versioning in τOWL,” Proceedings of the 2nd
International Conference on Knowledge Management,
Information and Knowledge Systems (KMIKS 2015),
Hammamet, Tunisia, 16-18 April 2015, pp. 81-92.

64Copyright (c) IARIA, 2015. ISBN: 978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing

