
Ontology-Based Adaptive Information System Framework

Louis Bhérer, Luc Vouligny
Mohamed Gaha, Billel Redouane

Institut de Recherche d’Hydro-Québec, IREQ
Varennes, Québec, Canada

Email: Bherer.Louis2, Vouligny.Luc,
Gaha.Mohamed, Redouane.Billel @ireq.ca

Christian Desrosiers

École de Technologie Supérieure
Montréal, Québec, Canada

Email: christian.desrosiers@etsmtl.ca

Abstract—Software development does not usually end with the
final release of the application. The software application have to
be maintained throughout its useful lifetime in order to follow
the users’ needs. Most software applications are built around a
rigid data models and modifications that must be performed on
such data model impact the application, resulting in additional
maintenance costs. The main focus of this work is to design and
implement an ontology-based software framework for building
information systems that can auto-adapt to evolving semantic
data models. This framework has been used in the development of
a client-server application as a proof of concept. This application
can adapt dynamically to numerous changes that can be made in
the model without recompilation of the client-side or the server-
side of the application.

Keywords–Adaptive Information System; Ontology; RDF;
RDFS; OWL; Autonomic Computing.

I. INTRODUCTION

Most software applications are built around a rigid data
model drawn from relational database (RDB) technologies. On
one hand, RDB technologies are mature and performant when
storing and accessing information. On the other hand, their
data model are hard to change when modifications must be
performed. The modification process of the software itself is
rather time consuming as most of the changes in the data model
will also require adjustments in the corresponding objects’
model. The evolution usually requires a transitional program
to transfer stored information to the new data model, the
recompilation and the republishing of the application. Usually,
when the application is on a client-server system in a large
organization, all this work must be synchronized between
different departments.

Ontologies can also be used to model information. They
can be established and refined as new knowledge is acquired
and needs evolve. Ontologies repository technologies such
as triplestores can be used in software applications that can
be built to take into account how the data model evolves.
However, current programming languages, such as C, C#, Java,
etc., usually require a compilation process in order to adapt to
an evolving data model.

Staab et al. [1] “[...] recommend that the ontology engineer
gathers changes to the ontology and initiates the switch-over to
a new version of the ontology after thoroughly testing possible
effects to the application[...]”. We deduct that the ease of model
modification in the ontology can be constrained by the appli-
cations’ rigid development framework and resulting programs.

Applications able to self-adapt to data models would certainly
bring cost reductions on both development and maintenance
processes.

The main focus of this work is to design and implement a
framework for building an information system that can auto-
adapt to evolving semantic data models. This framework has
been used in the development of a client-server application
as a proof of concept. This application can adapt dynami-
cally to numerous changes that can be made in the model
without recompilation of the client-side or the server-side of
the application. The goal of this framework is to reduce the
costs associated with application development, deployment and
maintenance at Hydro-Québec, Québec’s provincial utility that
generates, transmits and distributes electricity. At IREQ, the
research institute of Hydro-Québec, studies on the application
of semantic technologies are currently underway as a mean to
solve problems related to the increasing number of databases in
the organization [2][3]. In addition, self-adapting technologies
have already been applied with success [4].

The remainder of this article is organized as follows.
The next section is a review of the previous works on
system/framework with self-adaptive capacities. Section III
presents the framework, its design and main functions, as
well as the application built with it. Section IV presents
the results of the project. Finally, Section V will cover the
potential applications and advantages of this framework and
future developments.

II. RELATED WORK

In 2001, IBM has proposed the Autonomic Computing
initiative [5] with the objective to develop mechanisms that
would allow systems and subsystems to self-adapt to unpre-
dictable changes. Conferences, such as Software Engineering
for Adaptive and Self-Managing Systems (SEAMS) [6] or
Engineering of Autonomic and Autonomous Systems (EASe)
[7], show that system and software self-adaptability is still an
important research area, now scattered in a variety of subfields.
Amongst them, one could include information system self-
adaptability to an evolving data model.

As Dobson & al. stressed out in [8], the Autonomic
Computing initiative did not achieve the promises announced
in [9]. Many individual advances have brought some of those
expected benefits, but there is no integrated solution resulting
in an autonomous system. This is a task that some researchers
have started working on, such as Bermejo-Alonso in [10] with

110Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing



her attempt to develop an ontology for the engineering of
autonomous systems. The self-adaptability mechanisms of our
framework could help in the development of self-aware or
self-adjusting properties [11] leading to the development of
autonomic components.

At Hydro-Québec, advances have been made in self-
adapting applications with the Dynamic Information Modelling
(MDI) development environment [4]. Some client-server appli-
cations built using this system have been put in production and
are still in use today. Self-adaptation, even though it is only to
the data model, have proven to be beneficial, especially when
evolutionary prototyping is used as a development methodol-
ogy [12]. In MDI, the proposed development library was not a
client-server framework and was used as a private and closed
semantic modeling system.

In [13], McGinnes and Kapros circumscribe the problem
of non-adaptive applications as a conceptual dependence to
the data model. They describe this dependence between the
data model and the resulting application as an undesirable
software coupling. The authors use the terms “Adaptive In-
formation System” (AIS) for information systems that adapt
to changes to the underlying data model. They conclude that
most applications based on information systems used today
are dependant on their domain model. Therefore, such systems
must be maintained every time there is a modification on the
data model and even the slightest change may result in costly
and time consuming adaptations.

McGinnes and Kapros propose six principles to achieve
conceptual independence over any data source (see Table
1). Using these principles, they show that it is possible
to build an AIS based on an Extensible Markup Language
(XML) mapping of a RDB data source [13]. Applying those
principles to Resource Description Framework (RDF) based
ontologies brings useful insights (see Table 1) on the use of
those technologies in an AIS. One can argue that achieving
conceptual independence using RDF-based technologies such
as RDF, Resource Description Framework Schema (RDFS)
and Web Ontology Language (OWL) seems more intuitive
than using RDB data sources. RDF-based technologies have
in fact many of the required properties inherently built in their
design, thus reducing the complexity of achieving conceptual
independence.

The proposed AIS framework based on semantic technol-
ogy is presented in the next section.

III. PROPOSED AIS FRAMEWORK

Our AIS has been conceptualised and developed as a three-
tier client-server framework: a triplestore, a generic server and
a web interface.

The triplestore is used to hold the knowledge bases con-
stituted by a conceptual model and its individuals. In the
proposed AIS, two knowledge bases are used: one for the
domain of expertise and one for the presentation of the
information. The triplestore used in this framework is Oracle
12c RDF semantic Graph Triplestore.

The server-tier is coded using a standard Java J2EE tech-
nology. It is built as a web service server offering different
generic functions with a REST client-server interface. These
services are implemented using the library JENA to process
the requests written in the SPARQL query language.

Figure 1. AIS framework.

The user interface is implemented in JavaScript with the
Ext.js 4.2.2 library. It uses the REST interface to communicate
with the server. Thus, it is independent to the server and could
be coded using another technology.

We used the proposed framework to implement a decision
support system application to be used at the Hydro-Québec
research institute. The purpose of this application is to gather
power transformer oil sampling data such as methanol and
ethanol concentrations to monitor the health condition of the
power transformers and provide suitable maintenance advice
to the specialists. The application acts as a dashboard in which
the users can add, update or delete entries and do simple
searches. It also does automated calculations e.g., to calculate
adjusted concentrations of some molecules depending on the
temperature of the oil. The engineers will use the application
to record their maintenance operations and measurements, to
follow and compare the condition of the transformers and to
test and refine parameters used in concentration adjustment
equations.

The conceptual model of this application comprises six
classes that will be used in the subsequent examples: Pow-
erStation, PowerTransformer, Measurement, MaintenanceIn-
tervention, ConversionParameter and PowerStationAndTrans-
formerAssociation. Each of these classes has between two and
twelve properties and comprise up to 7000 individuals. This
application has been chosen to validate the framework since it
requires a variety of functionalities that would be suitable for
a wide range of applications.

In order to better understand the proposed AIS, Figure 1
presents a high-level view of the framework. At the initializa-
tion phase, the application requests the triplestore via a web
service to show the initial presentation consisting of a tree
view of the data model. The user uses this tree to select an
individual of a class (e.g., a power transformer), represented
by a leaf of the tree. When the user clicks on this leaf, the
interface sends a request to the server through its web services.
Upon reception of the request, the server dynamically gathers
an undetermined number of classes, all of which have an
association relation with the class of the selected individual.
The server then gathers for each of these classes, the list of its
properties and the list of its individuals related to the user’s
selection. This information is transmitted to the client using a
generic Java object and its corresponding JSON representation.
This generic object is used to transfer the information to appear
on the user’s interface and to request Create, Read, Update and
Delete (CRUD) operations to the server.

A. Application triplestore setting
Most of the application data are stored in an enterprise

RDB. A semantic meta-model (T-Box) has been designed to

111Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing



TABLE I. CONCEPTUAL INDEPENDENCE PRINCIPLES AND APPLICATIONS.

CONCEPTUAL INDEPENDENCE PRINCI-
PLES [13]

APPLICATIONS OF THE CONCEPTUAL INDEPENDENCE PRINCIPLES
WITH RDF-BASED TECHNOLOGIES

1. Reusable functionality (structurally- appropriate
behaviour): The AIS can support any conceptual
model. Domain-dependent code and structures are
avoided. Useful generic functionality is invoked at
run time for each entity type. [13]

This principle applies similarly using a triplestore data source. Generics SPARQL
requests will be obtained by exclusively hard-coding resources from the RDF, RDFS
or OWL semantics, leaving the others resources soft-coded. The data model can be
inspected at run time using generic SPARQL requests.

2. Known categories of data (semantically- appro-
priate behaviour): Each entity type is associated
with one or more predefined generic categories.
Category-specific functionality is invoked at run
time for each entity type. [13]

All ontologies using RDFS or OWL languages contain ipso facto the same conceptual
basis. The definition of those meta-entities are the semantics of RDF, RDFS and OWL.
Employing those meta-entities as the most generic entities of the AIS allows the use
of any RDF-based ontology. McGinnes and Kapros use archetypal categories taken
from the field of psychology to classify entities according to the behaviours the AIS
should adopt in their presence. This interesting idea will be considered later on in the
development of this AIS, but is not currently essential.

3.Adaptive data management (schema evolution):
The AIS can store and reconcile data with mul-
tiple definitions for each entity type (i.e.,multiple
conceptual models), allowing the end user to make
sense of the data. [13]

First, RDF technology uses what McGinnes and Kapros call soft-schemas: data models
stored as data. Secondly, RDF technology allows individuals with different valued
properties to coexist in the same class. Moreover, individuals can belong to more
than one class. Axioms like OWL:sameAs or OWL:equivalentClass allow to reconcile
data from distinctly described entities. Two previously distinct classes declared as
equivalent will have, by inference, the same set of properties and then two individuals
of this new class may have only different valued properties. Thus, this mechanism
allows for reconciliation of data from different conceptual models. As the model
evolves, data using different conceptual models remain available and is instantly
accessible without any refactoring of the AIS.

4. Schema enforcement (domain and referential
integrity) : Each item of stored data conforms
to a particular entity type definition, which was
enforced at the time of data entry (or last edit).
[13]

In technologies such as OWL, domain integrity and referential integrity can be
validated with reasoners. As for data types, literal data are usually associated with
basic types upon entry in a semantic store.

5. Entity identification (entity integrity): The stored
data relating to each entity are uniquely identified
in a way which is invariant with respect to schema
change. [13]

In the RDF technology, entity identification is provided by the URI mechanism, and
is already invariant with respect to schema change.

6. Labelling (data management): The stored data
relating to each entity are labelled such that the
applicable conceptual models can be determined.
[13]

Using the RDF technology, this principle would translate as: each individual needs to
belong to a class. Then, is does not matter how much the class has change over time,
because all of its individuals can have any number of valued or non-valued properties.
However, human-readable labels are necessary to present the information to the users
and it is mandatory to affect each entity with such labels.

model the required classes (PowerTransformer, PowerStation,
etc.). Then, by using the D2RQ library, the data from the RDB
have been converted into a RDF individuals graph (A-Box).
The T-Box has been designed using RDFS semantics. It solely
contains association relationships, and essentially describes the
classes and the properties with their domain and range. Each
class, property and individual have been labeled in order to be
shown on the visual interface.

B. Dynamic visualization of the semantic data

Here are the main design elements for the dynamic visu-
alization of the information.

1) The generic object: A generic Java class (meta-class)
was designed in order to allow dynamic recuperation of
information from the semantic store. The resulting object is
used to transfer information from the semantic store to the
user’s interface. A given object’s instance is built from generic
SPARQL requests using RDF and RDFS semantics. The object
has fixed attributes used to hold information on the RDFS
class, its properties and individuals. The generic object can
also hold the path and filters used to select the individuals or
the class itself. See Figure 2 for the definition of the object.

Figure 2. Definition of the Java generic object.

Note here that each individual contains a property-value
mapping for each property of the Properties List, and its
corresponding value, if any. The access elements contain the

112Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing



Figure 3. Example of a Java generic object.

path in the graph to get to the class (i.e., the property linking
the individuals of the two classes) and the filter (i.e., an
individual of the range class) used to select the individuals
of the domain class. The term “Bridge predicate” will be used
to refer to the property linking the domain class and the range
class (i.e., the path) (See Figure 4).

In the developed application, selecting a power transformer
in the tree will result in a request to find individuals linked
to it from all classes having a property whose range is the
Transformer class, i.e., individuals from the domain classes of
the Transformer class. For each class found, a generic object
will be created.

In order to better understand how generic objects are
created, please refer to the example given in Figure 3. In this
example, the user has selected the power transformer numbered
123. The framework then requested the model and found
three classes having an associative relation with the Power-
Transformer class: Measurement, MaintenanceIntervention and
PowerStationAndTransformerAssociation. Those three classes
are going to be fetched but this example presents only the
Measurement class case. Its URI and label have been first
retrieved, followed by the list of its properties and the list of
its individuals. This second list contains a mapping for each
individual, between every properties of the property list and
its value for this individual, if any.

In the example in Figure 3, the filter is the specified
individual of the range class, i.e., the power transformer
numbered 123. It is considered a filter because it reduces the
number of individuals retrieved. Here, the path is simply the
Bridge predicate between the range and the domain classes.
Further development should lead to the creation of more filter
and path options, as well as sequences and aggregations of
these options.

Figure 4. Graph representation of the range and domain classes in an
associative relationship.

In our AIS, every time a power transformer is selected in
the tree, the model is inspected dynamically to find all the
domain classes of the PowerTransformer class and all their
individuals linked to the selected power transformer. Hence, if
a new domain class is added, the application will automatically
present it to the users.

Due to the genericity of the functions, the changes made on
the data model are immediately available to all the AIS users.
From then on, every request will get individuals and classes
from the new model, without any need to recompile the client
nor the server. This is due to the fact that being written to
adapt to any model, a request can then be used in run time to
inspect the actual version of the model.

2) Visual representation: The application uses a tree to
show the user a specific portion of the semantic graph (see
Figure 5). In our case, the tree first shows all the power stations
as folders that can be expanded to see the power transformers
they contain.

When the user selects a node (e.g., the power transformer
123), the client user interface sends a request to the AIS server,
using a generic process, to dynamically gather the domain
classes (e.g., the Measurement class) in relation with the range
class (e.g., the PowerTransformer class). For each of these
classes, the properties will first be found, and then, all the
individuals of the domain classes linked with the user selected
individual will be retrieved. As a result, a list of generic Java
objects will be generated where each object corresponds to a
domain class.

These Java objects are then automatically converted to
JSON, using the Jackson library [14] and sent to the user
interface. The user interface will produce a bidimensional
matrix for every class in the list (see Figure 5). These matrices
show the information to the user using human-readable labels.
The user can then request for CRUD operations on individuals
represented in the matrices (see Figure 5).

The CRUD operations are programmed to retrieve the Java
generic object and delete all the unselected individuals, so
to keep only the selected individual. This individual is then
modified according to the user’s needs and the resulting Java
object is returned to the server.

In the current state of the framework implementation, if
changes are made in the T-Box, either by modifying the

113Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing



Figure 5. The tree view (1), matrices (2) and the buttons to request for
CRUD operations (3).

Figure 6. Individual CRUD form example.

properties of some domain classes or by adding a new domain
class related to the class of the tree leaves, the users will
instantly begin to navigate in the new conceptual model. Other
changes are not yet possible.

The main presentation tree does not grant access to every
class in the semantic graph. Therefore, the user interface has
been given other access points from which the user can request
directly for those previously inaccessible classes. The system
uses a similar generic function to request this information
except that it retrieves the class itself and all its individuals
instead of using the previously presented domain classes
mechanism. The same generic Java object is used, but does
not have any access information. As the generic Java object
is used, the same CRUD operations can still be performed on
individuals.

3) The CRUD services: For the time being, the frame-
work allows CRUD services on the individuals only, not
on the classes and properties. Other means are used to edit
the conceptual model. Further work will be made to allow
modelization of the T-Box from the user interface. The CRUD
services on the A-Box are done on the client-side using forms
showing the properties of the class and their value for the
selected individuals, if any (see Figure 6). These forms are
created from the properties listed in the generic Java object.

In order to help the user and validate the input, a presen-

tation knowledge base comprising the different presentation
options has been established. This information is associated
with every property of the domain knowledge base and is
passed on by the Java generic object. It indicates how to build
every entry fields of the forms. Those forms are constructed
dynamically, adapting the user’s interaction options on the
values of properties according to the presentation knowledge
base information.

In further developments, mechanisms will be designed
to automatically link the domain ontology properties to the
presentation ontology individuals. Some ontologies contain
semantics, such as Enumeration, Sequence, or Bag, that can
be used to predict the correct entry field’s type for a certain
property. Enumeration, for example, can be represented as a
list of individuals from which the user will have to choose.
In general, the range of a property is a good indicator of
the required entry field’s type. Finally, functions will be
implemented to allow the user to change the type of the entry
field in run time.

In the current state of the framework, four types of entry
fields are implemented: numerical fields, text fields, list fields
and date fields. Upon expansion, the list field requests for
a service that finds all the existing values associated to this
property. For the fields used to update literals, the range type
of the property is used for validation. Cardinalities are present
in the presentation knowledge base so the forms can indicates
to the user the required fields, if any.

4) The graphics: Graphic classes and related properties
have been added to the presentation knowledge base to rep-
resent graphic views such as histograms or clouds of points.
Graphic properties are used to specify the association between
the graphic elements such as the x-axis data, y-axis data, label-
ings, etc. The axis are linked to domain ontology properties.
When these domain ontology properties are present in generic
objects, the user interface could detect them and create a list
of available graphics.

IV. RESULTS

The framework has been used to create a client-server
decision-support application. Thanks to the generic services of
the AIS framework, one can modify the classes and properties
in the conceptual model directly in the triplestore without
affecting the application. The user interface will adjust its
presentation automatically according to the latest update of the
conceptual model, since the request interrogates the semantic
graph dynamically. The proposed framework allows for all
CRUD operations to be performed on individuals. Moreover,
the framework will query the conceptual model in the semantic
graph for each request, which is different to a standard appli-
cation where the conceptual model is taken into consideration
only at compilation time. The resulting application is ready to
be put in production. Once in production, because it will be
able to automatically adapt to conceptual model changes, it
should easily evolve as the framework is extended.

The main limitation of this framework is how it explores
the model at each request. While for now it only retrieved
individuals from classes that are one associative relation away
from a desired individual, further work is needed to find ways
of expanding this exploration. The implementation of this
mechanism will be crucial for the framework to be effective
in large scale ontologies.

114Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing



Tests still need to be run to determine performance differ-
ences between such an application and a non-dynamic one, and
to observe the scaling potential. The resulting application from
the proposed framework is not expected to be as performant
as a similar application developed from a more conventional
framework, but the difference in performance has yet to be
established. Then, it will be possible to evaluate how much
the cost reductions incurred during the development and the
maintenance processes of AIS outweighs their performance
aspect on the long run.

While implementing this proof of concept, we learned
that many of the needed properties to achieve conceptual
independence are inherent to the RDF technology. Exclusively
hard-coding resources from the RDF, RDFS and OWL se-
mantics in all the SPARQL requests and leaving all other
resources soft-coded are necessary conditions to obtain this
conceptual independence. Because the semantics of these three
languages (RDF, RDFS and OWL) are shared across all RDF-
based ontologies, they form a common conceptual basis to
all the domains they can represent. Limiting the conceptual
dependences to their semantics, the applications built can use
any such ontology, regardless of its knowledge domain.

V. CONCLUSION AND FUTURE WORK

As hypothesised, an AIS based on a triplestore seems easier
to implement than an AIS using XML to dynamize functions
on a RDB. Many artifices have to be considered when building
an AIS from a RDB which are not required with semantic
technologies, as described in Table 1. The use of a library to
map the RDB into a triplestore appears judicious to easily and
quickly gather the conceptual independence needed in an AIS.

With the use of a RDF representation to store the informa-
tion, generic SPARQL requests that can search any semantic
graph for both conceptual knowledge and individual informa-
tion are easily devised. This leads the AIS to be able to adapt
to the evolution of the conceptual model and to be used for
different domains of application. The framework could also be
used with evolutionary prototyping application development.
At Hydro-Québec, other large scale client-server applications
have already been successfully developed using evolutionary
prototyping, highlighting the benefits of such technologies
compared to standard development processes [12].

The construction of an application editor able to use
the framework for developing new auto-adaptive applications
seems to be the next logical step. Using the framework to build
new applications will further test the approach and allow to
complete the presentation knowledge base. In doing so, new
functions will be developed leading eventually to a complete
AIS. Ideally, the AIS should be able to take advantage of all
the RDF, RDFS and OWL semantics.

The current application uses only RDFS semantics; adding
OWL capabilities will allow for the use of inference reasoners.
In the current release, only the individuals of the semantic
domain can be edited by the user through forms. Editing
possibilities on the meta-model will be authorized in the next
iterations.

The framework and the application are the proof that an
AIS can work easily and efficiently by capitalizing on the
RDF technology and its inherent properties. Such systems can
be useful in fast-evolving knowledge domains. They inscribe

themselves well in the AGILE development philosophy, allow-
ing the model data to evolve freely at each iteration. Those
considerations allow to think that AIS and self-adapting appli-
cations could bring substantial cost reductions in application
development and maintenance in the coming years.

ACKNOWLEDGMENT

The authors would like to thank Jérôme Côté for his
insightful help.

REFERENCES
[1] S. Staab, R. Studer, H.-P. Schnurr, and Y. Sure, “Knowledge processes

and ontologies,” IEEE Intelligent Systems, vol. 16, no. 1, Jan. 2001,
pp. 26–34.

[2] A. Zinflou, M. Gaha, A. Bouffard, L. Vouligny, C. Langheit, and
M. Viau, “Application of an ontology-based and rule-based model in
electric power utilities,” in 2013 IEEE Seventh International Conference
on Semantic Computing, Irvine, CA, USA, September 16-18, 2013,
2013, pp. 405–411.

[3] M. Gaha, A. Zinflou, C. Langheit, A. Bouffard, M. Viau, and
L. Vouligny, “An ontology-based reasoning approach for electric power
utilities,” in Web Reasoning and Rule Systems - 7th International Con-
ference, RR 2013, Mannheim, Germany, July 27-29, 2013. Proceedings,
2013, pp. 95–108.

[4] L. Vouligny and J.-M. Robert, “Online help system design based on
the situated action theory,” in Proceedings of the 2005 Latin American
Conference on Human-computer Interaction, ser. CLIHC ’05. New
York, NY, USA: ACM, 2005, pp. 64–75.

[5] P. Horn, “Autonomic Computing: IBM’s Perspective on the State of
Information Technology,” Tech. Rep., 2001.

[6] T. Vogel. Software engineering for self-adaptive systems.
[retreived: 06, 2015]. [Online]. Available: https://www.hpi.uni-
potsdam.de/giese/public/selfadapt/ (2015)

[7] I. T. C. on Software Engineering. Ieee ease 2014. [retreived: 06, 2015].
[Online]. Available: http://tab.computer.org/aas/ease/2014/index.html
(2014)

[8] S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey, “Fulfilling the vision
of autonomic computing,” Computer, vol. 43, no. 1, 2010, pp. 35–41.

[9] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, Jan. 2003, pp. 41–50.

[10] J. Bermejo-Alonso, R. Sanz, M. Rodrı́guez, and C. Hernández,
“Ontology-based engineering of autonomous systems,” in Proceedings
of the 2010 Sixth International Conference on Autonomic and Au-
tonomous Systems, ser. ICAS ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 47–51.

[11] R. Sterritt and M. Hinchey, “Spaace iv: Self-properties for an au-
tonomous computing environment; part iv a newish hope,” in Engineer-
ing of Autonomic and Autonomous Systems (EASe), 2010 Seventh
IEEE International Conference and Workshops on, March 2010, pp.
119–125.

[12] L. Vouligny, C. Hudon, and D. N. Nguyen, “Design of mida, a web-
based diagnostic application for hydroelectric generators.” in COMP-
SAC (2), S. I. Ahamed, E. Bertino, C. K. Chang, V. Getov, L. L. 0001,
H. Ming, and R. Subramanyan, Eds. IEEE Computer Society, 2009,
pp. 166–171.

[13] S. McGinnes and E. Kapros, “Conceptual independence: A design
principle for the construction of adaptive information systems,” Inf.
Syst., vol. 47, 2015, pp. 33–50.

[14] Cowtowncoder. Jackson. [retreived: 06, 2015]. [Online]. Available:
http://jackson.codehaus.org/ (2015)

115Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-420-6

SEMAPRO 2015 : The Ninth International Conference on Advances in Semantic Processing


