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Abstract—Rough set theory has been extensively used both as a
mathematical foundation of granularity and vagueness in infor-
mation systems and in a large number of applications. However,
the decision logic for rough sets is based on classical bivalent
logic; therefore, it would be desirable to develop decision logic
for uncertain or ambiguous objects. In this study, a deduction
system based on partial semantics is proposed for decision
logic. Three-valued logics based on Gentzen sequent calculi are
adopted. A deductive system based on three-valued framework
is intuitively adequate for the structure of positive, negative, and
boundary regions of rough sets, and has already been studied.
In this study, consequence relations based on partial semantics
for decision logic are defined, and systemization by Gentzen ’
s sequent calculi is attempted. Three-valued logics of different
structures are investigated as the deductive system of decision
logic. The interpretation of decision logic is extended using partial
semantics, and extended decision logic based on three-valued
logics is proposed.

Keywords–rough set; decision logic; consequence relation;
three-valued logic; sequent calculi.

I. INTRODUCTION

Pawlak introduced the theory of rough sets for handling
rough (coarse) information [1]. Rough set theory is now used
as a mathematical foundation of granularity and vagueness in
information systems and is applied to a variety of problems.
In applying rough set theory, decision logic was proposed for
interpreting information extracted from data tables. However,
decision logic adopts the classical two-valued logic semantics.
It is known that classical logic is not adequate for reason-
ing with indefinite and inconsistent information. Moreover,
the paradoxes of material implication of classical logic are
counterintuitive.

Rough set theory can handle the concept of approximation
by the indiscernibility relation, which is a central concept
in rough set theory. It is an equivalence relation, where all
identical objects of sets are considered elementary. Rough set
theory is concerned with the lower and the upper approxima-
tion of object sets. This approximation divides sets into three
regions, namely, the positive, negative, and boundary regions.
Thus, Pawlak rough sets have often been studied in a three-
valued logic framework because the third value is thought to
correspond to the boundary region of rough sets [2][3].

In this study, non-deterministic features are considered
the characteristic of partial semantics. The formalization of
three-valued logic is carried out using a consequence relation
based on partial semantics. The basic logic for decision logic
is assumed to be many-valued, in particular, three-valued

and some of its alternatives [4]. If such three-valued logics
are used as a basic deduction system for decision logic, it
can be enhanced to a more useful method for data analysis
and information processing. The decision logic of rough set
theory will be axiomatized using Gentzen sequent calculi and
three-valued semantic relation as basic theory. To introduce
three-valued logic to decision logic, consequence relations
based on partial interpretation are investigated, and sequent
calculi of three-valued logic based on them are constructed.
Subsequently, three-valued logics with different structure are
considered for the deduction system of decision logic.

The deductive system of decision logic has been studied
from the granule computing perspective, and in [5], an exten-
sion of decision logic was proposed for handling uncertain
data tables by fuzzy and probabilistic methods. In [6], a
natural deduction system based on classical logic was proposed
for decision logic in granule computing. In [2], Gentzen-
type three-valued sequent calculi were proposed for rough
set theory based on non-deterministic matrices for semantic
interpretation.

The paper is organized as follows. In Section II, an
overview of rough sets and decision logic is presented. In
Section III, the relationship between decision logic and three-
valued semantics based on partial semantics is discussed. In
Section IV, an axiomatization using Gentzen sequent calculus
is presented, according to a consequence relation based on
the previously discussed partial semantics. In Section V, an
extension of decision logic is discussed, based on three-valued
sequent calculus as partial logic. Finally, in Section VI, a
summary of the study and possible directions for future work
are provided.

II. OVERVIEW OF ROUGH SETS AND DECISION LOGIC

Rough set theory, proposed by Pawlak [1], provides a
theoretical basis of sets based on approximation concepts. A
rough set can be seen as an approximation of a set. It is denoted
by a pair of sets, called the lower and upper approximation of
the set. Rough sets are used for imprecise data handling. For
the upper and lower approximations, any subset X of U can
be in any of three states, according to the membership relation
of objects in U . If the positive and negative regions on a rough
set are considered to correspond to the truth value of a logical
form, then the boundary region corresponds to ambiguity in
deciding truth or falsity. Thus, it is natural to adopt a three-
valued logic.
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Rough set theory is outlined below. Let U be a non-
empty finite set, called a universe of objects. If R is an
equivalence relation on U , then U/R denotes the family of
all equivalence classes of R, and the pair (U,R) is called a
Pawlak approximation space. A knowledge base K is defined
as follows:

Definition 1. A knowledge base K is a pair K = (U,R) ,
where U is a universe of objects and R is a set of equivalence
relations on objects in U .

Definition 2. Let R ∈ R be an equivalence relation of the
knowledge base K = (U,R), and X any subset of U . Then,
the lower and upper approximations of X for R are defined
as follows:

RX =
∪
{Y ∈ U/R | Y ⊆ X} = {x ∈ U | [x]R ⊆ X}

RX =
∪
{Y ∈ U/R | Y ∩X ̸= 0} = {x ∈ U | [x]R ∩X ̸= ∅ }

Definition 3. If K = (U,R), R ∈ R, and X ⊆ U, then the R-
positive, R-negative, and R-boundary regions of X with respect
to R are defined respectively as follows:

POSR(X) = RX

NEGR(X) = U −RX

BNR(X) = RX −RX

Let C and D be subsets of an attribute A, denoted as
C,D ⊆ A. Moreover, it is assumed that C is a conditional
attribute and D a decision attribute. Then, the decision table
T is denoted by T = (U,A,C,D).

The function sx : A → V (for simplicity, the subscript x
will be omitted) is defined where ∀x ∈ U , and ∀a ∈ C ∪D.

Language of Decision Logic: A decision logic language
(DL-language) L is now introduced [1]. The set of attribute
constants is defined as a ∈ A, and the set of attribute value
constants is V =

∪
Va. The propositional variables are φ and

ψ, and the propositional connectives are ⊥, ∼, ∧, ∨ and →.

Definition 4. The set of formulas of the decision logic lan-
guage (DL-language) L is the smallest set satisfying the
following conditions:

1) (a, v), or in short av , is an atomic formula of L.
2) If φ and ψ are formulas of the DL-language, then

∼ φ, φ ∧ ψ, φ ∨ ψ and φ→ ψ are formulas.

The interpretation of the DL-language L is performed using
the universe U in S = (U,A) of the Knowledge Representation
System (KR−system) and the assignment function, mapping
from U to objects of formulas. Formulas of the DL-language
are interpreted as subsets of objects consisting of a value v
and an attribute a.

Atomic formulas (a, v) describe objects that have a value
v for the attribute a. S |=s φ denotes that the object x ∈ U
satisfies the formula φ of S = (U,A). The semantics of DL-
language is defined as follows:

S |=s (a, v) iff a(x ) = v

S |=s∼ φ iff S ⊭s φ

S |=s φ ∨ ψ iff S |=s φ or S |=s ψ

S |=s φ ∧ ψ iff S |=s φ and S |=s ψ

S |=s φ→ ψ iff S |=s∼ φ ∨ ψ

Let φ be an atomic formula of the DL-language, R ∈ C∪D
an equivalence relation, and X any subset of U . Then, the truth
value of φ is defined as follows:

||φ||s =

{
t if |φ|s ⊆ POSR(U /X )

f if |φ|s ⊆ NEGR(U /X )

This shows that decision logic is based on bivalent logic. In
the next section, an interpretation of decision logic based on
three-valued logics will be discussed.

III. RELATIONSHIP WITH THREE-VALUED SEMANTICS

Partial semantics for classical logic has been studied by
van Benthem in the context of the semantic tableaux [7][8].
In this section, the application of partial semantics to decision
logic is investigated. As the proposed approach can replace the
base (bivalent) logic of decision logic, alternative versions of
decision logic based on three-valued logics are obtained.

The model S of decision logic based on three-valued
semantics consists of a universe U for the language L and
an assignment function s that provides an interpretation for L.

For the domain |S| of the model S, a subset is defined
by S = ⟨S+, S−⟩. The first term of the ordered pair denotes
the set of n-tuples of elements of the universe that verify the
relation S, whereas the second term denotes the set of n-tuples
that falsify the relation. The interpretation of propositional
variables of L for the model S is given by SS = ⟨(S)+S , (S)

−
S ⟩.

Let T = {t, f, u} be the truth value for the three-valued
semantics of L, where each value is defined as true, false,
or undefined (or indeterminate). Then, the truth value of φ on
S = (U,A) is defined as follows:

||φ||s =


t if |φ|s ⊆ POSR(U /X )

f if |φ|s ⊆ NEGR(U /X )

u if |φ|s ⊆ BNR(U /X )

A semantic relation for the model S is defined following
[7][9][10]. The truth and the falsehood of a formula of the
DL-language are defined in a model S. The truth (denoted by
|=+

s ) and the falsehood (denoted by |=−
s ) of the formulas of

the decision logic in S are defined inductively:

Definition 5. Semantic relation of S |=+
s φ and S |=−

s φ are
defined as follows:

S |=+
s φ iff φ ∈ S+

S |=−
s φ iff φ ∈ S−

S |=+
s ∼ φ iff S |=−

s φ

S |=−
s ∼ φ iff S |=+

s φ

S |=+
s φ ∨ ψ iff S |=+

s φ or S |=+
s ψ

S |=−
s φ ∨ ψ iff S |=−

s φ and S |=−
s ψ

S |=+
s φ ∧ ψ iff S |=+

s φ and S |=+
s ψ

S |=−
s φ ∧ ψ iff S |=−

s φ or S |=−
s ψ

S |=+
s φ→ ψ iff S |=−

s φ or S |=+
s ψ

S |=−
s φ→ ψ iff S |=+

s φ and S |=−
s ψ

|=+ denotes confirmation and |=− refutation. The model
S is consistent if and only if S+ ∩ S− = ∅. The symbol ∼
denotes strong negation, in which ∼ is interpreted as true if
the proposition is false.

Theorem 1. For every model S, DL-language L, and formula
φ, it is not the case that S |=+

s φ and S |=−
s φ hold.
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Proof: Only the proof for ∼ and ∧ will be provided. It can
be carried out by induction on the complexity of the formula.
The condition of consistent implies that it is not the case that
φ ∈ S+ and φ ∈ S−. Then, it is not the case that S |=+

s φ
and S |=−

s φ.
∼: We assume that S |=+

s ∼ φ and S |=−
s ∼ φ hold. Then,

it follows that S |=+
s φ and S |=−

s φ. This is a contradiction.
∧: We assume that S |=−

s φ ∧ ψ and S |=+
s φ ∧ ψ

hold. Then, it follows that S |=+
s φ and S |=+

s ψ and
S |=−

s φ or S |=−
s ψ. This is a contradiction.

Example. We assume the decision table below, where the
condition and decision attributes are not considered.

U = {x1, x2, x3, x4, x5, x6, x7, x8}
Attribute: C = {c1, c2, c3, c4}
c1 = {x1, x4, x8}, c2 = {x2, x5, x7}, c3 = {x3},
c4 = {x6}
U/C = c1 ∪ c2 ∪ c3 ∪ c4
Any subset X = {x3, x6, x8}
POSC(X) = c3 ∪ c4 = {x3, x6}
BNC(X) = c1 = {x1, x4, x8}
NEGC(X) = c2 = {x2, x5, x7}
Evaluation of truth value of formulas as follows:
If |Cc3| ⊆ POSC(X) then ||Cc3||s = t

If |Cc1| ⊆ BNC(X) then ||Cc1||s = u

If |Cc2| ⊆ NEGC(X) then ||Cc2||s = f

IV. CONSEQUENCE RELATION AND SEQUENT CALCULUS

Partial semantics in classical logic is closely related to
the interpretation of the Beth tableau [8]. Van Benthem [7]
suggested the relationship of the consequence relation to
Gentzen sequent calculus. Thus, the application of the con-
sequence relation for partial semantics to decision logic will
be discussed, as well as the structure of three-valued logic that
is based on partial semantics and replaces the basic (bivalent)
logic of decision logic.

To prove X → Y by the Beth tableau, a counterexample,
such as X& ∼ Y , is constructed. Here, let X be Γ and Y be
∆ (set of formulas), and let A and B be formulas.

Axiom: A⇒ A (ID)
Sequent rule:
Γ ⇒ ∆

A,Γ ⇒ ∆, A
(Weakening)

Γ, A⇒ ∆ Γ ⇒ A,∆

Γ ⇒ ∆
(Cut)

A,Γ ⇒ ∆

Γ ⇒ ∆,∼ A
(∼ R)

Γ ⇒ ∆, A

∼ A,Γ ⇒ ∆
(∼ L)

Γ ⇒ ∆, A Γ ⇒ ∆, B

Γ ⇒ ∆, A ∧B (∧R)
A,B,Γ ⇒ ∆

A ∧B,Γ ⇒ ∆
(∧L)

Γ ⇒ ∆, A,B

Γ ⇒ ∆, A ∨B (∨R)
A,Γ ⇒ ∆ B,Γ ⇒ ∆

A ∨B,Γ ⇒ ∆
(∨L)

A,Γ ⇒ ∆, B

Γ ⇒ ∆, A→ B
(→ R)

Γ ⇒ ∆, A B,Γ ⇒ ∆

A→ B,Γ ⇒ ∆
(→ L)

This axiomatization is based on the sequent calculus for
classical logic LK (logistischer klassischer Kalkül) originally
introduced by Gentzen in 1935 [11]. Decision logic is a predi-
cate logic; however, in this study, the focus is on propositional
logic without quantifiers and predicate symbols. This LK is
extended to other deductive systems for partial semantics based

on a different consequence relation. For example, the three-
valued logic by Kleene has no tautology. Thus, to define a
consequence relation, a logical system for three-valued logic
is formalized. In the Beth tableau, to interpret the consequence
relation for partial semantics, an atomic formula A with left
open branch is evaluated as V (A) = 1, and an atomic formula
B with right open branch as V (B) = 0. This can be interpreted
according to sequent calculus. It is assumed that V is a partial
assignment function assigning to an atomic formula the values
0 or 1. Then, the consequence relation is defined as follows:

(C1) for all V , if V (Pre) = 1 then V (Cons) = 1,
(C2) for all V , if V (Pre) = 1 then V (Cons) ̸= 0.
Pre and Cons represent sequent premise and conclusion,

respectively. In classical logic, (C1) and (C2) can be interpreted
as equivalent; however, they are not equivalent in partial logic
based on partial semantics.

Sequent calculi G1 for (C1) can be obtained by adding the
following rules to LK\{(∼ R)}, where, ”\” implies that the
rule following ”\” is excluded.

Γ ⇒ ∆, A

Γ ⇒ ∆,∼∼ A
(∼∼ R)

A,Γ ⇒ ∆

∼∼ A,Γ ⇒ ∆
(∼∼ L)

Γ ⇒ ∆,∼ A,∼ B

Γ ⇒ ∆,∼ (A ∧B)
(∼ ∧R)

∼ A,Γ ⇒ ∆ ∼ B,Γ ⇒ ∆

∼ (A ∧B),Γ ⇒ ∆
(∼ ∧L)

Γ ⇒ ∆,∼ A Γ ⇒ ∆,∼ B

Γ ⇒ ∆,∼ (A ∨B)
(∼ ∨R)

∼ A,∼ B,Γ ⇒ ∆

∼ (A ∨B),Γ ⇒ ∆
(∼ ∨L)

These Gentzen-type sequent calculi axiomatize (C1) [12][7].
We are now in a position to define GC1. For GC1, (A1)

defined below is added to G1\{(∼ L)}.
(A1) A,∼ A⇒
GC1:={(ID), (Weakening), (Cut), (A1), (∧R), (∧L),

(∨R), (∨L), (→ R), (→ L), (∼∼ R), (∼∼ L),

(∼ ∧R), (∼ ∧L), (∼ ∨R), (∼ ∨L)}
For the rule (∼ L) obtained from (A1), GC1 and G1 are
equivalent.

Theorem 2. GC1 = G1.
Proof: (A1) can be considered as (∼ L), then double

negation and de Morgan laws in GC1 are obtained.
The semantic relation of the implication of S for GC1 is

defined in Definition 5.
Then, rule (C2) for the Gentzen system is axiomatized as

GC2. GC2 is obtained by replacing axiom (A1) from GC1 to
(A2) below.

(A2) ⇒ A,∼ A
By exclusion of the restriction in Theorem 1, the definition of
the semantic relation for the implication of GC2 is obtained
as follows:

S |=+
s φ→ ψ iff S ̸|=+

s φ or S ̸|=−
s ψ or

(S |=+
s φ and S |=−

s φ and S |=+
s ψ and S |=−

s ψ)

S |=−
s φ→ ψ iff S |=+

s φ and S |=−
s ψ

Theorem 3. C2 is axiomatized by GC2.
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Proof: GC2 is an axiomatization which is obtained from
GC1 by replacing (A1) with (A2).
There are some possible options to define consequence rela-
tion. For our purposes, (C3) below is proposed as alternative
definition.

(C3) for all V , if V (Pre) = 1 then V (Cons) = 1,
if V (Cons) = 0 then V (Pre) = 0.

The Gentzen system GC3 for (C3) is obtained by replacing
(A1) of GC1 with the following (A3):

(A3) A,∼ A⇒ B,∼ B

V. RELATIONSHIP PARTIAL LOGIC

In this section, the relationship between the sequent calculi
system based on partial semantics and three-valued logic is
discussed. The three-valued logic is extended by defining
the weak negation ¬. ∼ is treated as the strong or classical
negation. Weak negation represents the lack of truth. In partial
semantics, it allows an interpretation whereby ¬ is true if a
proposition is not true, that is false or undefined. The semantic
relation for weak negation is as follows:

S |=+
s ¬φ iff S ̸|=+

s φ

S |=−
s ¬φ iff S |=+

s φ

The truth value of weak negation is defined as follows:

||¬φ||s =

{
t if ||φ||s = f or u

f if ||φ||s = t

By introducing weak negation, the representation of deduction
for uncertain concepts may be handled; however, this is beyond
the scope of this study. Moreover, weak implication may be
defined using weak negation as follows:

A→w B =def ¬A ∨B
The following rules for weak negation and weak implication
are now presented.

Γ ⇒ A,∆

Γ ⇒ ¬A,∆ (¬R)
Γ, A⇒ ∆

Γ,¬A⇒ ∆
(¬L)

A,Γ ⇒ ∆, B

Γ ⇒ ∆, A→w B
(→w R)

B,Γ ⇒ ∆ Γ ⇒ ∆, A

A→w B,Γ ⇒ ∆
(→w)

Three extended decision logics (EDLs) based on three-
valued logic are subsequently presented. They are adapted to
handle ambiguity and uncertainty. GC1, which was discussed
above, is interpreted as a strong Kleene three-valued logic. It
is first assumed that GC1 is the basic deduction system for
decision logic. Then, the inference rules of weak negation and
weak implication are added. This logic is the extended decision
logic EDL1. Its semantic relation is denoted by |=EDL1.

The axioms and rules of EDL1 are as follows:

EDL1 := {(ID), (Weakening), (Cut), (A1), (∧R), (∧L),
(∨R), (∨L), (→ R), (→ L), (∼∼ R), (∼∼ L),

(∼ ∧R), (∼ ∧L), (∼ ∨R), (∼ ∨L),
(¬R), (¬L), (→w R), (→w L)}

The concept of a proposition that is neither true nor false
is possible in EDL1. If the designated value of three-valued
logic of GC2 is defined as {t, u}, then this system is a
paraconsistent logic. Paraconsistent logic does not hold for
the principle of explosion (ex falso quodlibet); therefore, it
is possible to interpret the consequence relation by (C2). The

semantic relation of EDL2 is obtained from EDL1 by replacing
(A1) with (A2).

EDL2 := EDL1\{(A1)} + {(A2)}
The semantic relation of EDL3 is obtained from EDL1

replacing (A1) with (A3).
EDL3 := EDL1\{(A1)} + {(A3)}

EDL3 is interpreted as both paracomplete and paraconsistent.
This prevents the paradox of material implication of classical
logic. In decision logic, the decision rule is interpreted as
follows: If the premise is valid, then the conclusion is also
valid. If the conclusion is not valid, then the premise is not
valid either.

VI. CONCLUSION AND FUTURE WORK

It was proposed that a partial semantics interpretation of the
consequence relation may serve as a foundation for decision
logic. A three-valued logic system based on a consequence re-
lation that is defined by partial semantics was investigated, and
the relationship between them was studied. By adopting three-
valued logic as basic logic for decision logic, its deductive
system can be enhanced. Moreover, this allows the extension
of the scope of its application.

In future work, the semantic relationship between decision
logic and partial semantics should be investigated in detail.
Furthermore, soundness and completeness results should be
derived for extended decision logic. This is required for the
foundation of a logical system for decision logic. Finally,
the application of decision logic based on three-valued logic
should be investigated.
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