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Abstract—Home energy management is not efficient for a 

number of reasons. In this paper, we discuss a home energy 
management scheme which uses a nanogrid that introduces peak 
load shifting for energy control using the location patterns of the 
user. Sensors in the home can monitor the locations of residents 
and adjust the power consumption of the home in real time. This 
allows the system to estimate the behaviors of occupants in 
various situations to reduce the amount of power used. Major 
ideas and experimental systems are expected to be applied not 
only to green buildings but also to a large number of existing 
buildings to reduce the level of power consumption without 
sacrificing human comfort or convenience. 
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I.  INTRODUCTION  
The existing power infrastructure in homes and buildings 

faces a number of challenges that are difficult to solve. The 
conventional power distribution method causes large power 
losses and reduces the efficiency of the power grid. Moreover, 
grids are susceptible to costly outages due to environmental 
events (e.g., heavy rain or wind) as well as non-environmental 
events (e.g., age-related equipment failures). A nanogrid can be 
used for one building, while a microgrid can serve an island of 
15000 consumers. Typically, a nanogrid is technically smaller 
than a microgrid [1] [2].  

Control strategies for buildings to operate heating and 
cooling, lighting, and ventilation are important to the living 
standards and health of the residents. Heating, ventilation and 
cooling (HVAC) is the single largest contributor to a home 
energy component and accounts for 33% of residential power 
consumption in the US [3]. Thermal comfort, visible comfort 
and the indoor air quality are considered to be the three main 
factors that affect the quality of life of residents in a building 
environment [4] [5]. Occupant presence and behavior in 
building have been shown to have large impacts on space 
heating, ventilation and cooling demand, power consumption 
by lighting and space appliances, and building control 
strategies [6].  

With regard to energy management, minimizing the energy 
cost, maximizing the overall efficiency, and the efficient 
control of peak demand loads are important factors [7] [8]. In 
addition, maximizing the lifetimes of the energy storage system 
(ESS) and the generator as well as reliability and security of the 
power provision are of great importance. To minimize the peak 
load, the emphasis has been on allocating appliance operation 
over time scales where there will be a leveling of the peak 

demand load over the given range of time [9]. The proposed 
demand-side management strategy achieves substantial savings 
while reducing the peak load demand on the smart grid using 
heuristic optimization [10]. These efforts range from improving 
the energy efficiency by using better materials to smart energy 
tariffs with incentives for certain consumption patterns and to 
sophisticated real-time control of distributed energy resources 
[11]. The development and application of load-shifting control 
strategies have been discussed in the literature [12]. 

In this study, an experimental system which optimizes 
power consumption and human convenience using the 
positions of people in a nanogrid is presented [13]. In the 
experiments done to test the system, user location patterns 
serve to realize optimal control of user locations through a 
hidden Markov model (HMM) which is calibrated using time-
use data collected from the Korea Power Exchange (KPX) 
Institute. Multi-objective optimization methods are 
implemented in the system to find Pareto-optimal solutions. 
The total power consumption and the overall comfort level are 
considered as the two contrasting goals of building energy 
management and comfort management [14] [15]. 

This paper is organized as follows. In Section 2, the HMM 
for the occupant patterns is explained. The operational 
characteristics of the house energy management scheme are 
expressed in terms of the relationships between power 
consumption and human location patterns. Section 3 provides 
details of the optimal energy management scheme. Section 4 
presents the experimental results. Section 5 concludes this 
paper with a summary. 

II. OCCUPANT BEHAVIOR MODELING 

A. Korea Time Use Survey (KTUS) 
Korea Time Use Survey (KTUS) creates a resident 

behavior model for the average individual in Korea.  

 

Fig. 1. Profile of merged activity types people are at home: patterns for the 
TV, iron, air-conditioner, heater, and electric fan 
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KPX measures the amount of time people spend engaged in 
various activities, such as washing, watching TV, or cooking. 
The information collected by KPX includes the start and end 
times (hours) of each activity. The KTUS data collected in 
2013 were used here to create a statistically driven occupant 
behavior model. An analysis of the KTUS data provides an 
outline of pattern information related to the respondents' 
activities. This is shown in Figure 1. We use a sample size of 
500 houses, a sample time interval of 1 hour, and a power 
consumption interval of 60kWh ~ 1000kWh.  

B. Hidden Markov Model (HMM) 
 An HMM was used to model the behavior of home 
residents [16]. The HMM is used to model the likelihood of 
transitioning to the next state from the current state. This 
transition probability is entirely dependent on the current state 
and does not depend on the state sequence preceding the 
previous state [17]. A visual representation of the HMM is 
shown in Figure 2. Resident behavior can be modeled by a 
hidden state that represents complex behavior that affects the 
observation and the observed behavior [18] [19]. The HMM is 
a probabilistic model consisting of the transition and emission 
probabilities. The emission probability refers to symbols that 
can be emitted by models related to actions performed by 
occupants, such as a shutdown of the air conditioning system 
or a change of the thermostat level.  

 

Fig. 2. Block diagram illustrating occupant behavior using a hidden Markov 
model 

 The ten activities, including laundry, food preparation, 
washing machine usage, watching TV, and computer usage 
were chosen because they incur the largest and the most 
common power consumption loads in the residential sector. 
(These appliances are the washing machine, heater, electric fan, 
iron, microwave, vacuum cleaner, rice cooker, air-conditioner, 
television, and computer.) 

III. OCCUPANT-LOCATION-DEPENDENT OPTIMAL CONTROL 
SCHEME 

Multi-objective optimization involves selectively 
minimizing or maximizing multiple objective functions that 
are dependent on a set of constraints. The goal is to solve 
complex optimization problems by simultaneously considering 
potential conflicting goals.  

With this scheme, we consider a system with n modules 
and set the power of the ith module to Pi (t) watts when it 
operates in the usual manner prior to energy management. The 
switching on/off status of the ith module in the proposed 
energy management scheme can be represented by the 
following switching function, 
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where ui(t) is the switching on/off status of the ith module, Di(t) 
is the appliance distance relative to the position of the human, 

2, ( ( ))inner iCO u t is the inner CO2 concentration, 2, ,maxinnerCO is 
the maximum allowed inner CO2 concentration, ( ( ))inner iT u t  is 
the inner temperature, and ,maxinnerT is the maximum allowed 
inner temperature. 

IV. EXPERIMENTAL RESULTS 

A. Experimental setup 
In the experiment, the outdoor temperature is determined 

using temperature information from the meteorological office 
and the outdoor CO2 concentration is set to 490 ppm. The 

2, ,maxinnerCO level is 470 ppm and ,maxinnerT is 23℃.   

TABLE I.  INDEXES OF ELECTRIC APPLIANCES FOR THE APPLIANCE SET 

Index Type Power Index Type Power 

1 Air 
conditioner 2.07kW 6 Washing 

machine 242W 

2 Fan 60W 7 Vacuum 
cleaner 1.07kW 

3 Heater 1.16kW 8 Computer 255W 

4 Iron 1.23kW 9 Microwave 1.04kW 

5 TV 130W 10 Rice cooker 1.03kW 

Table 1 shows the amounts of power used by household 
appliances. In this experiment, ten appliances and four rooms 
are considered.  

B. Experiment 
The experiment compares power consumption patterns 

with respect to the location, which is based on the user's 
location with priority distances of 5m and 10m. Figure 3 
shows that optimizing the use of a device depends on the 
person's location, leading to less power use. The blue line 
represents the optimizations of independent user locations. In 
every room, an air conditioner and an electronic fan are used 
to maintain the target temperature and CO2 level. It can be 
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confirmed that the priority distance of 5m, as optimized 
according to the location of a person in the building, is useful 
in terms of power consumption.  

 
Fig. 3. Experimental results of multi-objective optimization depending on the 
user location and not depending on the user location (priority: depending on 
the user location - 5m and 10m, and then independent of the user location) 

As a result, when considering this distance, the peak power 
can be reduced. The capital and operating costs can be reduced. 

V. CONCLUSION 
This paper discusses home energy management of a 

nanogrid with shifting of the peak load according to the 
location patterns of residents. Sensors in the building can 
monitor residential location patterns. This allows residents with 
diverse roles to participate in energy efficiency efforts using a 
HMM to determine the occupant pattern. Major ideas and 
experimental systems are expected to be applied not only to 
green buildings but also to a range of existing buildings in 
order to reduce power usage without sacrificing human comfort 
or convenience. Human comfort is linked to the maximum 
number of devices without scheduling. The operational 
characteristics of the house energy management scheme here 
are expressed according to the relationships between power 
consumption and human location patterns. Experimental results 
indicate that the reduction of power consumption based on the 
resident location optimization scheme is superior to that 
independent of resident locations. End users of this system can 
save electricity and continue to feel comfortable. 
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