
R-Event: A RESTful Web Service Framework for Building Event-Dr iven Web

Li Li
Avaya Labs Research

Avaya Inc.
Basking Ridge, New Jersey, USA

lli5@avaya.com

Wu Chou
Avaya Labs Research

Avaya Inc.
Basking Ridge, New Jersey, USA

wuchou@avaya.com

Abstract— As the Web is becoming a communication and
collaboration platform, there is an acute need for an
infrastructure to disseminate real-time events over the Web.
However, such infrastructure is still ser iously lacking as
conventional distr ibuted event-based systems are not designed
for the Web. To address this issue, we develop a RESTful web
service framework, R-Event. I t represents and encapsulates
the structural elements of Event-Driven Architecture (EDA)
into the infrastructure of REST (Representational State
Transfer), the architectural style that under lies the Web. Our
approach leads to an event-dr iven web consisting of 4 layers of
RESTful web services. The R-Event framework implements
the layers that are pivotal to the event-dr iven web. The core
component of this framework is federated topic hubs that
provide services for notification publication, subscr iption,
delivery, tracking, and linking. The advantages and
applications of this approach are presented and discussed,
including the important features of addressability,
connectedness, dynamic topology, robustness, scalability, and
efficient notifications. A prototype system for presence dr iven
collaboration is developed and the preliminary performance
tests show that the proposed approach is feasible and
advantageous.

Keywords - Web service; REST; Topic Hubs, Event-
driven; EDA.

I. INTRODUCTION

The Web has undergone a rapid evolution from an
informational space of static documents to a space of
dynamic communication and collaboration. However, to
some large extent, the Web is still a reactive informational
space and information sharing is still mostly pull based.
Consequently, there could be significant latency between the
availability of a piece of information and the use of that
information. This model of information sharing has worked
well for the Web, but is becoming increasingly insufficient
for new emerging applications.

In the early days of Web, changes to web content were
infrequent and a user could rely on web portals, private
bookmarks, or search engines to find information. However,
in the era of Web 2.0, dynamic and user generated contents
become increasingly popular, such as blogs, wikis, mashups,
folksonomies, social networks, etc. People are demanding
timely and almost instant availability of these dynamic
contents, and interactive use of this information, without
being overwhelmed by the information overload. This drives
the Web from an informational space towards a

communication and collaboration oriented environment that
affects both consumer and enterprise application spaces.
These new trends demand an event-driven web in which
information sharing is driven by events to support the
dynamic and near real-time information exchange.

Despite many existing event notification systems
developed over the years, infrastructures and technologies
for such an event-driven web are still seriously lacking. As
the architectures, protocols, and programming languages of
the existing event notification systems are developed outside
of the web, there is an acute need for a unifying framework
that can provide a seamless integration of these notification
systems with the infrastructure of web and web based
services.

For such a unifying framework, we lay our foundation on
Event-Driven Architecture (EDA) [12], in which information
is modeled as asynchronous events that are pushed to the
interested parties as they occur. By synchronizing the states
of the communicating parties through events, EDA makes
real-time communication and collaboration possible.
Moreover, EDA is a natural fit for the Web as both do not
assume any centralized control logic. However, the current
web protocols are based on client-server architecture which
does not readily support EDA. Even though some recent
standards and industrial efforts, such as Atom [4][5], Server-
Sent Events [9], Web Sockets [10] and HTML 5 [8],
introduce the notion of feed and event, they are aimed at the
web browsers and human users. As far as we know, there is
no research work to combine EDA and REST to enable and
support federated event-driven web services.

Because EDA is an abstract architecture whereas REST
has concrete protocol (HTTP), we need to first resolve how
to project the elements of EDA to those entities of REST
[1][2] in a consistent framework. In our approach, we found
that many important features and problems in conventional
event notification systems can be established and resolved
efficiently in our REST based framework. For instance, the
uniform interface, connectedness, and addressability of
REST can apply and facilitate the discovery of notification
web services. The idempotent operations and statelessness of
REST can add robustness and scalability to notification web
services. Furthermore, projecting EDA to REST can
facilitate transformation of conventional notification systems
into RESTful web services, because EDA can be viewed as a
generalization of the architectural elements in those
notification systems.

7

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

In our approach, the key concepts of EDA are projected
into 4 layers of an event-driven web. Each layer consists of
interconnected resources that collectively provide RESTful
web services for applications. This projection leads to our
RESTful web service architecture, R-Event that defines the
notification web services for such event-driven web. To
maximize the reuse and interoperability, these layers are
weaved and combined through RESTful web services
composition and linking. A prototype event-driven web
consisting of topic hubs and topic webs is implemented to
demonstrate the feasibility and advantages of this approach.

The rest of the paper is organized as follows. Section II
introduces the background and related work. Section III
describes the model of event-driven web. Section IV
introduces the R-Event framework and its components, e.g.
topic hub and topic web. Section V summarizes the
advantages of this approach. Section VI is dedicated to a
prototype implementation and experimental study results.
Findings of this paper are summarized in Section VII.

II. RELATED WORK

REST stands for REpresentational State Transfer, the
architecture style underlying the Web as described in [1] [2]
[3]. The fundamental concept of REST is a resource. REST
promotes the following architectural choices: 1)
Addressability: each resource can be addressed by URI. 2)
Connectedness: resources are linked to provide navigations.
3) Uniform Interface: all resources support a subset of the
uniform interface, namely GET, PUT, DELETE and POST.
GET is safe and idempotent, while PUT and DELETE are
idempotent. Idempotent operations can be resubmitted if
failed without corrupting resource states. 4) Statelessness:
all requests to a resource contain all of information necessary
to process the requests, and the servers do not need to keep
any context about the requests. Stateless servers are robust
and easy to scale. 5) Layering: intermediate proxies between
clients and servers can be used to cache data for efficiency.

RSS [6] and Atom [4] are two data formats that describe
the published resources (feeds), including news, blogs, wikis,
whose contents are updated by the content providers. The
content providers syndicate the feeds on their web pages for
the feed readers which fetch the updates by periodically
polling the feeds. However, such polling is very inefficient in
general, because the timing of the updates is unpredictable.
Polling too frequently may waste a lot of network
bandwidth, when there is no update. On the other hand,
polling too infrequently may miss some important updates
and incur delay on information processing.

To address the inefficiency of poll style feed delivery,
Google developed a topic based subscription protocol called
PubSubHubbub [22]. In this protocol, a hub web server acts
as a broker between feed publishers and subscribers. A feed
publisher indicates in the feed document (Atom or RSS) its
hub URL, to which a subscriber (a web server) can registers
the callback URL. Whenever there is an update, a feed
publisher notifies its hub which then fetches the feed and
multicasts (push) it to the registered subscribers. While this
protocol enables more efficient push style feed updates, it
does not describe how hubs can be federated to provide a

global feed update service across different web sites. The
protocol defines the unsubscribe operation by overloading
POST which should have been DELETE. Also the
subscriptions are not modeled as addressable resources.

Many techniques have been developed over the years to
address the asynchronous event delivery to the web
browsers, such as Ajax, Pushlet [7], and most recently
Server-Sent Events [9] and Web Sockets [10]. However,
these techniques are not applicable to federated notification
services where server to server relations and communication
protocols are needed.

In software engineering, Publisher-Subscriber [15] or
Observer [11] is a well-known software design pattern for
keeping the states of cooperative components or systems
synchronized by event propagation. It is widely used in
event-driven programming for GUI applications. This pattern
has also been standardized in several industrial efforts for
distributed computing, including Java Message Service
(JMS) [24], CORBA Event Service [25], CORBA
Notification Service [26], which are not based on web
services.

Recently, two event notification web services standards,
WS-Eventing [18] and WS-Notification [19][20] are
developed. However, these standards are not based on REST.
Instead they are based on WSDL [27] and SOAP [28], which
are messaging protocols alternative to REST [1]. WS-Topic
[21] is an industrial standard to define a topic-based
formalism for organizing events. However, these topics are
not REST resources but are XML elements in some
documents.

Recently, much attention has been given to Event-Driven
Architecture (EDA) [12][16] and its interaction with Service-
Oriented Architecture (SOA) [17] to enable agile and
responsive business processes within enterprises. The
fundamental ingredients of EDA are the following actors:
event publishers that generate events, event listeners that
receive events, event processors that analyze events and
event reactors that respond to events. The responses may
cause more events to occur, such that these actors form a
closed loop.

A comprehensive review on the issues, formal properties
and algorithms for the state-of-the-art event notification
systems is provided in [13]. The system model of the
notification services is based on an overlay network of event
brokers, including those based on DHT [14]. There are two
types of brokers: the inner brokers that route messages and
the border brokers that interact with the event producers and
listeners. A border broker provides an interface for clients to
subscribe, unsubscribe, advertise and publish events. An
event listener is responsible to implement a notify interface
in order to receive notifications. However, none of the
existing notification systems mentioned in [13] is based on
RESTful web services.

III. EVENT-DRIVEN WEB

To project EDA to REST, we model the EDA concepts
notification, subscription, publisher, and reactor as
interconnected resources that support the uniform interface
of REST. As the result, an event notification system becomes

8

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

an event-driven web: a web of resources that responds to
events as envisioned by EDA. There is no longer any
boundary between different event notification systems as the
event-driven webs are interconnected into the Web and
interoperable under REST. Because an event-driven web is
built on layered resources, we divide it into 4 layers as in
Figure 1.

Layer 1 is a web of event publishers. They could be any
resource that generates, advertises and publishes its events.

Layer 2 is a web of subscription resources that depends
on Layer 1. Subscription resources define how notifications
flow from the publishers to the reactors. They provide
services for subscribers to manage the subscription links,
such as change the filter, as well as to deliver and track the
notifications.

Layer 3 is a web of notifications that depends on Layer 2.
Notifications are treated both as resources and messages.
This approach allows us to link notifications with relevant
subscriptions and topics to facilitate information sharing and
discovery. It also allows us to link notifications according to
message exchange patterns and participants to capture the
social interactions in communications and collaborations.

Layer 4 is a web of reactors that depends on Layer 3. The
resources in this layer receive, process and react to the
notifications. A reactor can be both a listener and publisher.

Figure 1: Mapping EDA to layers of web

Figure 2: Topic hub resources and interactions

It should be pointed out that the resources in these layers
are interconnected, such that a user can enter an event-driven
web from any layer and navigate to other layers. Because
layers 2 and 3 constitute services shared by publishers and

reactors, they are pivotal to the event-driven web. We
propose R-Event, a RESTful web service architecture to
implement these two layers.

Figure 3: A topic web

IV. R-EVENT FRAMEWORK

The basic component of the R-Event framework is a
topic hub that provides RESTful web services for
notification publication, subscription, delivery, tracking and
linking. A topic hub hosts three types of resources: topic,
subscription and notification. Each hub also hosts a presence
resource through which an administrator can start or shut
down the services. A hub can be owned and operated by a
single user or shared by a group of users. A topic hub can
also invoke distributed event processors to process
notifications. The high level interactions between a topic hub
and its clients and servers are illustrated in Figure 2.

The topic hub is a light weight component and it can be
run on any devices, including mobile phones that support
HTTP protocol. It can be a servlet on a HTTP server, a
standalone HTTP server, or embedded in another
application. The interactions between the topic hub and its
clients and servers are all based on RESTful web services.

The topic hub can also be used as a gateway that
translates conventional event infrastructures into REST web
services. This approach can significantly reduce the cost of
web service development while ensuring the quality of
services.

Because a topic hub is based on REST design, it is
stateless. Consequently, a topic hub can shut down and
restart safely without losing any of its services, provided that
the resource states are persisted. This is especially useful
when the hubs are hosted on mobile devices, which can be
turned on and off. Because a topic hub is stateless, it is also
scalable. We can add more topic hubs to support more clients
without worrying about client session replica or affinity.

Topic hubs can be interconnected by subscriptions to
provide routing services to notifications. An example topic
web is illustrated in Figure 3, where topic hubs are
represented as rectangles and publishers/listeners are
represented by circles. The arrows indicate the subscription
links on which notifications flow.

The following section describes the elements in R-Event
framework in a more formal setting. In these descriptions,
the left-side symbol of an equation represents a resource and
the right-side tuple represents the key properties of the

Topic Hub
presence
topic

subscriptions
notifications

subscriber
listener

adm
inistrator

publisher processor

HTTP HTTP

notification notification

Hub 1

Hub 2 Hub 3

Layer 1: web of publishers

Layer 2: web of subscriptions

Layer 3: web of notifications

publish, link

propagate, track link

U
sers

Layer 4: web of reactors

receive, link

9

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

resource defined by this framework. Implementations can
add more properties to these resources as needed.

A. Topic Tree

A topic tree is a set of topics organized as a tree. A topic
is a resource to which events can be published and
subscribed. More formally, a topic t has a set of events E, a
set of children topics C:

t = (E, C), C={ tj | tj is a child topic of t}.

B. Subscription

Conceptually, a subscription is a directed link from a
publisher (p) to a listener (l). We extend subscription to have
a set of alternative listeners (L), filter (f), expiration (d), and
status (u), such as active or paused. More formally, we have:

s = (p, L, a, f, d, u), L = {l|l is a listener}
A notification n can propagate to one of the listeners in L

if and only if the filter is evaluated to true, i.e. f(n)=true.
Which listener is selected is determined by an algorithm a,
defined by the subscriber. A simple algorithm is to try
listeners according to the order they are created until one
succeeds.

Subscriptions can be used to link two topics by treating
them as either publisher or listener. A subscription link from
a publishing topic to a listening topic is represented by two
subscription resources, each as a subordinate resource of the
involved topics. On the publishing topic, it is called
outbound subscription (os), as notifications flow out of it. On
the listening topic, it is called inbound subscription (is), as
notifications flow into it. The two matching subscriptions are
double linked to keep their correspondence. More formally,
we have:

os = (L, a, f, d, u), L={l|l=(tj, is, g(is))}, a(L)=l
is = (l, g(l)), l ∈L
Here each listener resource l consists of: 1) listening

topic tj; 2) inbound subscription is, and 3) the presence of is:
g(is). An inbound subscription consists of: 1) the listener l;
and 2) the presence of l: g(l).

C. Topic Web

Given a set of topic hubs H={hi} where each hub hosts a
set of topic trees T(hi)={t|t is a topic on hi}, these topic trees
form a web of topics linked by subscriptions. More formally,
a topic web W(H) on top of a set of hubs H is defined as:

() ()
i

i
h H

W H T h
∈

= ∪

D. Notificatiion

A notification is also modeled as an addressable resource
that can be updated. More formally, we have:

ni=(o, r, b, R),
r={(t,m)|t is a topic, m is timestamp},
R={nj|nj is a response to ni}
where:
• origin (o): the URI of the original notification as it

was posted. Any propagated copy of the original
notification inherits this property to track its origin.

• route (r): the ordered set of topics (t) and timestamp
(m) visited by this notification during delivery. This

is used to detect loop and to expose topics to
listeners.

• about (b): the URI of the notification that this
message responds to.

• Responses (R): the set of notifications responded to
this notification

The topic web may contain cycles of subscriptions. To
facilitate loop detection, each notification message has a
special property route, which contains a list of topics visited
by the notification during propagation. Each hub checks if
the current topic is in the list. If so, a loop is found and the
notification will not be propagated. Otherwise, the hub
appends the topic to the list and propagates the notification.

E. Resource Design and Hub Protocols

The key properties, interfaces and relations of the
resources are depicted in the UML class diagram in Figure 4.

Figure 4: Main resources on topic hub

To facilitate client access, each resource on a hub is
addressed by a predefined URI template that reflects the
subordinate relations defined above:

• Topic t: /topics/{t};
• Child topic tj of topic t: /topics/{t}/topics/{tj};
• Subscription s of topic t: /topics/{t}/subscriptions/{s};
• Listener l: /topics/{t}/subscriptions/{s}/listeners/{l};
• Notification with UUID {n} on topic t:

/topics/{t}/notifications/{n}.
A subscription link from topic ta on hub A to topic tb

on hub B is established by a user using a web browser as
follows:

1. The user requests a subscription resource under ta
with POST;

2. Before returning to the user, hub A creates the
outbound subscription under ta and requests the
corresponding inbound subscription under tb with
PUT (nested inside the POST);

3. Both requests succeed and the response is returned to
the user;

10

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

 A notification is propagated between hubs by a user as
follows:

1. The user posts a notification to a topic on hub A
using POST that returns when the resource is created;

2. The notification is delivered by a scheduler to all
listening topics with PUT that maintains the original
UUID assigned to the notification by hub A; as the
result, all the propagated notifications on different
hubs can be identified by the same UUID;

This framework does not define the representations of
its resources, which is left to the implementations. Different
representations (media types) of the same resource are
supported through HTTP content negotiation. The
communications between web browsers and the topic hubs
are also outside the scope of this framework, as we expected
they can be addressed by the upcoming W3C standards [9].

F. Security

The communication between the topic hubs are secured
using HTTPS with PKI certificates based mutual
authentication. For this to work, each topic hub maintains a
X.509 certificate issued by a CA (Certificate Authority) that
is trusted by other hubs. It is possible or even preferable, to
obtain two certificates for each topic hub: one for its client
role and one for its server role, such that these two roles can
be managed separately.

The communications between the topic hubs and web
browsers (users) are also secured by HTTPS. In this case, the
browser authenticates the topic hub certificate against its
trusted CA. In return, the users authenticate themselves to
the hub using registered credentials (login/password or
certificate). Once a user is authenticated to a topic hub A, it
employs role-based authorization model to authorize a user
for his actions.

If the user wants to create a subscription link from hub A
to hub B, B has to authorize A for the inbound subscription.
To satisfy this condition, the user first obtains an
authenticated authorization token from hub B. The user then
sends this token with the subscription message to hub A.
Hub A uses this token to authorize itself to hub B for the
inbound subscription creation. Once hub B creates the
resource, it returns an access token to hub A to authorize it
for future notifications to that topic.

An alternative to the above scheme is to use the OAuth
1.0 Protocol [31] that allows a user to authorize a third-party
access to his resources on a server. In this case, hub A
becomes the third-party that needs to access the topic
resources on hub B owned by the user. Here is how it works
at a very high level: 1) the user visits hub A to create a
subscription to hub B; 2) hub A obtains a request token from
hub B and redirects the user to hub B to authorize it; 3) the
user provides his credentials to hub B to authorize the
request token and hub B redirects the user back to hub A; 4)
hub A uses the authorized request token to obtain an access
token from hub B and creates the inbound subscription on B.

In both approaches, the user does not have to share his
credentials on hub B with hub A.

V. ADVANTAGES OF EVENT-DRIVEN WEB

On surface, the event-driven web built on top of the R-
Event framework, as described in the previous section,
appears similar to the broker overlay network in the
conventional notification architecture [13]. However, it has
the following advantages due to a REST based design.

A. Addressability and Connectedness

Unlike conventional broker overlay networks that are a
closed system whose usability is prescribed by the API, all
resources in a topic web are addressable and connected.
Unlike in conventional broker overlay network that
distinguishes between inner, border, or special rendezvous
brokers, a topic web consists of homogeneous topic hubs
with the same type of web services. The users can navigate
and search the topic web to find the interested information
using regular web browsers or crawlers. The addressability
and connectedness increase the “surface area” of the web
services such that the information and services in a topic web
can be integrated in many useful ways beyond what is
anticipated by the original design.

B. Dynamic and Flexible Topology

Unlike in conventional broker network where brokers
have fixed routing tables, a topic web can be dynamically
assembled and disassembled by users for different needs. Its
topology can be changed on the fly as subscriptions are
created and deleted and hubs join and leave the topic web.
For example, a workflow system can be created where work
items are propagated as notifications between users. In an
emergence situation, a group of people can create an ad-hoc
notification network to share alerts and keep informed. In an
enterprise, a topic web about a product can be created on-
demand such that alerts from field technicians can propagate
to proper sales and supporting engineers in charge of the
product to better serve the customers. In any case, once the
task is finished, the topic web can be disassembled or
removed completely. In this sense, a topic web is similar to
an ad-hoc peer-to-peer network. However, a topic web is
based on REST web services whereas each type of P2P
network depends on its own protocols.

In conventional notification services, a broker routes all
messages using one routing table. Therefore, it cannot
participate in more than one routing topology. In our
framework, a hub can host many topics, each having its own
routing table (subscription links). As a result, a hub can
simultaneously participate in many different routing
networks. This gives the users the ability to simultaneously
engage in different collaboration tasks using the same topic
web.

C. Robustness and Scalability

Topic hubs are robust because its resource states can be
persisted and restored to support temporary server shutdown
or failover.

The safe and idempotent operations, as defined by HTTP
1.1 [29] also contribute to the robustness. Our framework
uses nested HTTP operations where one operation calls other
operations. We ensure that such a chain of operations is safe

11

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

and idempotent by limiting how operations can be nested
inside each other as follows:

nested(GET)={GET}
nested(POST)={GET,POST,PUT,DELETE}
nested(PUT)={GET,PUT,DELETE}
nested(DELETE)={GET,PUT,DELETE}
The robustness and scalability also come from the

statelessness of REST design. The statelessness means that a
topic hub can process any request in isolation without any
previous context. By removing the need for such context, we
eliminate a lot of failure conditions. In case we need to
handle more client requests, we can simply add more servers
and have the load balancer distribute the requests at random
to the servers who share the resources. If the resource access
becomes a bottleneck, we can consider duplication or
partition of resources. This robustness and scalability is
crucial when a topic hub serves as the gateway to large-scale
notification systems.

D. Efficient Notifications

In conventional notification systems, notification is a
message that can only be transmitted and stored. In our
framework, notifications are also modeled as REST
resources that provide services. Such model addresses the
following issues in notification services:

Inline update: Because notifications are treated as
addressable resources, a publisher can update a posted
notification (using PUT) without having to create a new one.
The updates will propagate over the subscription links in the
topic web. This kind of inline update is more difficult to
achieve in conventional notification services that treat
notifications as messages.

Duplicate notification: In the topic web, a topic may
receive different copies of a notification from multiple routes
or multiple inline updates of the same notification, leading to
potential duplicated notifications. Because our framework
uses PUT to deliver notifications, the duplicate notifications
to a hub become multiple updates to a resource. Therefore,
we can use HTTP ETag and If-None-Match headers to
efficiently detect duplicate notifications and avoid spurious
alerts to the users. Compared to the solution proposed in
[13], this approach solves the difficult problem without
constraining the topology of the topic web.

VI. IMPLEMENTATION AND EXPERIMENTS

A prototype event notification system has been
developed based on the described R-Event framework. The
notification system allows users within a group to publish
and subscribe presence information. Users can respond to
received presence information to enable real-time
collaboration. For example, when an expert becomes
available through his presence notification, a manager may
respond to the notification and propose a new task force be
formed with the expert as the team leader. This response is
propagated to the group so that interested members can set
up a new workflow using the proposed topic web.

The prototype was written in Java using Restlet 1.1.4
[23]. The implementation followed the Model-View-
Controller (MVC) design pattern. The Model contains the

persistent data stored on disk. The Controller contains the
resources and the View contains the view objects that
generate XHTML pages from the XHTML templates. The
topic hub stack was implemented by four Java packages, as
illustrated below.

Figure 5: Topic hub stack

For this prototype, we used OpenSSL package [30] as the
CA to generate certificates for the topic hubs, and Java
keytool to manage the keystores for the hubs. Resources
states are managed by a file manager that synchronizes the
access to them. A hub used a separate thread to dispatch
notifications from a queue shared by all resources. Because
HTML form only supports POST and GET, we used
JavaScript (XMLHttpRequest) to implement the PUT and
DELETE operations for pages that update or delete
resources.

Users interact with the services using web browsers
(Firefox in our case). For demo purpose, the notifications
were delivered to the browsers using automatic page
refreshing. This is a temporary solution as our focus is on
communications between hubs, instead of between browser
and server. However, the R-Event framework should work
with any client side technologies, such as Ajax or Server-
Sent Event technologies.

We measured the performance of the prototype system in
a LAN environment. The hubs were running on a Windows
2003 Server with 3GHz dual core and 2GB RAM. The
performances of several key services were measured, where
S means subscription, L means listener, and N means
notification. The time durations for each method are
recorded in the following table. The time duration includes
processing the request, saving data to the disk, and
assembling the resource representation.

TABLE 1: PERFORMANCE MEASURED IN MILLISECONDS

task/time POST
S

POST
L

PUT
S

POST
N

PUT
N

avg 14.1 38.9 6.2 9.5 0

std 13.7 16.8 8.0 8.1 0

The table shows that adding a listener (POST L) takes the

longest time and this is expected because it is a nested
operation, where

t(POST L)=processing time + network latency + t(PUT
S).

The time to update a notification (PUT N) is ignorable (0
ms) and this is good news, since we use PUT to propagate
notifications.

application (container)

resources views

util (file manager)

restlet (HTTP client/server)

XHTML
templates

Resource
data

Keystore

12

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

VII. CONCLUSIONS

The contributions of this paper are summarized as
follows:

1. We presented an approach and a framework in
which the elements in EDA can be projected and
represented by REST resources, protocols and
services;

2. We developed a RESTful web service framework,
R-Event, based on this projection. The REST
resources, protocols, services and securities are
defined formally as well as described informally;

3. We illustrated that an event-driven web can be built
using this framework, and discussed the advantages,
including addressability, dynamic topology,
robustness and scalability, etc. of this approach over
conventional notification systems.

4. We developed a prototype using secure HTTP. The
preliminary performance tests showed that the
proposed approach is feasible and advantageous.

Our plan is to test the framework in a large scale network
environment and analyze its behaviors and performance in
those deployments.

REFERENCES

[1] Richardson, L. and Ruby, S., RESTful Web Services, O’Reilly Media,

Inc. 2007.

[2] Fielding, R., Architectural Styles and the Design of Network-based
Software Architectures, Ph.D. Dissertation, 2000,
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.
Last Accessed: August 27, 2010.

[3] Jacobs, I. and Walsh, N., (eds), Architecture of the World Wide Web,
Volume One, W3C Recommendation 15 December 2004.
http://www.w3.org/TR/webarch/, Last Accessed: August 27, 2010.

[4] The Atom Syndication Format, 2005,
http://www.ietf.org/rfc/rfc4287.txt, Last Accessed: August 27,
2010.

[5] The Atom Publishing Protocol, 2007,
http://www.ietf.org/rfc/rfc5023.txt, August 27, 2010.

[6] RSS 2.0 Specification, 2006, http://www.rssboard.org/rss-
specification, Last Accessed: August 27, 2010.

[7] Pushlets, http://www.pushlets.com/, Last Accessed: August 27, 2010.

[8] HTML Working Group, 2009, http://www.w3.org/html/wg/, Last
Accessed: August 27, 2010.

[9] Hickson, I. (ed), Server-Sent Events, W3C Working Draft 29 October
2009, http://www.w3.org/TR/eventsource/, Last Accessed:
August 27, 2010.

[10] Hickson, I. (ed), The Web Sockets API, W3C Working Draft 29
October 2009, http://www.w3.org/TR/websockets/, Last Accessed:
August 27, 2010.

[11] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns,
Addison-Wesley, 1995

[12] Taylor, H., Yochem, A., Phillips, L. and Martinez, F., Event-Driven
Architecture, How SOA Enables the Real-Time Enterprise, Addison-
Wesley, 2009.

[13] Mühl, G., Fiege, L. and Pietzuch, P.R., Distributed Event-Based
Systems, Springer, 2006.

[14] Rowstron, A., Kermarrec, A.M., Castro, M. and Druschel, P.,
SCRIBE: The design of a large-scale event notif ication infrastructure,
Proc. of 3rd International Workshop on Networked Group
Communication, November 2001, pp �����.

[15] Buschmann, F. et al. (1996). Pattern-Oriented Software Architecture:
A System of Patterns. West Sussex, England: John Wiley & Sons
Ltd., 1996.

[16] Chandy, K. M. (2006). Event-Driven Applications: Costs, Benefits
and Design Approaches, Gartner Application Integration and Web
Services Summit 2006, http://www.infospheres.caltech.edu/node/38,
Last Accessed August 27, 2010.

[17] Michelson, B. M. (2006). Event-Driven Architecture Overview,
http://soa.omg.org/Uploaded%20Docs/EDA/bda2-2-06cc.pdf, Last
Accessed August 27, 2010.

[18] Davis, D., Malhotra, A., Warr, K. and Chou, W., (eds), Web Services
Eventing (WS-Eventing), W3C Working Draft, 5 August 2010.
http://www.w3.org/TR/ws-eventing/, Last Accessed August 27, 2010.

[19] Graham, S., Hull, D., Murray, B., (eds), Web Services Base
Notification 1.3 (WS-BaseNotification), OASIS Standard, 1 October
2006. http://docs.oasis-open.org/wsn/wsn-
ws_base_notification-1.3-spec-os.pdf, Last Accessed August 27,
2010.

[20] Chappell, D. and Liu, L., (eds), Web Services Brokered Notification
1.3 (WS-BrokeredNotification), OASIS Standard, 1 October 2006.
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-
spec-os.pdf, Last Accessed August 27, 2010.

[21] Vambenepe, W., Graham, S. and Biblett, P., (eds), Web Services
Topics 1.3 (WS-Topics), OASIS Standard, 1 October 2006.
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-
os.pdf, Last Accessed August 27, 2010.

[22] Fitzpatrick, B., Slatkin, B. and Atkins, M., PubSubHubbub Core 0.2,
Working Draft, 1 September 2009,
http://code.google.com/p/pubsubhubbub/, Last Accessed August
27, 2010.

[23] Restlet, RESTful Web framework for Java, http://www.restlet.org/,
Last Accessed August 27, 2010.

[24] JMS (2002). Java Message Service, version 1.1, 2002,
http://www.oracle.com/technetwork/java/index-jsp-142945.html, Last
Accessed August 27, 2010.

[25] Event Service Specification, Version 1.2, October 2004, 2004.

[26] Notif ication Service Specification, Version 1.1, October 2004.

[27] Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S., Web
Services Description Language (WSDL 1.1), W3C Note, 15 March
2001. http://www.w3.org/TR/wsdl, Last Accessed August 27, 2010.

[28] Gudgin, M., et al, SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition), W3C Recommendation, 27 April 2007.
http://www.w3.org/TR/soap12-part1/, Last Accessed August 27,
2010.

[29] Fielding, R., et al. Hypertext Transfer Protocol – HTTP/1.1.
http://www.w3.org/Protocols/rfc2616/rfc2616.html, Last Accessed
August 27, 2010.

[30] OpenSSL: http://www.openssl.org/, Last Accessed August 27, 2010.
[31] The OAuth 1.0 Protocol: http://tools.ietf.org/html/rfc5849,

Last Accessed August 27, 2010.

13

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

