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Abstract—In the daily work of network operators, some
traffic engineering tasks are often encountered, e.g., to create
new logical links over the physical layer considering the
efficient utilization of network resources; to establish new
end-to-end paths across the network with minimum cost in
order to support emerging data transfer services; to install
physical disjoint paths for some critical services where fault
tolerance is desired, etc. Since these tasks are by nature
interrelated, we propose an integrated optimization framework
to solve them as a unified planning problem. Both an Integer
Linear Programming model and a Simulated Annealing based
optimization method are discussed in this paper. Because
optimization in multi-layer networks is known to be much
more complicated than that in a single layer, special care has
been taken in our model to alleviate the scalability problem.
The framework has been implemented as a commercial tool
for traffic planning. The numerical tests have shown that the
corresponding tasks in real scale network can be efficiently
handled.

Keywords-Physical Disjoint; SRLG; Traffic Engineering;
ILP; Simulated Anealing

I. I NTRODUCTION

One of the major challenges in short term network man-
agement is to establish a number of new end-to-end paths
with dedicated resource assignment for the emerging request
of data transfer services, using the currently available spare
resources in the network. A network operator usually does
not handle each service directly. Instead, a fixed path with
a bulk of bandwidth allocated at each hop is provided
to an aggregation of individual data transfer services with
some common properties, e.g., same source and destination,
similar QoS requests, and same protection mechanism. From
the operator’s point of view, the aggregation of services is
considered as an abstractdemandto be routed across the
network.

The state of the art solution is to calculate a minimum-
cost solution at the moment for each upcoming demand
using a shortest path algorithm. However, such a greedy
approach is known to be sub-optimum in case of multiple
demands, because the demands are interrelated due to the
competition for common network resources. The situation
becomes even more complicated when multiple network
layers are taken into consideration. In practical solving ap-
proaches nowadays, the consideration of inter-layer relations
is mostly intuitive or based on personal experiences of the
planner. This may result in worse solutions than planning in
a single layer only. Furthermore, some critical user requests

could be left unguaranteed. A typical problem raised by
network operators is to ensure physical disjoint paths for the
protection of important services in a multi-layer setting.This
problem and our solution based on a two-layer reference
model will be extensively discussed in this paper.

A great number of researches have been carried out on
multi-layer optimization problems, typical works includes
[1][2][3] in which multi-layer problems are implicitly dis-
cussed in the background of WDM networks, and [4][5]
where general purpose multi-layer planning models are
suggested. One common conclusion is that multi-layer opti-
mization is much more complicated than single layer ones,
and to strictly model multi-layer data structures may result
in prohibitive scale when dealing with practical problems.In
this paper, we propose an approach which reduces the multi-
layer model as much as possible into a single layer one. We
will formulate a core TE model for the standard single layer
planning problem, where the critical multi-layer features
appear as extra constraints, and the non-critical featuresare
shifted into heuristic algorithms executed before or afterthe
main TE process.

The rest of the paper is organized as follows. Section
II introduces the problem settings and the Integer Linear
Programming (ILP) formulation of our Traffic Engineering
model. In Section III, a greedy planning method and its
extension to a Simulated Annealing (SA) based method are
presented as alternative heuristic solutions. Some numerical
results in solving the ILP and the heuristic models for a test
scenario are presented in Section IV. The conclusions are
given in the last part.

II. T HE PROBLEM DEFINITION AND THE ILP MODEL

A. Problem Setting

Let’s consider the task to route a setD of end-to-end
demands (with given resource requests) across a network
described by a graphG(N, E), whereN is the set of nodes
andE is the set of links. The objective is to find a minimum-
cost solution where all constraints are held. Without loss
of generality, our multi-layer network model is defined by
following properties:

1) There are two layers in the network, physi-
cal layer Gphys(Nphys, Ephys) and logical layer
Glog(Nlog, Elog). Since logical nodes are a subset of
physical nodes(Nlog ⊆ Nphys), we defineNphys =
N ;
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2) The logical layer occupies a part of the physical
resources. Therefore, there are some remaining free
resources at both physical and logical layer.

3) Free resources in the logical layer can be directly used
to route an end-to-end demand, while free resources
in the physical layer must be converted into logical
links before being used to route any demand.

4) The routing of each logical link in the physical layer
is known; new logical links can be arbitrarily created
when there are enough resources in each of its physical
hops.

5) The settings of all existing logical links and routed
demands remain constant. The capacity of logical
links, as well as the routing of demands and logical
links cannot be changed.

Note that the last property originates from the practical
request of the network operators. The purpose of this conser-
vative constraint is to make sure that no active services could
be disturbed due to the accommodation of new demands.
Consider another extreme case: Free reconfiguration of all
logical links is allowed. In this case, we can setup an
analytical model where all free resources in logical links
are returned to the corresponding links at the physical layer.
After this step, all logical links can be safely removed
from the graph since they can no longer influence the
routing decisions. Finally, the optimization will be carried
out in a topology identical to the physical network, and thus
becomes equivalent to a single layer TE problem. After the
optimization, we only have to modify the related logical
links in the original network according to the solution. With
this approach, the sub-optimality of resource utilizationdue
to the ”bundle effect” is not an issue, and may therefore
result in better resource effectiveness than our definition
above. But, such kind of solution may require a large number
of reconfigurations, which is a tedious task and in many
cases a major source of error.

In the following part of this paper, we will focus on our
problem setting with the properties presented above, in a
networkG defined as follows.

G = Gphys ∪Glog = G(Nphys ∪Nlog, Ephys ∪ Elog)

= G(N, Ephys ∪ Elog)

= G(N, E), E = Ephys ∪ Elog (1)

This equation explains our attempt to convert most multi-
layer optimization features into a single layer model, as
shown in Fig.1. Both logical and physical links in Fig.1a
which have spare resources at the moment are represented
by anabstract link in Fig.1b, with capacities equal to their
spare resources. In the real operation, spare resources on
a physical link must be organized into logical link(s) to
be eligible for the routing of demands. However, since
the operation of creating a new logical link on a selected
physical segment is not an optimization issue, it is taken

off from our optimization model without compromising the
optimality. Here, we consider the spare resources also as
abstract, and no longer differentiate between physical and
logical links that can eventually be used to support demands.

end−to−end demand

b. The merged networka. The multi−layer netwok

logical link
physical link

abstract link (from logical link)
abstract link (from physical link)

Figure 1. Merge of the physical and logical layer

Note that both Eq.1 and Fig.1 are missing the information
of the routing of logical links over physical links, which
must be specially modeled.

Following the requests of network operators, we define 2
types of end-to-end demands:

1) Type 1 (D1): requiring a single end-to-end path with
dedicated resource allocation.

2) Type 2 (D2): requiring a pair of physical disjoint end-
to-end paths with dedicated resource allocation along
both paths, so that any single failure in the physical
layer can be tolerated.

The objective of the optimization is to find a routing solution
for each demand, while the link load does not exceed
the limit of the available capacity, and the cost due to
resource consumption is minimized. In our planning model,
all available free resources at any layer become resources in
the abstract links of the merged network, based on which a
traffic engineering algorithm is carried out. Eventually, the
creation of logical links is accomplished according to the
results of the optimized routing of demands.

B. The Routing of Demands

In order to establish an end-to-end connection for type 1
demand, a set of flow continuity equations are established.
We define a set of binary variables:

x1(i, e) =

{

1 if demandd ∈ D1 traverses linke
0 otherwise

(2)

Assumeu, v ∈ N are the end nodes of demandi, and
e(m, n) denotes a directional linke from nodem to n, then
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the flow continuity constraint is as follows:

δu,j +
∑

e(m,j)∈E

x1(i, e) =
∑

e′(j,n)∈E

x1(i, e
′) + δv,j , ∀j ∈ N

δa,b =

{

1 if a = b

0 otherwise
(3)

Eq.3 means that the traffic entering any nodej must be equal
to that leaving the node, with the exception at the source and
destination nodes of the demand.

For type 2 demands, the flow continuity equations are
in principle the same. Here, a pair of disjoint paths for
each demand is required. We will show that the physical
disjointness in the multi-layer model can be well modeled
by disjoint conditions of nodes and Shared Risk Link Groups
(SRLG) [8][9][10] in the layer-merged model.

While node disjoint condition is obvious, anSRLG may
originate from two cases in a multi-layer network. The first
case is due to the routing of logical links over the same
physical link, as shown in Fig.2a. A single event which
destroys the physical linkL will also destroy logical link
P1 and P2. Since they share the risk of the same event,
we state that the set of links{L, P1, P2} forms a shared
risk link groupS. Consider disjoint paths calculation: If one
path traverses one of the links in a risk group, the other path
should avoid taking any of the links in the same group. Given
the routing of all logical links, we can find as many risk
groups as the number of physical links in the network, each
containing a physical link and all the logical links routed
over it. These groups can be obtained by a deterministic
analysis process, denoted asrouting related groups.

Demand

Logical

Physical

In graph theory

In real layout

a. Non−disjoint due to routing
of logical links

b. Non−disjoint due to cable layout

Layer

Layer

P2

P1

L

SRLG
Path 1

Path 2

Figure 2. Situations of non-disjoint paths

The second case originates from cable layout. As shown
in Fig.2b, although a pair of disjoint paths can be calculated,
it may still be risky due to the layout of the physical links.

I.e., because cables can be placed in the same bundle or
same duct, a single event that destroys one cable should
also destroy all others in the same place.

Considering both cases in the optimization model, a
preprocess before running the main optimization is required:
firstly, an analysis should be made to find out all such
bundles/ducts, referred to as arisk area; then therouting
related groupstraversing the same risk area are merged to
become an SRLG. Note that any standalone physical link
is considered as an SRLG with only one physical link.
With this model, the physical disjoint constraint in a multi-
layer problem is converted to the equivalent condition in
the merged single-layer network: the two paths of a type 2
demand should not traverse the same SRLG.

To establish a pair of paths for every type 2 demand, we
define a similar binary decision variable as Eq.2:

x2(i, e, p) =

{

1 the pth path ofd(∈ D2) traversese
0 otherwise

p ∈ {1, 2} (4)

Under this definition, the flow continuity condition is very
similar Eq.3, with the same equation set for everyp ∈ {1, 2},
while the SRLG disjointness of the paths is guaranteed by
Eq.5:

x2(i, e, p) + x2(i, e
′, p′) ≤ 1 (5)

∀i ∈ D, ∀p, p′ ∈ {1, 2}, p 6= p′, ∀e, e′ ∈ S, ∀S

The above constraint means thatx2(i, e, p) and
x2(i, e

′, p′) cannot both be1, which implies the path
p and p′ of the demandi must not traverse links in the
same SRLGS. However, Eq.5 does not check disjointness
of paths at each nodes. The following two equations
ensures node disjointness, where the variableu(i, n, p)
tracks the intermediate nodes of a path (see Eq.6), and the
node-disjointness constraint (see Eq.7) is similar to Eq.5.

u(i, n, p) is binary,, ∀i ∈ D2, n ∈ N, p ∈ [1, K]

x2(i, e(m, n), p) ≤ u(i, n, p), ∀i ∈ D2, e ∈ E, p ∈ [1, K]

n is not an end node ofi (6)
∑

p∈{1,2}

u(i, n, p) ≤ 1, ∀i ∈ D2, n ∈ N (7)

Note that the SRLG and node-disjointness equations dis-
cussed in this section are not restricted to a pair of disjoint
paths, the formulation can be naturally extended to theK

disjoint paths model.

C. Other Constraints and the Optimization Objective

1) Link utilization: Link utilization should not exceed
capacity, whereR(i) is the resource required by demand
i, andCap(e) indicates the spare capacity at linke.

∑

i1∈D1

x1(i1, e) · R(i) +
∑

i2∈D2,p∈{1,2}

x2(i2, e, p) ·R(i2)
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≤ Cap(e), ∀e ∈ E (8)

2) Objective: As in standard TE problems, we wish
to minimize the total cost to support the demands. Let
Price(i, e) indicate the cost of demandi taking a unit
of resource at linke, then the objective function can be
formulated as:

Minimizing : Cost

Cost =
∑

i1∈D1,e∈E

x1(i1, e) · R(i) · Price(i1, e) +

∑

i2∈D2,e∈E,p∈{1,2}

x2(i2, e, p) ·R(i) · Price(i2, e) (9)

With this optimization objective and all above constraints,
the default model to solve the TE problem has been estab-
lished. It is a linear problem and can be solved by an LP
solver. Since we have made no compromise on any feature,
the optimum solution of the problem can be obtained.

3) Relaxations:For the default model, all the constraints
hold strictly. If there are any violations, e.g., the network
resource is not sufficient to support all demands, or a pair
of strictly disjoint paths does not exist for some type 2
demands, the result of the optimization will be ”infeasible”.
Practically, a planner may wish to know more. One of the
typical FAQ is: We know it is hard to keep all constraints, but
if we tolerate some violations, what can still be achieved?

Here we discuss two kinds of tolerances. The first one is
to allow some demands eventually be left unrouted. Define
a binary variableex(i) as in Eq.10, and a punishment cost
Cex(i) to indicate the increment of total cost if demandi

cannot be routed.

ex(i) =

{

1 if demandi is routed
0 otherwise

(10)

Now, the flow continuity condition (Eq.3) should be
slightly modified, so that the incoming/outgoing traffic is no
longer guaranteed to be1 at the end nodes of each demand.
Instead, it depends on the value ofex(i):

δi,u,j +
∑

e(m,j)∈E

x1(i, e) =
∑

e′(j,n)∈E

x1(i, e
′) + δi,v,j ,

∀j ∈ N, δi,a,b =

{

ex(i) if a = b

0 otherwise
(11)

The other tolerance is related to the physical disjointness.
We define two integer variables:es(i, S) indicates that the
paths of demandi traverse the same SRLGS, anden(i, n)
indicates the paths of demandi traverse the same noden,
both taking 0 for no violation and positive integer values
for so many times of violation. Besides, punishment costs
Ces(i, k) andCen(i, n) represent the increment of cost when
these kinds of violation happen. We need to modify the
SRLG and node disjoint constraints (Eq.5, 7) as follows:

x2(i, e, p) + x2(i, e
′, p′) ≤ 1 + es(i, S), ... (12)

∑

p∈{1,2}

u(i, n, p) ≤ 1 + en(i, n), ... (13)

In the objective function, we set that each violation brings
an extra punishment cost in addition to the regular cost.
Therefore, the optimization of minimizing the objective can
proceed in the direction of reducing violations too. The
formulation is as follows:

Minimizing : Cost + CostT

Cost = ... (as defined in Eq.9)

CostT =
∑

i∈D1∪D2

(1− ex(i)) · Cex(i)

+
∑

i∈D2

[

∑

k∈S

es(i, k) · Ces(i, k)

+
∑

n∈N

en(i, n) · Cen(i, n)

]

(14)

The values ofCex, Ces and Cen are very critical to
the result of the optimization. The relationship between
these punishment costs indicates the tradeoffs among several
factors: to support more demands, to save cost, as well as to
reduce the amount of rule violation. In our model, we have
made the clear setting:

Ces ≈ Cen ≫ Cex ≫ Cost (15)

Here, Cost is the regular cost due to resource utilization.
This setting implies that respecting the disjoint condition
is most important. If we setCes and Cen to Infinite, or
remove the tolerance terms in Eq.12 and Eq.13, then no
violation is allowed. Under this principle, a decision which
can accommodate more demands is always better than any
other solution with less regular cost but also less demands
being routed.

III. T HE SIMULATED ANNEALING (SA) MODEL AS

ALTERNATIVE SOLUTION

In the previous section, we have modeled every feature of
the optimization problem as an ILP. Therefore, theoretically
the optimum solution can always be obtained. However, the
disjoint routing problem with SRLG constraints is proved
to be NP-complete [9], and our numerical results that will
be introduced in the next section also tend to confirm this
property. As an alternative, we introduce our basic greedy
algorithm for the same planning problem; then, the greedy
algorithm is taken as the core element of a meta heuristic
model, for which we chose the Simulated Annealing (SA)
model. Since it aims at searching for a satisfactory solution
rather than the optimum one, the SA approach can efficiently
avoid the difficulties of an NP-complete problem.

A. The greedy algorithm

As discussed in the introduction, a straightforward solu-
tion to plan multiple demands in a network is to route all
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demands sequentially. This is a fully deterministic process,
which can be expressed by the pseudo code of Algorithm 1.

Algorithm 1 Greedy TE Algorithm (GTA)

Given a fixed sequenceS of demandsD(i), i = 1..NS

for i = 1 to NS do
for each linkl in the networkdo

if l has sufficient resource to accommodateD(i)
then

set the cost ofl as its cost forD(i)
else

set the cost ofl as Infinite

end if
end for
calculate a minimum-cost solutionsol(i) for D(i)
if sol(i) existsthen

recordsol(i) in the solution setSol

for each linkl in sol(i) do
add the cost ofl to costC
update resource utilization atl

end for
else

record no solution forD(i) in Sol

add the punishment cost toC
end if

end for
Return the solution setSol and costC

Here, ifD(i) is type 2, then a pair of paths with minimum
cost sum should be calculated. If the SRLG condition is
not considered, know methods like Suurballe’s algorithm
[6][7] can guarantee the optimum solution. To the best of our
knowledge, no heuristic algorithm has been found to be able
to guarantee a minimum cost SRLG-disjoint solution. In our
greedy algorithm, thetrap avoidancealgorithm suggested by
the authors of [10] is used.

B. The simulated annealing algorithm

Because each shortest path is adaptively calculated ac-
cording to the available network resources at the moment,
the above greedy method is to some extent optimized. The
quality of the solution is generally better than the intuitive
solution of a human planner. An open issue is that GTA (Al-
gorithm 1) depends on a given sequence of demands. With
a different sequence, a different set of paths and different
overall cost will be obtained. A simple method to take care
of the observation is to repeat the same operation: Randomly
modify the sequence, and call GTA; the best solution that
occurs in this process is taken as the final solution. We refer
to this method asRandom Solution Generation (RSG).

However, according to our tests, if we combine GTA
with some well-known meta heuristics, solutions with better
quality (more demands accommodated, less cost) than that

of RSG can be obtained in the same calculation time. Here,
we present our model with simulated annealing which helps
to decide on a suitable sequence for GTA. The pseudo code
is shown in Algorithm.2.

Algorithm 2 Simulated Annealing based TE

Start with a current sequenceS and costC ← GTA(S)
Sbest ← S, Cbest ← C

for resetround = 0 to R do
S ← Sbest, C ← Cbest

for schedulestep = 1 to N do
sequenceS′ ← neighbor(S)
C′ ← GTA(S′)
if C′ < C then

Sbest ← S′, Cbest ← C′

end if
the current temperaturet← T (i)
if Ptrans(C, C′, t)) > random() then

S ← S′, C ← C′

end if
end for

end for
ReturnSbest andCbest

The major functions in the algorithm are:

1) The function GTA(S) is the greedy method
Algorithm.1 with the given demand sequenceS. The
costC of its solution is then passed to the simulated
annealing process.

2) The SA algorithm will reset forR times. At the
beginning of each reset, the current state is set to the
best solution obtained so far, i.e., the sequence which
brings the lowest overall cost.

3) The function neighbor(S) is designed to move a
fraction of randomly chosen demands in the sequence
to the front of the modified sequence. Therefore, the
new sequenceS′ is similar to the originalS, and
theoretically the whole solution space can be explored
by this operation without preference of any specific
pattern.

4) There will beN steps till the temperature drops from
the initial Tmax to 0. The functionT (i) controlling
the temperature dropping according to the timei is
referred to as acooling schedule. Here, an exponential
scheduleT (i) = αiTmax, 0 < α < 1 is chosen based
on our tests.

5) If a neighbor stateS′ is better (with lower cost) than
its original stateS, then a state transition toS′ will
definitely take place. WhenS′ is worse thanS, the key
idea ofsimulated annealingis to allow the transition
according to probability, so that the searching process
may have chances to let the current state move out
from the local optima. The probability of a transition
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to a worse state is reduced with the dropping of tem-
perature, therefore the state tends to stabilize around
some good solutions. When the temperature reaches0,
the SA becomes a pure greedy algorithm. According to
our tests, the exponential transition probability formula
suggested by Kirkpatrick et al.[11] has shown good
performance, i.e.,Ptrans(C, C′, t) = exp(C−C′

KBt
).

According to our tests, it is capable of obtaining a
satisfactory solution within much less time than that required
by the ILP model (Section IV), and the solution quality
is also better than that obtained by running theRandom
Solution Generation (RSG)for the same time. Although the
final solution obtained by SA is inherently sub-optimum. its
quality is significant better than the path-oriented methods
(even combined with ILP), in which the paths for each
demand are selected from a set of pre-calculated candidates.

IV. N UMERICAL RESULT

Here we show the optimization result obtained with the
topology of X-WiN network [12], which is a German
scientific research network with nodes located in its major
cities. The physical layer of our test case consists of 54 major
nodes and 81 links from X-WiN network. The capacities of
links range from 1Gbit/s to 20Gbit/s, the same setting as
established in X-WiN. Then, 100 logical links are randomly
generated using the resource of physical links, which orga-
nizes 70% to 80% of the physical resources into the logical
layer. Finally, 20% to 80% (random even distribution) of the
total capacity at each logical link is marked as occupied to
emulated the current network usage.

A test has been carried out to show the influence of
SRLG conditions (in the above model, SRLGs are only due
to logical links routed over the same physical link). We
repeatedly generate type 2 demand with random source and
destination nodes. The resource request of such demands
are set to0 so that resource shortage in the network is not
a problem. At first, by ignoring all SRLG relationship and
only considering the pure graph information like Fig.1b, we
use Suurballe’s algorithm to find a pair of disjoint paths for
each demand. This is roughly what a planner can do in a
single-layer TE model. Then, we check if such a solution
violates the SRLG-disjoint condition. In our experiment
of 10 thousand times random demands generation, 74.2%
solutions obtained in this way are in fact non-disjoint, i.e.,
the 2 paths in a solution traverse at least one common
physical link.

Now, we test the different solving approaches of the TE
model. To avoid the mixed effect of performance measuring,
the test is set to find a minimum cost solution forx

type 2 demands, each with randomly generated source and
destination. Violation of the disjoint condition is not allowed
in this test. The resource requests of each demand are
randomly generated and evenly distributed. The range of
distribution is adjusted each time to let the overall demand

slightly hit the bottleneck of network resources, i.e.: In the
solution obtained by simulated annealing, roughly 90% of
the demands can eventually be routed. Then, the result is
compared to the greedy solution, as well as the optimum
solution obtained by the ILP model. All methods follow the
principle of accommodating as many demands as possible
(Section II-C3).

The quality of the solutions obtained by the different
solving approaches is shown in the following two figures.
For ILP solutions, the result is obtained when the gap
reaches≤1%, i.e., at most 1% away from the optimum
solution. Fig.3 shows the total number of demands routed in
the final solution, and Fig.4 shows the comparison of average
routing cost for each demands using the greedy solution as
reference.
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From the results, it is clear that with the increment of
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the amount of demands to be considered in one planning
task, more demands can be routed with even reduced average
cost. The performance of SA is close to that of ILP, and
significantly better than that of the greedy solution. Fig.5
shows the solving time of the ILP model and the simulated
annealing model with respect to the amount of demands.
The solving time of SA is multiplied by 10 to display the
curve more clearly. The LP solver is ILOG CPLEX version
11.0.0, and we are using a PC with 3GHz processor and 1G
memory.
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Figure 5. The solving time of the basic TE model

The SRLG disjoint routing problem has been proved to
be NP-complete [9]. Indeed, Fig.5 shows a tendency of
exponential growth of solving time of the ILP model with
the increasing number of demands. The calculation time is
also related to whether the bottleneck has been reached, and
to which extent. When network resources are adequate, less
calculation time (e.g., around 1 hour for 150 demands) is
observed in our tests. In comparison, the simulated annealing
model has demonstrated a linear increment of solving time
due to its fixed cooling schedule and the linear scalability
of the greedy sequential methodGTA(S) in its core (Al-
gorithm 2). The execution time of the greedy method takes
only several seconds within the tested range, therefore it is
not shown in the figure.

V. CONCLUSION

In this paper, we discussed the traffic engineering problem
of disjoint route allocation in multi-layer networks, and
suggested an analytical model to take the disjoint conditions
in physical layer into an integrated optimization approach.
Our ILP model is introduced for the basic problem setting,
and then extended to support choices like conditional vio-
lation of disjoint constraints and best-effort accommodation
of demands. Our model has considered the scalability issue
often encountered in the multi-layer planning. Besides, a

simulated annealing based planning method has also been
suggested as an alternative solution approach, aiming at
obtaining satisfactory solutions when the solving time of
the ILP model is prohibitively high.
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