
Online Service Similarities and Reputation-based Selection

Oana Dini*, Pascal Lorenz**, Abdelhafid Abouaissa**, Hervé Guyennet*

*) Université de Besanҫon, France
**) Univeristé de Haute Alsace, France

oana.dini@univ-fcomte.fr, lorenz@ieee.org, a.abouaissa@uha.fr, guyennet@lifc.univ-fcomte.fr

Abstract – Selection of the most appropriate service
by correct invocation is a challenge. This is due to
the difficulties of correctly exposing proper ways to
invoke a service, to the variety of services, from on-
line services, software pieces, to shopping, and to
different invoker behavior. When considering
invoker feedback, service ranking based on the
user’s perception, or based on the recommenders’
statistics are relevant. The paper presents adapted
approaches to select services based on distance and
similarity, and introduces a similarity taxonomy to
better tune various kinds of service invocation under
specific constraints, such as relaxation, type of
similarity, context, and service ranking. Selection is
also based on the feedback from the user. The
proposed model is used for building a selection
algorithm that allows variations on service
invocation.

Keywords – service similarity; similarity class;
temporal similarity; selection patterns.

I. INTRODUCTION

The large spectrum of user behaviors (and, in general,
the variety of needed services) leads to the need of
similarity-based matching, when a given service is
required. Traditionally, the notions QoS (Quality of
Service), and QoE (Quality of Experience) deals with
these aspects. However, the perfect matching and the
approximate matching depend on a large number of
factors. For example, if we consider Web Services
dedicated to weather forecast, location, month/day/year,
parameters (rain, wind, temperature, and pressure) can
be appropriate parameters when inquiring. Definitively,
there are several forecast services, and the experience
of a particular user might differ from one forecast
service to another. Some provide information that is
more accurate than others (i.e., data is more frequently
updated), history is better preserved by particular
services, via backward search, e.g., Weather
Underground, etc. A similar problem is observed when
choosing and downloading a particular piece of
software, when inquiring for a specialized on-line book
shop, or when looking for a service providing the most
updated world-wide information. Finally, some
services offer a friendlier interface for searching,

ordering, and getting delivered a particular need (i.e.,
personalized interface, myAccount, etc.).

There are meta-services, providing the service at
choice. Such examples are those for buying flight tickets,
where the cheapest, the quicker, or other selection criteria
are used for service selection. Other meta-services are for
selecting the most appropriate software to download, or
for booking a hotel. In most of the cases mentioned
above, one criterion is usually considered to select from
an existing service pool.

Two phases involve service features, (i) service
discovery (locating) and (ii) service selection (in the case
of a set of services, relatively satisfying the needs with
similar degrees of satisfaction). Both phases require
special mechanisms to assess service similarity. Meta-
services have a restrained number of known services, that
are well localized and whose parameters are also limited.
Because of this, the selection appears to be less complex.
With a well known service and limited criteria (usually
one search/ selection criterion), similarity is relatively
easy to be determined.

The above considerations are no longer valid for a
large spectrum of properties a service might expose in
order to satisfy a given service request. To satisfy a
request, service similarity plays an important role for
timely identification and delivery, and for an optimal
(maximal) customer (invoker) satisfaction. Customer
satisfaction is expressed by QoE, on-line feedback,
service ranking, and manifested by variations of QoS to
keep service costs and satisfaction in synchrony.

The paper deals with service similarity and proposes
a adaptive similarity taxonomy and mechanisms to handle
service discovery and service selection considering
service specification, end-user (requester) perception, and
service reputation. In Section II, existing approaches for
service similarities are presented. Section III introduces a
context-based similarity model, including distance and
similarity metrics, a similarity taxonomy, and other
facilities to consider service ranking and feature
relaxations. Section IV presents an algorithm to compute
a minimum set of existing services satisfying a given
query, following the newly introduced model. Section V
concludes on the approach and presents further
developments.

92

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-105-2

mailto:manuela.popescu@univ-fcomte.fr
mailto:lorenz@ieee.org
mailto:a.abouaissa@uha.fr
mailto:guyennet@lifc.univ-fcomte.fr


II. RELATED WORK

Finding similar services (approximate but satisfactory
matching) is somehow similar to (i) text matching, (ii)
schema matching, or (iii) software-component
marching. For some text matching solutions
(information retrieval) mechanisms based on term
frequency are used [7][8]. In schema matching, special
techniques are using semantics of the schemas to
suggest schema matching [9]. Mainly, linguistic and
structural analyses, as well as domain knowledge, are
methods to handle schema matching. When expanding
to software component matching [10] (considerably
used in software reuse) component signature and
program behavior (usually formally defined) are
considered; in this case, data types and post-conditions
should be considered for matching. However, these
techniques are not suitable for Web Services [6], as data
types and post-conditions are not available. Usually,
such a service has a name and text description in UDDI
(Universal Description, Discovery, and Integration)
registry, operation decryptions, and input/output
descriptions; the last two are usually specified in
WSDL (Web Service Description Language).

Dong et al. [6] proposed criteria for associating
similar terms. They introduced the cohesion/correlation
score, as a measure of how tight two terms are.
However, they do not consider particular characteristics
of a term. They applied the score only to Web Services.
We start from the idea that services similarity has a
meaning only between services than can be context-
oriented and belong to a cluster (e.g., invoking a service
gives a list of similar operations with similar results).
Other approaches consider both diversity and similarity
at the same time, having the distance as a metric [11].
We adopt these metric (see Section III) and adapt them
to the service similarity computation.

In fact, specific to each service, there are particular
service parameters that are agreed upon between a
provider and a subscriber, commonly settled by the
SLA (Service Level Agreement). On the provider side,
the SLA parameters are used for technical audit and
litigations (leading to penalties or bonuses towards a
given user or class of users). Specific on-line and off-
line measuring mechanisms for SLA metrics and
specialized audit techniques have been proposed. On
the consumer side, the subscribers’ satisfaction is
gathered and mapped to the audit results to validate a
given service, to detect flaws in delivering a service,
and to ultimately build a view on service reputation. In
general, a record is handled per service or per products,
with respect to a given subscriber or a class of
subscribers. Feedback can be used to enforce service
similarity.

In this paper, we expand the cluster-based similarity to
service similarity and introduce similarity taxonomy,
where the service consumer has a weight in deciding
service similarity. The idea is to establish service ranking
(and reputation) inside a given cluster, and define
similarity considering service-provider and service-user
feedback.

III. A CONTEXT-BASED SIMILARITY MODEL

Then main idea of our approach is (i) having well defined
service clusters, (ii) compute the distance between
service feature, (iii) evaluate service similarity, based on
service features, (iv) consider user-, service,- and
producer-based similarity reflected by the appropriate
reputations, and (v) evaluate how interchangeable two
services are. When a service query is issued, the
algorithm we propose selects the most appropriate
service, considering both distance and similarity between
services.

A. Identifying clusters of similar services
Expanding what was mentioned in [6], service cohesion
of a service cluster must be strong (best potential to be
similar), while correlation between two service clusters
should be weak (service independence). We say that
service s1 is similar with s2, and note s1 ~ s2, if the
similarity confidence is greater than a given threshold δ.
In a cluster S with ||S||, where ||x|| is the cardinality of x,
we redefine cohesion and correlation as follows:

CoheS = {(si, sj) | si ~ sj (~thres > δ)} / (||S|| x (||S|| - 1))
(1)

and

CorrelS,S’ = (A (S, S’) + A (S’, S)) / 2 x ||S|| x ||S’||, (2)

where

A (S, S’) = || {si, sj | si ϵ S, sj ϵ S’ si ~ sj | ~thres > δ}|| (3)

with ~score = CoheS / CorrelSS’ (4)

defining the similarity score.

We notice that ~score defines similarity classes based on
the preexisting service clusters. To enhance the similarity
score, clusters aggregation and clusters split operations
are possible. Conditions and assessments for doing these
are presented in [6].

93

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-105-2



B. Distance metrics for service similarity

Let us assume that a service s has n features (usually
called data-points, as they are expressed by concrete
values in an n dimensional space). The following
distance methods are adapted for comparing services:

(a) Service Euclidian distance between two services in
the n dimensional space

d(s1,s2) = 1/n Σ (a1i – b2i)
**2, for all i = 1…n

(5)
where ai, bi are service features.

(b) Service city-block distance
d(s1,s2) = 1/n Σ |a1i – b2i|, for all i = 1…n
(6)

(c) Service Pearson correlation coefficient

r(s1,s2) = 1/n Σ ((a1i – a)/σa) x ((b2i – b)/σb),
(7)
where a and b are the sample mean of ai and bi

respectively, and σa and σb are the sample standard
deviation of ai and bi.

The service Pearson distance is defined as
d(s1,s2) = 1 - r(s1,s2)
(8)

(d) Service Cosine similarity
d(s1,s2) = cos (θ) = (s1 ● s2) / (|s1| |s2|)
(9)
where ● is the vector product of s1 ans s2.

By selecting a service distance metric, a clustering
algorithm computes the distance matrix between two
services. Mostly, (a) and (b) of the above are satisfying
the triangle inequality, as true metrics.

C. Classes of similarities

In order to select the most appropriate service, we
introduce producer-based similarity (~prod),
recommender-based similarity (~recc), and user-based
similarity (~user). Producer similarity is based on the
expectation, recommender’s similarity is statistics-
based, and user similarity is based on user feedback. In
this taxonomy, s1 ~prod {s2, s3, …} define a cluster of
similar services, as defined by the producer.

To refine service similarity, we introduce the notions of
primary service features and secondary service
features, as shown in Figure 1,

Figure 1. Similarity classes.

where the bold items represent primary service features
(A1 set), and the dashed items represent secondary service
features (A2 set) (similar for s2)

We introduce strong, weak, and normal similarity,
represented by ~s, ~w, and ~n, respectively.

Therefore, (s1 ~ s2) =

= ~s, iff all a1i ϵ A1 and b2i ϵ B1

= ~w, iff all a1i ϵ A2 and b2i ϵ B2

= ~n, iff there are a1i ϵ A1 and b2i ϵ B2 or
there are a1i ϵ A2 and b2i ϵ B1 (10)

Similarity composition allows to capture all possible
combinations, e.g,, ~prod/s represents a strong similarity
defined by the producer, based on the primary service
features.

A refinement of feature-based similarity can be
expressed when service features do not show a direct
semantic matching, but feature composition might lead to
such a match. Considering a subset of a service feature for
a given service equivalent with a feature for a service for
which the similarity is computed, we introduce feature
composition-based similarity, as shown in Figure 2.

Figure 2. F

s1 ~a1k,a1m / b2z s2

with the seman
are similar to th
arithmetic or B

s1

s2

~s ~w
~n

(a1i)

(b2i)

s1

s2

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-105-2
eature

tic that
e value
oolean

a1k

…

composition-base

the values of a1k

s of b2z. Compos
operator, accordin

a1m

b2p

…

…

a1w
d similarity.

(11)

and a1m composed
ition might be any
g to the nature of

b2z

94



the features, e.g., if sets, then ‘U’ (union), if values,
then ‘+’ (addition), etc. If type, and a1k:T1 and a1m:T2,
and b2z:T3, then, then T3 is a subtype of either T1 or
T2.

Combination between ~s, ~w, and ~n, and feature
composition-based similarity can be applied following
(10).

D. Updating similarity

When evaluating service similarities, perfect match of
service features is desired, but rarely found, due to
some continuous values of the features. For example,
looking for a service offering the weather temperature
with an accuracy of 0.1oF is not feasible. A query on
what month the temperature is 67.3F might have no
match; but, for a given location, a query for what month
shows [75-80] oF might be answered by April or May, if
a Mediterranean area. We identify two possible
relaxations when performing the matching.

D.1 Context-based feature migration

In time, and based on business models or customer
feedback, some primary features become secondary,
and vice-versa. Even more, at the same time, in
different contexts, a feature can belong to either
primary or secondary feature sets.

Let C = {ci} a set of contexts and

s1 ::= ( A1U A2)context = c1, with A1 ∩ A2 = ϕ

s1 ::= ( A’1U A’2)context = c2, with A’1 ∩ A’2 = ϕ (12)

then, the following is possible:

s1 ~context = c1 s2

s1 ~context = c2 s3 (13)

D.2 Feature relaxation-based similarity

Service features are not always perfectly matching (so
goes for query matching, as well). Most of the time, the
exact matching is not mandatory, e.g., if a service
feature has a numeric value, a variation of a1i (usually
symmetric, but not necessarily) of +/- α1i is allowed. As
a result, the similarity metrics presented in II.B can be
relaxed. The same relaxation can be applied for
similarity on data type/subtype, for similarity
concerning the set of interface operations, or similarity
concerning variations of an algorithm implementation.
For example, when a query (with explicit relaxation of
+/- 2ms) targets a service with a response delay of

10ms, any service offering a delay within [8ms, 12ms] is
a desired matching. With no explicit relaxation delay,
10ms is mandatory. In this case,

s1 ~a1i +/- α1i s2 <=> b2i ϵ [a1i - α1i, a1i + α1i] (14)

where a1i and b2i are the corresponding features of s1 and
s2, respectively.

E. Recommender-based similarity

Recommender mechanisms rank [1] the products or
services based on feedback received after a series of
recommendations and successful transactions. The
ranking is subject to incomplete, fictitious feedback,
volume of transactions for a given product or provider,
and confidence in feedback. Based on statistics, the
recommender computes its own ranking per product,
defining the reputation (r) of a service/product.

Considering a set of service clusters a recommender
builds based on type of services/products,we define:

Cluster = {clusteri}
with s1 ϵ clusteri and s2 ϵ clusteri, for a given service
feature

s1 ~feature = ai s2 ::= |ranks1 – ranks2| < εai (15)

In general,

s1 ~Uai s2 ::= max {|ranks1 – ranks2|} < min {εai} (16)

F. Customer feedback reputation-based similarity

Based on customer individual metrics, context, and
potential query with relaxation, a reputation is associated
with a service/product. Heuristics for updating the
reputation have been presented in [1][2]. In general, the
following information is available:

s <r>: each service <s> has an associated reputation <r>
Pi<s,ri>: each provider offers a service with its associated

reputation
Pj<s,rj>: another provider can offer the same service with

a different associated reputation
u <e, c>: a user u has a credibility and confidence metrics

associated with it
For simplicity, we consider that <e, c> are the same for
any service.

For a given user, we define similarity in terms of rs

s1 ~feedbacks2 ::= |rs1 – rs2 | < ε0 with e> e0 and c>c0 (17)

95

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-105-2



In the following, the newly introduced model is used by
an algorithm to identify the most suitable service to
satisfy a query for a service.

III. ALGORITHM FOR SERVICE RETRIEVAL
USING SIMILARITY

We introduced a similarity model and classes of
similarity that allow a user (invoker) to use a service in
a given context, allowing or not precise relaxation for
some service features, and under different types of
similarity (strong, weak, normal). Distance metrics
were also adopted for services, in order to cluster the
most suitable services for a particular query, before
computing the similarity.

Based on the model introduced in Section III and on
the user model [2] and reputation [1], a query for a
service s can be expressed as

Q (s, similarity type, context, with/without relaxation
on {a1i})

The algorithm presented below illustrates the main
steps to reach a service proposal that can be a set, a
given service, or no service at all.

Algorithm for finding a requested service query Q,
based on similarity between potential satisfying
services
-------------------------------------------------------------------
1: begin
2: identify the service cluster [see (4)]
3: select a distance metric [see (5)-(9)]
4: calculate distance between all si in the cluster
5: select a subset {sk with min {d(si, sj) < ε}
6: if Q with relaxation
7: apply (10) and (11) for all mentioned features
8: if not
9: if Q with context
10: apply (12) and (13)
11: if not
12: compute a subset {si} of the set found before

step12
13: select {sl} from the subset of step 12, with

rank (sl) > δ1 and rfeedbakc > δ2 [see (16) and (17)]
14: select a subset for the subset of step 13
15: return the subset of step 14
16: end

Note that the output of step 15 might be an empty
set, or a set having many recommended services
complying to the query conditions.

The complexity of the algorithm is given mostly by the
number of service features that can be considered with
relaxations.

A variation of the algorithm was experimented with
relaxation conditions for a set of contexts. The number of
features with relaxation, the number of contexts, and the
number of services into a cluster determine the
performance of the algorithm.

Different experiments on the on-line Barnes & Nobles
system (on-line bookstore) show a reasonable
improvement on the precision the algorithm returns after
running various numbers of queries and varying different
conditions.

Figure 3. P

It is no surp
relaxation re
query expect

IV. CO

In this pape
invocation u
and normal
and service d
text-based
(introduced i
based simila
identify a set

We also
aggregation
continuous
primary/seco
should be d
aggregation s

Precision
1.

0.8

0.6

0.4

0.2

weak

with r

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-105-2
recision of servic
different types o

rise that a servi
aches faster and
ation.

NCLUSION AN

r, we presented
sing similarity tax
similarity. Practic
istance/similarity

domains. A rep
n [1][2]) is used
rity and featu
of services that b

introduced the
when similarity
update of fea

ndary, according
one on these two
hould be consider

1 2 3 4

similarity

elaxation
5 6 .. [x10]

Number of queries
strong similarity
e returned to queries with
f similarities

ce satisfying a query with
with a higher precision the

D FUTURE WORK

an approach for service
onomy with weak, strong,
ally, services are clustered
metrics were adopted from
utation-based mechanism
in combination to context-
re relaxation methods to
etter serve a given query.

techniques of feature
is evaluated, and the

ture classification, i.e.,
to the context. More work

items, as semantic-based
ed.

96



REFERENCES

1. O. Dini, P. Lorenz, and H. Guyennet; An Enhanced
Architecture for Web Recommenders, SERVICE
COMPUTATION 2009, IEEE Press, pp. 372 – 378,
ISBN: 978-1-4244-5166-1, Athens, Greece

2. O. Dini, P. Lorenz, A. Abouaissa, and H. Guyennet,
Dynamic Feedback for Service Reputation Updates,
ICAS 2010, pp. 168-175 ISBN: 978-1-4244-5915-5,
Cancun, Mexico

3. C. Wu and E. Chang, Searching Services ‘in the web’: A
Public Web Services Discovery Approach, SITIS 2007,
The Third IEEE Conference on SignalImage
Technologies and Internet-based Systems, pp. 321-328.

4. M. Paolucci, B. Shishedjiev, Xh. Zenuni, and B. Raufi,
GHSOM-based Web Service Discovery, 2010 European
Computing Conference, ISSN: 1790-5117, 2010

5. M. Szomszor, C. Cattuto, H. Alani, K. O'Hara, A.
Baldassarri, V. Loreto, and V. D. Servedio,
“Folksonomies, the semantic web, and movie
recommendation,” In 4th European Semantic Web
Conference, Bridging the Gap between Semantic Web
and Web 2.0, 2007.

6. X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J.
Zhang, Similarity Search for Web Services, The 30th

VLDB Conference, Toronto, 2004
7. S. Cost and S. Salzberg, A Weighted Nearest Neighbor

Algorithm for Learning Symbolic Features. Machine
Learning, No. 10, 1993, pp. 57-78

8. L.S. Larkey and W. Croft, Combining Classifiers in text
Classifications Techniques, ACM SIGIR 1998.

9. H.-H. Do and E. Rahm, COMA – A System for flexible
Combination of Schema Matching Approaches, VLDB
2002

10. A.M. Zaremski and J.M. Wing, Specification matching
of software components. TOSEM, No. 6, pp. 333-369,
1997

11. C. Bouras and V. Tsogkas, Improving text
summarization using noun retrieval techniques, LNCS,
Knowledge-based Intelligent Information and
Engineering Systems, vol. 5178/2008, pp. 593-600

97

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-105-2


