
Archer: An Architectural Monitoring Tool

Vitor C. Alves, Rafael H.S. Rocha, Rodrigo de B.

Paes, Evandro de B. Costa, Leandro Dias da Silva

Universidade Federal de Alagoas

Maceió, Brazil

{vitorcorreia.ufal, rafaelrocha.ufal, leandrodds,

ebcosta}@gmail.com, rodrigo@ic.ufal.br

Gustavo R. De Carvalho

Pontífica Universidade Católica do Rio de Janeiro

Rio de Janeiro, Brazil

guga@les.inf.puc-rio.br

Abstract - Software Maintenance is a continuous process in

software development that begins when the software is first

released and does not end while the software is being used.

This characteristic makes it one of the most expensive

processes in software development. Software engineering has

identified some factors that increase software maintenance

costs and presented good practices to face these problems.

Good software architectures make a software easier to

maintain and to evolve. Several reference architectures have

been defined. Nowadays, there are software tools that provide

architectural discovery and documentation tools, but they do

not effectively protect the architecture from being

compromised. This paper presents a software architecture

monitoring tool called Archer, which was implemented as an

eclipse plug-in. This tool aids the programmers with respect to

software architecture through identifying architectural flaws

introduced when coding. Also, Archer supports discovering

existing architecture from a software project by using reverse

engineering techniques, providing the architect with

information to improve, or do not compromise, the software

architecture in existing software.

Keywords - Software Engineering; Software Architecture;

Architectural Enforcement, Maintenance.

I. INTRODUCTION

Software maintenance is an activity that begins when the
software is released and users start to use it. It corresponds
by up to 80% of total software costs [1]. Software
documentation is an important practice to maintain a
software. It aids programmers in the understanding of how
the software was designed and how changes can be made
without compromise its structure. However, only the
software documentation is not enough to guarantee
protection to its logical structure, sometimes programmers
do not obey, either deliberately or unintentionally, the
software architecture and break it. This problem normally
appears when the programming team changes, and no further
explanation about the software structure and architecture is
passed to the new employees.

The problem stated above suggests that it would be
desirable to have a solution that helps the programmers in the
understanding of legacy software. The solution should also
enforce that architectural decisions will not be broken by the
programmers, at least unintentionally. The software tool
presented in this paper aims to fulfill both requirements: (i)
to help in the understanding of already developed

applications and (ii) to specify and enforce architectural
styles [16]. The remaining of this paper is organized as
follows. Section 2 describes some related work and
compares them to Archer. Section 3 shows in details how
Archer works. Section 4 illustrates the Archer though a case
study. Finally, in Section 5, we conclude the paper
discussing the contributions, limitations and further
improvements of the current proposal.

II. RELATED WORK

ARCHJAVA [2] is a tool to recover software architecture
on legated systems written in Java. Their goal is to be able to
recover architectures documented in the literature, such as
MVC (Model-View-Controller) [3] and Layers [3] by
defining architectures as domain-independent rules. These
rules are based on static [17] and dynamic [17,18] analysis.
Static analysis enables the verification of software structure
and dynamic analysis verifies the objects behavior.
However, in contrast to Archer, ARCHJAVA is intended to
be used only in java based software.

A hybrid computer aided approach for close monitoring
source code by using this same static and dynamic analysis
methods is presented in [15]. On this approach, the
verification process analyses design-implementation
congruence: concrete rules such as coding guidelines,
architectural components, such as design patterns [10] or
connectors [14], and design principles such as low coupling
and high cohesion.

In Harris et al. [19], a language to request parsed
information to analysis is described: the source code query
language. This language allows programmers to recover
information from an abstract syntax tree. The idea is very
similar to the Archer architectural analyzer (Section 3.3), but
since this query language interacts directly with the source
code, the entire program will have to be rewritten to support
a new source-code language. Archer, on the other hand, is
prepared to support new languages without this kind of
effort. This is possible because its architectural analyzer
interacts only with the object oriented model (Section 3.2)
which is language independent.

Another tool similar to Archer on its objectives is Dali
[4], a workbench that aids the analyst to manipulate and
interpret recovered architectural information. There are
works such as LSME [5] and RMTool [6], but their scope is
very similar to Dali. The main difference between these

146

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

works and Archer lies on the fact that they only work with
legated systems, in other words, their concern is about
recover software architecture to support the user in defining
software architecture, but no further action is taken. Archer
aims to use recovered information to protect existing
architecture through the enforcement of architectural rules.

III. ARCHER

Archer is a plug-in that works integrated with Eclipse

IDE [7]. It provides support for the software architecture

enforcement and documentation. It is able to recognize

architectural patterns in code and verify if a software is in

agreement with a pre-established architecture. Its structure

is divided in three parts: a parser, an object-oriented model

and the architectural analyzer. Figure 1 illustrate the process

of analysis.

3.1 Parser

Through source-code analysis, all relevant information

about the software is gathered by the parser. Examples of

such pieces of information are classes, packages and

relations between classes. This information is then organized

on the Archer’s object-oriented model. Although archer is

designed to support the analysis of source code written in

different programming languages, the current

implementation works only with java. The parsing of the

source code is made using the Eclipse/JDT Java Model [8]

(Java Development Tools). Archer was designed for

extension, then there are hotspots that may be extended for

supporting parsers of other programming languages. Since

all the information is stored into the archer’s object-oriented

model, archer can be used to analyze source code written in

other programming languages, with no need of changes in

the architectural analyzer. In this case it is necessary to

change the parser. In other words, a new architecture

analyzer (section 3.3) is not required to verify existing

architecture patterns, just a new parser for other languages.

3.2 Object-Oriented Model

From the Archer point of view, the lowest abstraction

level of a software’s structure is its implementation (source
code). A model represents this structure in a language-
independent manner. It is composed of a set of elements
which are present in object-oriented languages. Figure 2
shows the Archer meta-model. It is based on UML Meta-
Model [9]. The main goal of this model is to represent the
code structure. The model represents this throw in a set of
objects which can be manipulated without language-
dependent issues. The elements are defined in two main
groups: relationships and named elements. Relationships
represent connections between concrete elements. There are
two relationships represented in the model: interface
realization and inheritance (“Generalization”).

The named elements are elements that have an identifier.
They are defined in four main types: “Packageable Element”,
“Namespace”, “Redefinable Element”, and “Typed
Element”. The PackageableElement contains elements with a
visibility type, e.g a class can be private, private is the
visibility of the class. Namespace can contain other elements
with names and can exclude equivalent elements within it.
RedefinableElements are elements that can receive different
values from other RedefinableElements that are equivalent or
more specialized. TypedElement are elements that contains a
“Type”, i.e a primitive type or a class type. The “Project” is a
“Package”, since it can contain other packages as well as
packageableElements. “Class” and “Interface” are
“Classifiers”. However, only “Class” is a type due to the
reason that interfaces cannot be instantiated.

The Variable element is defined as a typed element only.
Therefore, it cannot be analyzed in a redefinition context as a
Property. However, in most cases it was not necessary to
evaluate a constraint of an architecture. The Variable can be
treated as the operations and properties since they are both
“Typed Elements”.

Figure 3 shows how a class could be graphically
represented in the model in a simplified approach. It contains
a generalization relationship, generalization contains oval
and drawable component. Generalization is a directed
relationship. Therefore, it has a source component and a
target component.

Figure 3. A Simple Class Representation in the Model

Figure 1. Archer process activity diagram

147

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

In the illustrated case, the oval class is the source
component and drawable, the target. This means that oval
inherits drawable component. Drawable has a draw
operation, the oval component has a point and two float
attributes and the point has two float attributes.

Usually, a software architecture is separated in modules.
These modules can often be separated in smaller units, such
as design patterns. These units are abstractions that
commonly represent implementation constraints. The
architectural analyzer contains modules composed of rules
for representing these smaller units. The rules search for
code samples implementing the constraints, e.g., Singletons
[10], have private constructors. Therefore, a rule should
search in classes for constructor methods with private
visibility.

The tool use the rule constraints implemented in terms of
the model components. The Analyzer retrieves classes from
the code analyzed and tests them for each rule. Since the
code was parsed to be represented in components of the
model, comparison is possible. A matching percentage is
given as evaluation result for a module. Each rule counts a
point and the sum is divided by the total of rules from this
module.

3.3 Architectural Analyzer

Having all the information required, the analysis process

may start. Archer works with two important concepts for its

operation: code rules and architectural patterns.

3.3.1 Code Rules

Code rules are built from the information contained in

the object oriented model database. These rules are patterns

found in source code. An example of a code rule is the

verification of all classes that implements an observer. Code

rules are used to search for architectural patterns. On

Archer, these rules are implemented as a class using the

Java language.

In the current version, Archer contains the patterns:

Command, Singleton, Observer, Abstract Factory, Bridge.

Frequently, these patterns are key elements for defining an

architecture. Archer has also more practical rules, such as

the detection of graphic objects, database access and event

controllers (listeners). The problem of verifying the

existence of patterns in source code was already studied in

[21].

3.3.2 Architectural Patterns

Architectural patterns are known solutions that work

efficiently to solve an architectural problem. It defines how

classes interacts and sets how the software information

flows in runtime [11]. In practice, it also defines some

characteristics that classes should have to be part of an

architectural structure such as a layer, for example. On

Archer, we define an architectural pattern as a group of

these characteristics code rules.

Archer analysis process starts everytime programmers

save their work, by searching every class of the project for

code rules. When the process is finished a list of found code

rules is obtained, and then a process of comparison is made

to check if the classes have any similarity with one of the

architectural patterns contained in the database. This process

will give a percentage, indicating the chance of a class to

belong to a specific architectural structure from an

architectural pattern. The higher the percentage is, better are

the chances of the class to belong to that structure.

An important feature of Archer is that the architect can

make his own architecture from existing code rules. This is

possible because of its generic analyzer. When the

information is loaded from the object-oriented model, it

organizes the information on a matrix. The information

contained in that matrix informs which classes contain

which code rules. Then a process of finding similar classes

on the matrix is performed in order to find possible

members of the same architectural modules. Finally, an

analysis is made to identify the architecture itself, based on

the characteristics found on these architectural modules.

After the analysis process is done, the results are saved

and programmers will do their work as usual, but anytime

the programmers team would otherwise compromise the

architecture, Archer will send an alert warning about

unwanted changes.

The process of enforcement is completed after the

analysis process. If a programmer tries to break the

architecture, Archer will analyze its database and check if

the change is harmful to the architecture. If it is, Archer will

discourage the programmer to continue with his changes.

That way, the architecture will be safe. For example, if a

programmer tries to put graphic objects on the model

abstraction of the MVC architectural pattern, Archer will

warn about unwanted code rules on this abstraction (model

does not implement graphical objects). This way, an act that

would otherwise compromise the architecture will be

prevented.

IV. CASE STUDY

To illustrate Archer’s functionality, a simple calculator
and an artificial intelligence simulation software made as a
chess game [20] were analyzed under the MVC Architecture
[3]. In this section, we present how Archer was used to
match existent software architecture to a previously defined
architecture.

The calculator is separated in three main packages, the
Model is represented by the Calculator class which contains
the manipulated data and it is observed by the view’s
component. The View is represented by the Window class
which contains graphical components and observers the
model. The Command component is represented by the
listener classes, the ActionListener acts as an Observer
interface. Figure 4 shows a simplified version of the UML
representation of the calculator.

Archer was setup to use the MVC Architecture. It means
that it will verify whether the source code of the application
is in conformance with the MVC. The architecture was
defined in three modules (model, view, control). Each

148

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

module implemented it own rules (see Section 3.3). The code
parser retrieves the code from the selected project and parses
it into objects of the object oriented model (see Section 3.2).

The process of analysis is a sequential search for

correspondence with the rules defined in the architecture. It

is made with a binary vector that stores the rules needed to

define each component of the architecture design. Figure 5

illustrates part of the evaluation process.

The Analyzer verify if a component obey(x) or disobey

(-) a rule. In the illustrated case AddListener follows the

same rules that define the control component. After the

analysis is made, the tool compares the results of each class

with the modules of an architecture attributing a percentage

of correlation.

Each attribute of a class is already in the model at

evaluation time. Therefore, if the tool needs to analyze an

attribute of a class before analyze the class itself, it is

possible. This feature allows the tool to evaluate

components that are defined in terms of others, e.g the

classes of view component contain classes from control

component.

An architecture is defined in the module “Architectural

Composer” each composer contain “Architectural modules”

and each module a set of “Rules”. A rule is defined as a

boolean function which gets a “Class” from the model and

evaluate it. The function is defined as a implementation

constraints. The complete project structure is available for a

rule function. However, it evaluates a class per time. If an

attribute of a class must be evaluated before it reaches a

conclusive response, the rule pass the attribute to the

analyzer to it be evaluated first.

The results of the analysis show the percentage of

compatibility of each class with the modules of the

architecture as illustrated in Figure 6. Although the results

were acceptable, they could be improved.

For the JChess, Archer concluded that the software did

not followed the MVC architecture, Figure 7 shows the

UML representation of the application.

Archer was used to analyze the architecture of this

application according to the MVC Architecture, Figure 8

show the results. Some classes implemented the Model of

MVC, e.g. Move and PGN which reaches high compatibility

with this module, these classes contains data information that

is accessed by the view module, JChessBoard contains

graphical interfaces and modifies the data of model classes

directly so it is unevenly distributed over view and control.

Most of the classes are not well defined, it shows the

inconsistency of the application with this architectural

pattern.

V. CONCLUSION

It was developed a parser that reads java codes and

generates a language-independent OO model was

developed. It allows to represent the collected data without

loss of information and it is free of language details. The

permits analyze the code of a project by comparing a set of

classes to a design template.

Archer can define rules at a low level of abstraction. In

the current version, these rules are created by programming

in java language using model’s classes provided by Archer

API. We are aware that there is a need to define the

architecture in a higher abstraction level. We have already

tried to represent these architectural rules in ADLs

(Architectural Description Language) such as ACME [12]

and Wright [13], however, they do not allow us to express

the level of details it is needed to perform the enforcement

of the architecture.

Archer has some features integrated to eclipse. It can

notify the developers if some architecture has a potential

problem. At the moment they save their code, the evaluation

appears in the Eclipse problems panel. As future work, the

tool will be integrated with subversion version control

system. This feature would allow verifying whether an

architectural rule is broken at the moment developers

commit their code. It is being studied a way to represent the

architecture through an ADL. The idea is to follow a bottom

up approach, i.e., in the current version, the architecture

must be defined programmatically using the Archer API.

Each architecture defined is included in the architecture

database. Once the database becomes bigger, it will be

possible to reuse code rules of previously defined

architectures. Then, as the level of reuse increases, it will be

possible to create a language to represent these code rules.

ACKNOWLEDGMENT

This work is partially supported by CNPq/Brazil under

the project PROCOCO (620063/2008-4)

Figure 8. JChess Evaluation

Figure 6. Calculator Evaluation

149

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

REFERENCES

[1] Ambler,S.W.(1997), Análise e projeto orientados a objetos, Infobook,
Rio de Janeiro.

[2] Carvalho F., Barroso L, Seufitele V., Vasconcelos A. ArchJava:
Reconhecimento de padrões arquiteturais em sistemas Java, CEFET
CAMPOS.

[3] Buschmann, Frank et al. Pattern-Oriented Software Architecture: a
System of Patterns. Wiley, 1996.

[4] Kazman, R. and Carrière, S. J. 1999. Playing “Detective:
Reconstructing Software Architecture from Available Evidence”.
Automated Software Eng. 6, 2 (Apr. 1999), pp. 107-138.

[5] Murphy G., Notkin D. Lightweight Lexical Source Model Extraction.
In ACM Transactions on Software Engineering and Methodology,
Vol. 5, No. 3, July 1996, pp. 262-292.

[6] Murphy, G., Notkin, D., and Sullivan, K. “Software Reflexion
Models: Bridging the Gap between Source and High-Level Models”.
in Proceedings of the Third ACM SIGSOFT Symposium on the
Foundations of Software Engineering, (Washington, D.C.), October
1995. pp. 18-28.

[7] Eclipse, http://www.eclipse.org/ 04.14.2010

[8] JDT, “Java Development Tools”, http://eclipse.org/jdt/ 04.14.2010

[9] Unified Modeling Language, http://www.uml.org/ 01.29.2010

[10] Gamma, E., Helm, H., Johnson R., Vlissides, M. J. “DesignPatterns:
Elements of Reusable Object-Oriented Software.”

[11] Sommerville, I. “Engenharia de Software” Addison Wesley 8ª ed.

[12] Garlan, D., Monroe, R. T., and Wile, D. 2000. “Acme: architectural
description of component-based systems”. In Foundations of
Component-Based Systems, G. T. Leavens and M. Sitaraman, Eds.
Cambridge University Press, New York, NY, pp. 47-67.

[13] Allen, Robert J. “A Formal Approach to Software Architecture”
(Ph.D. Thesis, CMU-CS-97-144 ed.). Carnegie Mellon University.
(May 1997).

[14] Shaw M., DeLine R., and Zelensnik G. “Abstractions and
Implementations for Architectural Connections”. Technical Report
CMU-CS. pp. 95-136, CMU, March 1995.

[15] Sefika, M., Sane, A., and Campbell, R. H. 1996. “Monitoring
compliance of a software system with its high-level design models”.
In Proceedings of the 18th international Conference on Software
Engineering (Berlin, Germany, March 25 - 29, 1996). International
Conference on Software Engineering. IEEE Computer Society,
Washington, DC, pp. 387-396.

[16] Abowd, G., Allen, R., and Garlan, D. 1993. “Using style to
understand descriptions of software architecture”. In Proceedings of
the 1st ACM SIGSOFT Symposium on Foundations of Software
Engineering (Los Angeles, California, United States, December 08 -
10, 1993). D. Notkin, Ed. SIGSOFT '93. ACM, New York, NY, pp.
9-20.

[17] Olshefski D. P. and Code A. “A Prototype System For Static and
Dynamic Program Understanding”. In Proceedings of the Working
Conference in Reverse Engineering, Baltimore, MD, USA, 1993. pp.
93 - 106.

[18] Ritsch H. and Sneed H. M. “Reverse Engineering Via Dynamic
Program Analysis”. In Proceedings of the Working Conference in
Reverse Engineering, Los Alamitos, CA, USA, 1993.

[19] Harris, D. R., Reubenstein, H. B., and Yeh, A. S. 1995. “Reverse
engineering to the architectural level”. In Proceedings of the 17th
international Conference on Software Engineering (Seattle,
Washington, United States, April 24 - 28, 1995). ICSE '95. ACM,
New York, NY, pp. 186-195.

[20] JChess, http://jchessboard.sourceforge.net/ 20/08/2010.

[21] Blewitt, A., Bundy, A., and Stark, I, “Automatic Verification of
Design Patterns in Java”. In ASE 2005: Proceedings of the 20th
IEEE/ACM International Conference on Automated Software
Engineering, Long Beach, California, USA, November 7–11, 2005,
pages 224–232. ACM Press, 2005.

Figure 2. Simplified Representation of Archer Meta-Model

150

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Figure 4. MVC Calculator Sample UML Description

Figure 5. The evaluation process

151

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Figure 7. JChess UML Description

Figure 9. The Archer plug-in

152

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

