
Reliable Authentication and Anti-replay Security
Protocol for Wireless Sensor Networks

 Laura Gheorghe, Răzvan Rughiniş, Răzvan Deaconescu, Nicolae Ţăpuş
Politehnica University of Bucharest,

Bucharest, Romania
{laura.gheorghe, razvan.rughinis, razvan.deaconescu, ntapus}@cs.pub.ro

Abstract—Wireless Sensor Network provide monitoring services
such as environmental, military and medical monitoring. Sensor
networks are often deployed in hostile environments and are
vulnerable to attacks and failures. Security need to be
implemented in order to prevent unauthorized access to the
network and malicious attacks. The Authentication and Anti-
replay Security Protocol is a combination of two lightweight
mechanisms that ensure authentication, anti-replay and intrusion
detection: the “Last Hash” method, and the authentication
handshake. This paper introduces three reliability enhancements
to the first version of the protocol: acknowledgements, re-
authentication and a current hash computed with a different key
to ensure integrity. Reliable AASP was implemented in TinyOS
and tested using TOSSIM. Simulations indicate that Reliable
AASP is able to provide a reliable authentication connection
between any two communicating nodes, and it meets the critical
security requirements: integrity, authentication and freshness.

Keywords-wireless sensor networks, security, reliability,
integrity

I. INTRODUCTION
A Wireless Sensor Network (WSN) consists of a large

number of sensor devices characterized by reduced dimension,
low cost and low power, which are able to organize themselves
into a network by communicating through a wireless medium,
collaborating in order to accomplish a common task [1].

WSNs provide monitoring services in different areas, such
as industrial, military, public safety, automotive, agriculture,
localization, seismic, medical, commercial and emergency
situations. Some of the most interesting applications are
detecting the enemy units during military monitoring, person
locator, disaster detection, and health condition monitoring [2].

Because WSNs have the advantage of being deployable in
inhospitable fields, such as battlefields, outer space and deep
waters, they are highly recommended in military applications,
environmental monitoring, security and surveillance, industrial
process control and health care applications [3].

The network design objectives and requirements include:
reduced dimension, low cost and low power, scalability,
adaptability, reliability, fault-tolerance, security, self-
configurability and QoS. Fault tolerance includes capacities for
self-testing, self-calibrating, self-repairing and self-recovering
[4].

Securing WSNs is essential when they are used in critical
applications such as battlefield surveillance and homeland
security. This is a challenging task because of several
limitations deriving from the wireless channels, resource
constraints, and hostile environments.

Because the wireless medium is open, anyone can intercept
traffic and inject fake data packets if they have the radio
interface configured on the same frequency band.

Traditional security mechanisms cannot be applied to
sensor networks because of their severe resource constrains.
Sensor nodes do not have the computational capacity to
manage public key cryptography or other complex protocols.
For this reason, the best choice for WSNs is to use symmetric
keys, though they must be used with precaution in order to
avoid performance degradation.

Another challenge regarding security in WSNs is their
deployment in hostile environments and the fact that they must
work unattended. They are vulnerable to physical attacks, such
as tampering and node capturing.

The rest of the paper is structured as follows: Section II
presents the related work, Section III contains the basic
protocol design, Section IV describes the basic protocol issues,
Section V presents the reliability improvements brought to the
basic protocol, Section VI describes the implementation of the
protocol, Section VII presents the experimental results, in
Section VIII we discuss the potential problems and solutions,
and Section IX presents the conclusions of the paper and some
of the future work.

II. RELATED WORKS
Various security solutions were developed for WSNs, and

the most important are SPINS, LEAP, TinySec, and SM [5].

SPINS is a set of security protocols that consist of two
building blocks: SNEP and μTESLA [6]. Both were
implemented to run on top of TinyOS [7].

SNEP is used to provide authentication, integrity,
confidentiality and freshness, and μTESLA provides
authenticated broadcasts [5]. Authentication and integrity is
provided by Messsage Authentication Code (MAC),
confidentiality through encryption, and freshness through
nonce. μTESLA emulates asymmetry through the delayed
disclosure of symmetric keys.

208

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

LEAP (Localized Encryption and Authentication Protocol)
was designed by Zhu et al. in 2003 and is a key management
protocol for WSNs [8].

LEAP was implemented as LEAP+ in TinyOS and first
used on Berkley Mica2 motes [9]. LEAP uses four different
types of keys in order to provide an adequate level of security
to the various messages exchanged in the WSN [5].

 TinySec was designed by Karlof et al. in 2004 and is the
replacement for SNEP [10]. TinySec is a link layer security
architecture that was included in the TinyOS release. It
provides authentication and integrity, confidentiality and
semantic security. Semantic security is achieved through
Initialization Vector (IV) [5].

Security Manager (SM) was proposed by Heo and Hong in
2006 and is a new security method of authenticated key
agreement [11]. It uses Public Key Infrastructure (PKI) and
Elliptic Curve Cryptography in order to assure security [5].

The existent security solutions are very complex because
they aim to meet all the major security requirements:
authentication, integrity, confidentiality and freshness. We
consider that confidentiality cannot be obtained without a
major computational overhead that is not feasible for Wireless
Sensor Networks. However, if the application is critical and
requires confidentiality, a complex security solution such as
SNEP must be used.

Energy consumption is the most critical problem in
Wireless Sensor Networks. We aim at developing a lightweight
security protocol that is focused only on authentication,
integrity and anti-replay, which mitigate the most important
threats to sensor networks: packet injection and packet altering.
Our protocol introduces a small overhead because it only
computes a hash function; therefore it is a lightweight security
protocol designed to minimize the energy consumption.

III. AASP
We developed a lightweight security protocol, called

Authentication and Anti-replay Security Protocol (AASP),
which is able to provide authentication, anti-replay and
intrusion prevention [12].

The protocol uses a globally shared key to compute the
Message Authentication Code (MAC) in order to provide
authentication between nodes.

Anti-replay requirement is assured by the “Last MAC
Method”, in which the MAC of the last sent message with the
same source and destination is sent along with the current
message.

An authentication connection must be established between
two nodes that want to communicate, using an authentication
handshake, as represented in Figure 1.

AASP provides intrusion prevention because it prevents
malicious nodes from communicating with the nodes inside the
network. Intrusion prevention is achieved using the handshake
authentication and the shared key.

Figure 1. AASP authentication handshake

The security protocol was implemented in TinyOS, an
operating system developed especially for Wireless Sensor
Networks [7]. AASP was tested using TOSSIM, which is a
discrete event simulator for TinyOS sensor networks [13].

IV. AASP ISSUES
As we have stated in [12], several problems can appear in a

real-life deployment of this security protocol. This paper aims
at finding the most efficient solutions to those problems.

A. Altered packets in multi-hop networks
In a multi-hop network, the packet must be routed in order

to reach the destination. However, an intermediate node could
maliciously alter the payload of the packet, leaving the Hash
field unmodified. This would lead to the destination accepting
an altered message, which is a serious vulnerability. Our
solution is to include another field in the header that will
include the MAC of the current message. Therefore, an
intermediate node is not able to modify the payload without
knowing the secret key, and if it does, the message is dropped
at the destination.

B. Packet loss
The problem that has the highest probability to appear is the

loss of packets. If a single packet is lost, the hash becomes de-
synchronized and the subsequent packets are dropped at the
destination with an “Incorrect Hash” alert. A similar problem
appears in the SPINS suite of security protocols, where the
anti-replay protection is provided by incrementing a counter for
every sent and received packet. Packet loss causes the
disruption of the counter synchronization. A solution would be
for the destination to acknowledge packets as they are received
and the source to wait for an acknowledgement before sending
the next packet. We will evaluate the impact of such a solution
as regards energy consumption.

C. Re-authentication after reboot
Another problem may appear in the eventuality that one

node, designated as X, reboots during an authentication
connection between two nodes (X and Y). After rebooting, X
could try to re-establish the connection, but Y would reject all
packets with the message: “Node already authenticated tries to
re-authenticate”. This would happen because Y was not

209

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

announced in any way that node X closed the connection, and
continued to act as if it had an authentication connection with
it. In addition, we also need a method of terminating an idle
connection. The solution for both problems would be to permit
the connection to expire after a period of time in which no
messages are sent. After the old connection is closed by both
sides, a new connection can be established. This method would
introduce a certain delay in communication, and we must
evaluate the impact of this solution taking into account the
probability for a sensor to reboot unexpectedly.

Another solution would be to permit the operation of re-
authentication, in which one node can initiate an authentication
handshake even if the other node knows it has a connection
already established. However, this practice is dangerous
because any attacker can interpose between two nodes and tear
down their connection just by sending an “Authentication
Request”.

V. RELIABLE AASP DESIGN
Four main levels of fault tolerance can be implemented for

WSNs that correspond to the following layers: hardware and
software, network communication and application layers [1].
We are interested in the network communication layer fault
tolerance.

In the following sections, we will present three methods
that have been integrated into AASP in order to enhance the
reliability of the security protocol and the network
communication.

A. Packet loss
As we have observed in simulations, packet loss is a serious

problem. It desynchronizes the anti-replay mechanism because
the destination expects another value of the last hash.
Subsequent packets are dropped by the destination when a
single packet is lost on the way.

The standard procedure when dealing with packet loss
relies on the use of acknowledgements. When a packet is
received, the destination node is responsible for sending back a
packet containing the sequence number of the acknowledged
message, and an acknowledgement flag. This way, the source
node knows when it is safe to send the next packet.

The source node waits for the acknowledgement for a
predefined period of time, after which it resends the packet that
was not acknowledged. Not receiving the acknowledgement
before timeout, could indicate that either the connection with
the destination was closed, or the acknowledgement packet was
lost on the way. The connection could be closed when the
destination is dead or when it had restarted itself. The source
node is not able to differentiate between these two situations,
and will treat them in the same way, by resending the lost
packet.

During the handshake process, the packets are not
acknowledged by separate packets, but because an actual
conversation is taking place, the acknowledgements are
piggybacked in the reply messages. This cannot be done after
the authentication connection is established because, in most
cases, the conversation consists in packets sent from the child

to the parent in the network hierarchy. A hierarchy is formed so
that the collected information would reach the base station. In
this case, the parent would have to reply with separate
acknowledgement packets.

This method provides reliability to AASP, because it
handles the loss of packets through the traditional method of
acknowledgements.

B. Re-authentication
Re-authentication is the solution for both desynchronized

and closed connections. Desynchronization could occur when
acknowledgements are not used and packets are lost, or if they
are used and the information about the acknowledged packets
is corrupted on the source or destination node. As we have
previously stated, a connection is considered closed when
either node is dead or has restarted.

The connection must be terminated after a specific amount
of time in which no message is received from the node on the
other side of the connection.

After each received message, a timer is set to fire once after
a specific amount of time that is to be determined
experimentally. If another message is received during this
period of time, the timer is reset. Otherwise, the authentication
connection will be terminated by erasing all authentication
information regarding the connection with that specific node
for which the timer has fired. In addition, a connection
termination message will be sent to that node, in order to
announce it of the connection tear down. The neighbor could
be alive, in the situation of non synchronization or restarted
node. In the first situation, the neighbor node will receive the
termination message and erase all information about that
connection. In the case of a restarted node, all information is
already to its default settings and nothing should be done.

After authentication data has been erased at both nodes, a
new authentication connection can be established if either node
initiates an authentication handshake.

C. Altered packets
We can prevent messages from being altered by sending the

Message Authentication Code (MAC) of the current message.
The destination will compute the hash value of the received
message and compare it with the MAC in the header. If the
values are different, the packet will be dropped, and an
“Altered packet received” message will be generated.

If we want to be sure that the attacker cannot replay older
packets, we must have two secret keys in the network: one for
the last MAC, and one for the current MAC. This way, the
attacker cannot use the current MAC from an intercepted
packet as the last MAC in a malicious packet.

We evaluate that the overhead introduced by keeping two
secret keys instead of one is insignificant comparable to the
advantage of messages being protected from alteration in multi-
hop networks.

210

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

VI. IMPLEMENTING RELIABLE AASP

A. Packet loss
Acknowledgements are implemented in AASP using a new

field in the authentication header, which contains the value “1”
if the packet is an acknowledgement and the value “0” if it is a
data packet. We call this field the ack flag.

During the authentication handshake, all packets except for
the “Authentication Request” have the ack flag set, because
each reply acknowledges the previous message exchanged
between the two nodes.

After the authentication connection has been established,
because a two-way conversation is not expected,
acknowledgements must be sent as stand alone packets. These
packets contain the sequence number of the packet that is
acknowledged, placed in the payload field, and the ack flag that
is set. The sequence number will be represented as a new field
in the AASP packets. The sequence values start from value “1”
after the authentication connection is established.

Each node stores two values for every established
connection: the last received acknowledge (last_recv_ack) and
the last sent acknowledge (last_sent_ack). After sending an
ack, the value of last_sent_ack is updated to the value of the
sequence number of the acknowledged packet. When receiving
an ack, the value of last_recv_ack is updated to the sequence
number received in the payload.

In a hierarchical network topology, when a child sends a
message to its parent with a sequence number of x, it starts a
timer that expires after a configured period of time. During this
period, if the ack is received, the timer is stopped, and the
packet with sequence x+1 is sent. However, if no ack is
received, the packet with sequence x is resent.

This method has been implemented in the Authentication
layer, by maintaining two arrays of integers, representing the
last_sent_ack and last_recv_ack for each established
connection. For example, last_recv_ack[i] is the sequence
number of the last acknowledged packet sent to the neighbor
with the identifier i.

An array of timer interfaces is used through parameterized
interfaces, an important feature of nesC language. The timer is
set to fire once by using Timer.startOneShot command and by
specifying the period of time as an argument. In the Timer.fired
event, the packet must be resent to the destination, therefore the
packet must be stored locally until an acknowledgement is
received. However, if an acknowledgement is received using
Receive.receive event, the timer for that specific destination is
stopped. The next message can now be sent by the main
application. The main application execution must be delayed
until the next message can be sent.

B. Re-authentication
Re-authentication is possible only after a previous

connection is terminated, or both sensor nodes are restarted.
The state of a connection is maintained at the Authentication
layer by three arrays: auth, req and rd. For a neighbor i, auth[i]
is “1” if an authentication connection has been established with

that neighbor and “0” if not, req[i] is “1” if an “Authentication
Request” has been sent to that neighbor and “0” if not, and rd[i]
keeps the value of the challenge used for that neighbor.

At the MAC (Message Authentication Code) layer, the state
is kept using two arrays of hashes, both called last_hash, where
last_hash[i] is the hash of the last message sent to or received
from that neighbor. All this authentication data should be
erased during connection termination.

An array of timer interfaces is maintained through
parameterized interfaces, as with acknowledge timers. When a
packet is received at the Authentication layer, the timer
associated with the source node i, is set to fire once after a
configured period of time. In the Timer.fired event, the
information in Authentication layer (auth[i], req[i] and rd[i]) is
set to “0”. A message is sent to the sensor node i in which auth
field is set to a specific termination code called TERM. The
MAC layer recognizes the code and erases all authentication
data from its level. If the destination is alive and has not
restarted, it will reset all authentication data from MAC and
Authentication layer. If the destination has restarted, it will
ignore the message.

The authentication handshake will be further initiated by
the node that transmits data, in most situations, the child in the
hierarchy.

C. Altered packets
The method was implemented by adding a new field in the

authentication header containing the MAC of the current
message that is computed using a different key.

The hash of the payload is computed and put in the current
MAC field of the packet, in MacLayerSenderP component,
before sending the packet.

In MacLayerReceiverP component, the first operation when
receiving a packet is to check if the current MAC contained in
the received packet is equal to the hash of the payload. If not,
the packet is dropped at this level, or sent to the Authentication
Layer with an error code in Auth field. We reserved the code 3
for “Altered packet”. In AuthenticationLayerC component, if
the Auth field is equal to 3, the packet is dropped, and an
“Altered packet received” message is generated.

VII. TESTING RELIABLE AASP
The protocol has been implemented in TinyOS; therefore

TOSSIM is the best solution for simulating AASP [13].

We use a section of a real topology to test the first scenario,
in which node 3 sends messages to node 1. This scenario is
used to test the functionality of acknowledgements, connection
termination and re-authentication. Therefore, we did not
include the hash of the current message in the simulation
output.

Node 3 and 1 communicate using Reliable AASP; the first
one sends data packets and the later one replies with
acknowledgements. When the packets are lost, no
acknowledgement is received and the packet is retransmitted.

211

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

When no packet is received by node 3 in the idle period of
time, the connection between the nodes must be terminated.

We consider that the authentication handshake takes place
and ends successfully with an established authentication
connection. After that, in Figure 2 we can observe that node 3
starts sending packets to node 1 periodically. Packets are sent
with auth field equal to “1” and ack field equal to “0”. The seq
field contains the sequence number of the packet. Node 3
responds with an acknowledge packet that has the ack field set
to “1” and the payload containing the sequence number of the
acknowledged packet. The figure presents two packets that are
sent, received and acknowledged.

Figure 2. Normal flow of packets

In Figure 3, the message with sequence number equal to
“7” does not reach its destination. The timer set on node 3
expires after the ack period and the node resends the message.
After the idle period, the connection timer at the destination
expires and the connection is terminated. Node 1 also sends a
reset message containing a connection termination code,
announcing the destination about the connection tear down.
The code used in this implementation is “4” and is placed in the
auth field. In this moment both nodes have the authentication
data erased from both AASP layers.

Figure 3. Packet loss causing connection timeout

In Figure 4, we can observe the authentication handshake
being re-initiated by node 3 and terminating with another
authentication connection established.

Figure 4. Re-authentication

The packet with sequence number “7” is resent and
received successfully at node 1 and acknowledged. The
subsequent packets are treated in the same way.

In the second scenario, we test the ability of Reliable AASP
to provide integrity, and to detect that the packet has been
altered during the routing process by a malicious node, or by
errors during transmission.

We use a section of a multi-hop network topology: node 3
wants to send a data packet to node 1, but cannot reach it
directly, only through node 2. Therefore it will use node 2 to
route data packets to the destination node. In this scenario,
node 2 is a malicious node programmed by an attacker to
modify the payload of the packets that it must route to
destination.

The previous version of the protocol did not provide packet
integrity. Therefore packets could have been modified by an
intermediate node, while the destination would not have
noticed. However, it would have dropped packets starting with
the next packet even if they would not have been altered, only
because the altered packet would desynchronize the
connection.

In the current version of Reliable AASP, the packet
includes the hash of the current message, called current hash,
which is computed using a secret key different than the one that
is used to compute the hash of the last message. This way, even
if the intermediate node changes the payload, the packet will be
dropped at the destination because the current hash contained
in the packet would not match the hash computed at the
destination. This does not desynchronize the connection,
because the source node waits for an acknowledgement before
sending the next message. If the message is dropped by the
destination, the acknowledgement is not received, and the
message is retransmitted.

In Figure 5, we consider that node 2 does not alter the
message. Therefore, we can observe the normal flow of
packets. We omitted the authentication handshake process, and
the information about the last hash and auth fields.

Figure 5. Non-malicious routing node

The data packet is routed by node 2 and reaches node 1
without being altered. Node 1 computes the hash of the payload
using the second secret key, and it verifies if the value is equal
to the current hash found in the packet. The values are equal,
therefore node 1 generates an acknowledgement packet and
sends it to node 3 through node 2.

In Figure 6, we consider that node 2 alters the message
received from node 3, and then routes it to node 1. Node 2
cannot re-compute the current hash, because it does not have
the secret key. Therefore, it sends the packet with the altered
payload and the old current hash. The altered data packet
reaches node 1, and is inspected by the MAC layer, which
detects that the computed hash is different from the one
contained in the packet send it to the Authentication layer with
an error code of “3” in the auth field of the packet. The
Authentication layer receives the packet, generates an “Altered
packet” message and drops the packet. It does not send any

(3): AuthLayer: Packet sent seq=124 hash=0 auth=0.
[..]
(1): AuthLayer: Managed to authenticate myself to node 3
(3): AuthLayer: Managed to authenticate myself to node 1
(3): AuthLayer: Packet sent [seq=7 hash=4442 auth=1 ack=0 (3->1)]
(1): AuthLayer: Packet received [seq=7 hash=4442 auth=1 ack=0 (3->1)]
(1): AuthLayer: Packet sent [seq=7 hash=24000 auth=1 ack=1 (1->3)]
(3): AuthLayer: Packet received [seq=7 hash=24000 auth=1 ack=1 (1->3)]

(3): AuthLayer: Packet sent [msg=222 chash=64327 seq=1 ack=0 (3->1)]
(2): RoutingLayer: Packet received [msg=222 chash=64327 seq=1 ack=0 (3->1)]
(2): RoutingLayer: Packet sent [msg=222 chash=64327 seq=1 ack=0 (3->1)]
(1): AuthLayer: Packet received [msg=222 chash=64327 seq=1 ack=0 (3->1)]

(3): AuthLayer: Packet sent [seq=1 hash=4442 auth=1 ack=0 (3->1)]
(1): AuthLayer: Packet received [seq=1 hash=4442 auth=1 ack=0 (3->1)]
(1): AuthLayer: Packet sent [msg=1 hash=24000 auth=1 ack=1 (1->3)]
(3): AuthLayer: Packet received [msg=1 hash=24000 auth=1 ack=1 (1->3)]
(3): AuthLayer: Packet sent [seq=2 hash=123 auth=1 ack=0 (3->1)]
(1): AuthLayer: Packet received [seq=2 hash=123 auth=1 ack=0 (3->1)]
(1): AuthLayer: Packet sent [msg=2 hash=123 auth=1 ack=1 (1->3)]
(3): AuthLayer: Packet received [msg=2 hash=123 auth=1 ack=1 (1->3)]

(3): AuthLayer: Packet sent [seq=7 hash=97 auth=1 ack=0 (3->1)]
(3): AuthLayer: Timeout ack node 1
(3): AuthLayer: Packet sent [seq=7 hash=97 auth=1 ack=0 (3->1)]
(3): AuthLayer: Timeout ack node 1
(3): AuthLayer: Packet sent [seq=7 hash=97 auth=1 ack=0 (3->1)]
(3): AuthLayer: Timeout ack node 1
(1): AuthLayer: Timeout connection node 3
(1): AuthLayer: Reset packet sent [seq=0 hash=0 auth=4 ack=0 (1->3)]
(3): AuthLayer: Packet received [seq=0 hash=0 auth=4 ack=0 (1->3)]

212

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

acknowledgements, and after the ack period has passed on
node 3, it resends the data packet.

Figure 6. Malicious routing node

However, if the attacker continues to alter the data packets,
it will cause the connection to terminate, because the correct
data packet would not be received by the destination. This is
considered to be a Denial of Service attack.

VIII. DISCUSSION
As we have stated in the previous section, a node that acts

as a router between source and destination nodes can cause a
Denial of Service attack by altering all messages that must be
routed. The source and destination node would wait the idle
time period and close the connection. The best solution would
be to modify the routing protocol in order to choose another
intermediate node to route the data packets to destination, if the
current one does not deliver the packets correctly. Another
solution would be to send negative acknowledgements to the
source of the data packets in order to reduce the waiting time of
the source node before choosing another route to destination. A
serious problem would appear if the malicious node is the only
way to the destination, meaning that it is the only node that can
reach the destination. Therefore, even if we consider that the
source and destination are at least two hops away, if the last
hop is the only one that can reach the destination, changing the
route would not exclude that node, therefore, the
communication with that specific destination will be
irremediably lost.

Adequate values must be determined experimentally for
acknowledge and idle periods. Both values must be computed
for the specific deployed network and application. We consider
that some requirements must be satisfied in order to find the
appropriate values.

In WSNs, we have two types of data messages: periodic
and triggered. The periodic messages contain data that is
periodically collected from the environment and sent to the
base station. The triggered messages are generated in
emergency situations and should reach the base station as soon
as possible. The idle period of AASP should be greater than the
period of data collecting. Otherwise, before every data
collecting moment, the connection would expire and another
connection must be established introducing overhead because
of the authentication handshake. Because triggered messages
can be generated anytime, it is impossible to configure the idle
period using predictions about these messages.

The acknowledge time period should be greater than the
two-way message exchange time between two nodes multiplied
by the maximum number of hops between two nodes in the

sensor network. This way, if an authentication connection is
established between two nodes that have the maximum number
of hops between them, the acknowledgement should have time
to reach the source of the data packets. Otherwise, the source
would send the data packet, and the acknowledgement time
period would expire before the acknowledgement would arrive
and the data message will be unnecessary retransmitted. The
two-way message exchange time period depends on the
network traffic. This value can only be determined
experimentally after the deployment of the network and
application.

Therefore, idle time period depends on the application and
its period of collecting and transmitting data. The acknowledge
time period depends on the actual topology and the network
traffic.

A problem is introduced by the high quantity of
acknowledgements required in order to detect packet loss. In
the actual implementation, the number of acknowledgements is
equal to the number of data packets. However, other methods
exist in which an ack packet is used to acknowledge a set of
data packets instead of one single packet, but they would
require a large number of messages to be stored at the source
node before they are acknowledged.

Another problem regarding acknowledgements is that ack
packets can also be lost. This would determine the source node
to send the packet again. The duplicate would reach the
destination and would be dropped because it would have the
same sequence number. Duplicate packets are undesirable
because they waste bandwidth and consume energy.

Nodes are still vulnerable to flooding with “Authentication
requests”, but this attack can be detected using Storm Control
Mechanism [14].

IX. CONCLUSION
Wireless Sensor Networks provide monitoring services in

critical domains such as military, security and medical, a
lightweight security protocol has to be used in order to secure
the communication within the sensor network.

AASP is a lightweight security protocol that was designed
to provide security features such as authentication, freshness
and intrusion detection. In this paper, we present three
reliability enhancements to AASP: acknowledgements, re-
authentication and integrity hash.

Acknowledgements are used to detect the loss of packets.
When a node sends a data packet, it sets a timer and waits for
an acknowledgement for that data packet. If the ack does not
arrive until the timer has expired, the packet is resent.

Re-authentication is needed in various situations, from
desynchronized connections to restarted nodes. To proceed
with the re-authentication, the previous connection must be
terminated, otherwise all packets are blocked. The connection
is terminated after a specific period of time in which no packet
is received by the node.

The initial protocol version did not provide the integrity of
the current message. The enhanced protocol version contains

(3): AuthLayer: Packet sent [msg=222 chash=64327 seq=1 ack=0 (3->1)]
(2): RoutingLayer: Packet received [msg=222 chash=64327 seq=1 ack=0 (3->1)]
(2): RoutingLayer: Packet sent [msg=999 chash=64327 seq=1 ack=0 (3->1)]
(1): MacLayer: Packet received [msg=999 chash=64327 seq=1 auth=1 ack=0 (3-
>1)]
(1): AuthLayer: Packet received [msg=999 chash=64327 seq=1 auth=3 ack=0 (3-
>1)]
(1): AuthLayer: Altered packet received. Packet dropped.
(3): AuthLayer: Packet sent [msg=222 chash=64327 seq=1 ack=0 (3->1)]
[…]

213

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

an integrity hash placed in the packets. This hash is a Message
Authentication Code computed using a second secret key. The
hash is recomputed at the destination and compared with the
one received in the packet. This way, altered packets can be
dropped.

Reliable AASP has been implemented in TinyOS by
modifying the previous version of AASP. The protocol was
tested in TOSSIM, a simulator for TinyOS applications.

Further work will consist in testing the performance of the
protocol in terms of energy and bandwidth consumption. The
number of messages exchanged by sensor nodes has doubled
because of the acknowledgements. However,
acknowledgement packets are relatively small compared to the
data packets, and are necessary in order to detect the loss of
packets.

Also as a future work, we wish to test our protocol on a real
Wireless Sensor Network and compare our simulation results
to the ones obtained on the physically deployed sensor
network.

REFERENCES
[1] J. Zheng and A. Jamalipour, “Wireless Sensor Networks A Networking

Perspective”, John Wiley & Sons, 2009.
[2] C.F. García-Hernández, P.H. Ibargüengoytia-González, J. García-

Hernández, and J.A. Pérez-Díaz, “Wireless Sensor Networks and
Applications: a Survey”, IJCSNS International Journal of Computer
Science and Network Security, VOL.7 No.3, March 2007, pp. 264-273.

[3] D. Trossen and D. Pavel, “Sensor networks, wearable computing, and
healthcare Applications”, IEEE Pervasive Computing, vol. 6, no. 2, Apr-
June 2007, pp.58-61.

[4] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli, “Fault-
tolerance techniques for ad hoc sensor networks”, Proceedings of IEEE
Sensors, vol. 2, June 2002, pp. 1491-1496.

[5] D. Boyle and T. Newe, “Securing Wireless Sensor Networks: Security
Arhitectures”, Journal of Networks, Vol. 3, No. 1, January 208, pp. 65-
77.

[6] A. Perrig, R. Szewczyk, J.D. Tygar, V. Wen, and D. Culler, “SPINS:
Security Protocols for Sensor Networks”, Wireless Networks, 2002,
8(5), pp. 521-534.

[7] P Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, “TinyOS: An
Operating System for Sensor Networks”, Ambient Intelligence, 2005,
pp. 115-148.

[8] S. Zhu, S. Setia, and S. Jajodia, “LEAP: Efficient Security Mechanisms
for Large-Scale Distributed Sensor Networks”, CCS ’03, Washington
D.C., USA, 27 – 31 October 2003, New York, USA: ACM Press, pp.
62-72.

[9] S. Zhu, S. Setia, and S. Jajodia, “LEAP+: Efficient Security Mechanisms
for Large-Scale Distributed Sensor Networks”, ACM Transactions on
Sensor Networks TOSN, 2006, 2(4), pp. 500-528.

[10] C. Karlof, N. Sastry, and D. Wagner, “TinySec: A Link Layer Security
Architecture for Wireless Sensor Networks”, Proceedings of the 2nd
International Conference on Embedded Networked Sensor Systems,
Baltimore, MD, USA, 03 – 05 November 2004, New York, NY, USA:
ACM Press, pp. 162 – 175.

[11] J. Heo and C.S. Hong, “Efficient and Authenticated Key Agreement
Mechanism in Low-Rate WPAN Environment”, International
Symposium on Wireless Pervasive Computing 2006, Phuket, Thailand
16 – 18 January 2006, IEEE 2006, pp. 1-5.

[12] L. Gheorghe, R. Rughiniş, R. Deaconescu, and N. Ţăpuş,
“Authentication and Anti-replay Security Protocol for Wireless Sensor
Networks”, The Fifth International Conference on Systems and
Networks Communications, August 22-27, 2010, pp 7-13.

[13] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications”, In SenSys '03:
Proceedings of the 1st international conference on Embedded networked
sensor systems, 2003, pp. 126-137.

[14] R. Rughiniş and L. Gheorghe, “Storm Control Mechanism for Wireless
Sensor Networks”, 9th RoEduNet IEEE International Conference, June
24-26, 2010, pp. 430-435.

214

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

