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Abstract—Wireless Sensor Network provide monitoring services 
such as environmental, military and medical monitoring. Sensor 
networks are often deployed in hostile environments and are 
vulnerable to attacks and failures. Security need to be 
implemented in order to prevent unauthorized access to the 
network and malicious attacks. The Authentication and Anti-
replay Security Protocol is a combination of two lightweight 
mechanisms that ensure authentication, anti-replay and intrusion 
detection: the “Last Hash” method, and the authentication 
handshake. This paper introduces three reliability enhancements 
to the first version of the protocol: acknowledgements, re-
authentication and a current hash computed with a different key 
to ensure integrity. Reliable AASP was implemented in TinyOS 
and tested using TOSSIM. Simulations indicate that Reliable 
AASP is able to provide a reliable authentication connection 
between any two communicating nodes, and it meets the critical 
security requirements: integrity, authentication and freshness. 

Keywords-wireless sensor networks, security, reliability, 
integrity 

I.  INTRODUCTION  
A Wireless Sensor Network (WSN) consists of a large 

number of sensor devices characterized by reduced dimension, 
low cost and low power, which are able to organize themselves 
into a network by communicating through a wireless medium, 
collaborating in order to accomplish a common task [1]. 

WSNs provide monitoring services in different areas, such 
as industrial, military, public safety, automotive, agriculture, 
localization, seismic, medical, commercial and emergency 
situations. Some of the most interesting applications are 
detecting the enemy units during military monitoring, person 
locator, disaster detection, and health condition monitoring [2]. 

Because WSNs have the advantage of being deployable in 
inhospitable fields, such as battlefields, outer space and deep 
waters, they are highly recommended in military applications, 
environmental monitoring, security and surveillance, industrial 
process control and health care applications [3]. 

The network design objectives and requirements include: 
reduced dimension, low cost and low power, scalability, 
adaptability, reliability, fault-tolerance, security, self-
configurability and QoS. Fault tolerance includes capacities for 
self-testing, self-calibrating, self-repairing and self-recovering 
[4].  

Securing WSNs is essential when they are used in critical 
applications such as battlefield surveillance and homeland 
security. This is a challenging task because of several 
limitations deriving from the wireless channels, resource 
constraints, and hostile environments.  

Because the wireless medium is open, anyone can intercept 
traffic and inject fake data packets if they have the radio 
interface configured on the same frequency band. 

Traditional security mechanisms cannot be applied to 
sensor networks because of their severe resource constrains. 
Sensor nodes do not have the computational capacity to 
manage public key cryptography or other complex protocols. 
For this reason, the best choice for WSNs is to use symmetric 
keys, though they must be used with precaution in order to 
avoid performance degradation.  

Another challenge regarding security in WSNs is their 
deployment in hostile environments and the fact that they must 
work unattended. They are vulnerable to physical attacks, such 
as tampering and node capturing. 

The rest of the paper is structured as follows: Section II 
presents the related work, Section III contains the basic 
protocol design, Section IV describes the basic protocol issues, 
Section V presents the reliability improvements brought to the 
basic protocol, Section VI describes the implementation of the 
protocol, Section VII presents the experimental results, in 
Section VIII we discuss the potential problems and solutions, 
and Section IX presents the conclusions of the paper and some 
of the future work. 

II. RELATED WORKS 
Various security solutions were developed for WSNs, and 

the most important are SPINS, LEAP, TinySec, and SM [5]. 

SPINS is a set of security protocols that consist of two 
building blocks: SNEP and μTESLA [6]. Both were 
implemented to run on top of TinyOS [7].  

SNEP is used to provide authentication, integrity, 
confidentiality and freshness, and μTESLA provides 
authenticated broadcasts [5]. Authentication and integrity is 
provided by Messsage Authentication Code (MAC), 
confidentiality through encryption, and freshness through 
nonce. μTESLA emulates asymmetry through the delayed 
disclosure of symmetric keys. 

208

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-105-2



LEAP (Localized Encryption and Authentication Protocol) 
was designed by Zhu et al. in 2003 and is a key management 
protocol for WSNs [8].  

LEAP was implemented as LEAP+ in TinyOS and first 
used on Berkley Mica2 motes [9]. LEAP uses four different 
types of keys in order to provide an adequate level of security 
to the various messages exchanged in the WSN [5]. 

 TinySec was designed by Karlof et al. in 2004 and is the 
replacement for SNEP [10]. TinySec is a link layer security 
architecture that was included in the TinyOS release. It 
provides authentication and integrity, confidentiality and 
semantic security. Semantic security is achieved through 
Initialization Vector (IV) [5].  

Security Manager (SM) was proposed by Heo and Hong in 
2006 and is a new security method of authenticated key 
agreement [11]. It uses Public Key Infrastructure (PKI) and 
Elliptic Curve Cryptography in order to assure security [5].  

The existent security solutions are very complex because 
they aim to meet all the major security requirements: 
authentication, integrity, confidentiality and freshness. We 
consider that confidentiality cannot be obtained without a 
major computational overhead that is not feasible for Wireless 
Sensor Networks. However, if the application is critical and 
requires confidentiality, a complex security solution such as 
SNEP must be used.    

Energy consumption is the most critical problem in 
Wireless Sensor Networks. We aim at developing a lightweight 
security protocol that is focused only on authentication, 
integrity and anti-replay, which mitigate the most important 
threats to sensor networks: packet injection and packet altering. 
Our protocol introduces a small overhead because it only 
computes a hash function; therefore it is a lightweight security 
protocol designed to minimize the energy consumption. 

III. AASP 
We developed a lightweight security protocol, called 

Authentication and Anti-replay Security Protocol (AASP), 
which is able to provide authentication, anti-replay and 
intrusion prevention [12]. 

The protocol uses a globally shared key to compute the 
Message Authentication Code (MAC) in order to provide 
authentication between nodes.  

Anti-replay requirement is assured by the “Last MAC 
Method”, in which the MAC of the last sent message with the 
same source and destination is sent along with the current 
message.  

An authentication connection must be established between 
two nodes that want to communicate, using an authentication 
handshake, as represented in Figure 1.  

AASP provides intrusion prevention because it prevents 
malicious nodes from communicating with the nodes inside the 
network. Intrusion prevention is achieved using the handshake 
authentication and the shared key. 

 

 

Figure 1.  AASP authentication handshake 

The security protocol was implemented in TinyOS, an 
operating system developed especially for Wireless Sensor 
Networks [7]. AASP was tested using TOSSIM, which is a 
discrete event simulator for TinyOS sensor networks [13].  

IV. AASP ISSUES 
As we have stated in [12], several problems can appear in a 

real-life deployment of this security protocol. This paper aims 
at finding the most efficient solutions to those problems. 

A. Altered packets in multi-hop networks 
In a multi-hop network, the packet must be routed in order 

to reach the destination. However, an intermediate node could 
maliciously alter the payload of the packet, leaving the Hash 
field unmodified. This would lead to the destination accepting 
an altered message, which is a serious vulnerability. Our 
solution is to include another field in the header that will 
include the MAC of the current message. Therefore, an 
intermediate node is not able to modify the payload without 
knowing the secret key, and if it does, the message is dropped 
at the destination.  

B. Packet loss 
The problem that has the highest probability to appear is the 

loss of packets. If a single packet is lost, the hash becomes de-
synchronized and the subsequent packets are dropped at the 
destination with an “Incorrect Hash” alert. A similar problem 
appears in the SPINS suite of security protocols, where the 
anti-replay protection is provided by incrementing a counter for 
every sent and received packet. Packet loss causes the 
disruption of the counter synchronization. A solution would be 
for the destination to acknowledge packets as they are received 
and the source to wait for an acknowledgement before sending 
the next packet. We will evaluate the impact of such a solution 
as regards energy consumption. 

C. Re-authentication after reboot 
Another problem may appear in the eventuality that one 

node, designated as X, reboots during an authentication 
connection between two nodes (X and Y). After rebooting, X 
could try to re-establish the connection, but Y would reject all 
packets with the message: “Node already authenticated tries to 
re-authenticate”. This would happen because Y was not 
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announced in any way that node X closed the connection, and 
continued to act as if it had an authentication connection with 
it. In addition, we also need a method of terminating an idle 
connection. The solution for both problems would be to permit 
the connection to expire after a period of time in which no 
messages are sent. After the old connection is closed by both 
sides, a new connection can be established. This method would 
introduce a certain delay in communication, and we must 
evaluate the impact of this solution taking into account the 
probability for a sensor to reboot unexpectedly.  

Another solution would be to permit the operation of re-
authentication, in which one node can initiate an authentication 
handshake even if the other node knows it has a connection 
already established. However, this practice is dangerous 
because any attacker can interpose between two nodes and tear 
down their connection just by sending an “Authentication 
Request”.  

V. RELIABLE AASP DESIGN 
Four main levels of fault tolerance can be implemented for 

WSNs that correspond to the following layers: hardware and 
software, network communication and application layers [1]. 
We are interested in the network communication layer fault 
tolerance. 

In the following sections, we will present three methods 
that have been integrated into AASP in order to enhance the 
reliability of the security protocol and the network 
communication. 

A. Packet loss 
As we have observed in simulations, packet loss is a serious 

problem. It desynchronizes the anti-replay mechanism because 
the destination expects another value of the last hash. 
Subsequent packets are dropped by the destination when a 
single packet is lost on the way.  

The standard procedure when dealing with packet loss 
relies on the use of acknowledgements. When a packet is 
received, the destination node is responsible for sending back a 
packet containing the sequence number of the acknowledged 
message, and an acknowledgement flag. This way, the source 
node knows when it is safe to send the next packet.  

The source node waits for the acknowledgement for a 
predefined period of time, after which it resends the packet that 
was not acknowledged. Not receiving the acknowledgement 
before timeout, could indicate that either the connection with 
the destination was closed, or the acknowledgement packet was 
lost on the way. The connection could be closed when the 
destination is dead or when it had restarted itself. The source 
node is not able to differentiate between these two situations, 
and will treat them in the same way, by resending the lost 
packet.  

During the handshake process, the packets are not 
acknowledged by separate packets, but because an actual 
conversation is taking place, the acknowledgements are 
piggybacked in the reply messages.  This cannot be done after 
the authentication connection is established because, in most 
cases, the conversation consists in packets sent from the child 

to the parent in the network hierarchy. A hierarchy is formed so 
that the collected information would reach the base station. In 
this case, the parent would have to reply with separate 
acknowledgement packets.  

This method provides reliability to AASP, because it 
handles the loss of packets through the traditional method of 
acknowledgements.  

B. Re-authentication 
Re-authentication is the solution for both desynchronized 

and closed connections. Desynchronization could occur when 
acknowledgements are not used and packets are lost, or if they 
are used and the information about the acknowledged packets 
is corrupted on the source or destination node. As we have 
previously stated, a connection is considered closed when 
either node is dead or has restarted. 

The connection must be terminated after a specific amount 
of time in which no message is received from the node on the 
other side of the connection.  

After each received message, a timer is set to fire once after 
a specific amount of time that is to be determined 
experimentally. If another message is received during this 
period of time, the timer is reset. Otherwise, the authentication 
connection will be terminated by erasing all authentication 
information regarding the connection with that specific node 
for which the timer has fired. In addition, a connection 
termination message will be sent to that node, in order to 
announce it of the connection tear down. The neighbor could 
be alive, in the situation of non synchronization or restarted 
node.  In the first situation, the neighbor node will receive the 
termination message and erase all information about that 
connection. In the case of a restarted node, all information is 
already to its default settings and nothing should be done.  

After authentication data has been erased at both nodes, a 
new authentication connection can be established if either node 
initiates an authentication handshake.  

C. Altered packets 
We can prevent messages from being altered by sending the 

Message Authentication Code (MAC) of the current message. 
The destination will compute the hash value of the received 
message and compare it with the MAC in the header. If the 
values are different, the packet will be dropped, and an 
“Altered packet received” message will be generated. 

If we want to be sure that the attacker cannot replay older 
packets, we must have two secret keys in the network: one for 
the last MAC, and one for the current MAC. This way, the 
attacker cannot use the current MAC from an intercepted 
packet as the last MAC in a malicious packet. 

We evaluate that the overhead introduced by keeping two 
secret keys instead of one is insignificant comparable to the 
advantage of messages being protected from alteration in multi-
hop networks. 
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VI. IMPLEMENTING RELIABLE AASP 

A. Packet loss 
Acknowledgements are implemented in AASP using a new 

field in the authentication header, which contains the value “1” 
if the packet is an acknowledgement and the value “0” if it is a 
data packet. We call this field the ack flag. 

During the authentication handshake, all packets except for 
the “Authentication Request” have the ack flag set, because 
each reply acknowledges the previous message exchanged 
between the two nodes. 

After the authentication connection has been established, 
because a two-way conversation is not expected, 
acknowledgements must be sent as stand alone packets. These 
packets contain the sequence number of the packet that is 
acknowledged, placed in the payload field, and the ack flag that 
is set. The sequence number will be represented as a new field 
in the AASP packets. The sequence values start from value “1” 
after the authentication connection is established.  

Each node stores two values for every established 
connection: the last received acknowledge (last_recv_ack) and 
the last sent acknowledge (last_sent_ack). After sending an 
ack, the value of last_sent_ack is updated to the value of the 
sequence number of the acknowledged packet. When receiving 
an ack, the value of last_recv_ack is updated to the sequence 
number received in the payload.  

In a hierarchical network topology, when a child sends a 
message to its parent with a sequence number of x, it starts a 
timer that expires after a configured period of time. During this 
period, if the ack is received, the timer is stopped, and the 
packet with sequence x+1 is sent. However, if no ack is 
received, the packet with sequence x is resent.  

This method has been implemented in the Authentication 
layer, by maintaining two arrays of integers, representing the 
last_sent_ack and last_recv_ack for each established 
connection. For example, last_recv_ack[i] is the sequence 
number of the last acknowledged packet sent to the neighbor 
with the identifier i.  

An array of timer interfaces is used through parameterized 
interfaces, an important feature of nesC language.  The timer is 
set to fire once by using Timer.startOneShot command and by 
specifying the period of time as an argument. In the Timer.fired 
event, the packet must be resent to the destination, therefore the 
packet must be stored locally until an acknowledgement is 
received. However, if an acknowledgement is received using 
Receive.receive event, the timer for that specific destination is 
stopped. The next message can now be sent by the main 
application. The main application execution must be delayed 
until the next message can be sent.  

B. Re-authentication 
Re-authentication is possible only after a previous 

connection is terminated, or both sensor nodes are restarted. 
The state of a connection is maintained at the Authentication 
layer by three arrays: auth, req and rd. For a neighbor i, auth[i] 
is “1” if an authentication connection has been established with 

that neighbor and “0” if not, req[i] is “1” if an “Authentication 
Request” has been sent to that neighbor and “0” if not, and rd[i] 
keeps the value of the challenge used for that neighbor.  

At the MAC (Message Authentication Code) layer, the state 
is kept using two arrays of hashes, both called last_hash, where 
last_hash[i] is the hash of the last message sent to or received 
from that neighbor. All this authentication data should be 
erased during connection termination.    

An array of timer interfaces is maintained through 
parameterized interfaces, as with acknowledge timers. When a 
packet is received at the Authentication layer, the timer 
associated with the source node i, is set to fire once after a 
configured period of time. In the Timer.fired event, the 
information in Authentication layer (auth[i], req[i] and rd[i]) is 
set to “0”. A message is sent to the sensor node i in which auth 
field is set to a specific termination code called TERM. The 
MAC layer recognizes the code and erases all authentication 
data from its level. If the destination is alive and has not 
restarted, it will reset all authentication data from MAC and 
Authentication layer. If the destination has restarted, it will 
ignore the message.  

The authentication handshake will be further initiated by 
the node that transmits data, in most situations, the child in the 
hierarchy.  

C. Altered packets 
The method was implemented by adding a new field in the 

authentication header containing the MAC of the current 
message that is computed using a different key.  

The hash of the payload is computed and put in the current 
MAC field of the packet, in MacLayerSenderP component, 
before sending the packet. 

In MacLayerReceiverP component, the first operation when 
receiving a packet is to check if the current MAC contained in 
the received packet is equal to the hash of the payload. If not, 
the packet is dropped at this level, or sent to the Authentication 
Layer with an error code in Auth field. We reserved the code 3 
for “Altered packet”. In AuthenticationLayerC component, if 
the Auth field is equal to 3, the packet is dropped, and an 
“Altered packet received” message is generated. 

VII. TESTING RELIABLE AASP 
The protocol has been implemented in TinyOS; therefore 

TOSSIM is the best solution for simulating AASP [13].  

We use a section of a real topology to test the first scenario, 
in which node 3 sends messages to node 1. This scenario is 
used to test the functionality of acknowledgements, connection 
termination and re-authentication. Therefore, we did not 
include the hash of the current message in the simulation 
output.  

Node 3 and 1 communicate using Reliable AASP; the first 
one sends data packets and the later one replies with 
acknowledgements. When the packets are lost, no 
acknowledgement is received and the packet is retransmitted. 
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When no packet is received by node 3 in the idle period of 
time, the connection between the nodes must be terminated.  

We consider that the authentication handshake takes place 
and ends successfully with an established authentication 
connection. After that, in Figure 2 we can observe that node 3 
starts sending packets to node 1 periodically. Packets are sent 
with auth field equal to “1” and ack field equal to “0”. The seq 
field contains the sequence number of the packet. Node 3 
responds with an acknowledge packet that has the ack field set 
to “1” and the payload containing the sequence number of the 
acknowledged packet. The figure presents two packets that are 
sent, received and acknowledged. 

 

Figure 2.  Normal flow of packets 

In Figure 3, the message with sequence number equal to 
“7” does not reach its destination. The timer set on node 3 
expires after the ack period and the node resends the message. 
After the idle period, the connection timer at the destination 
expires and the connection is terminated. Node 1 also sends a 
reset message containing a connection termination code, 
announcing the destination about the connection tear down. 
The code used in this implementation is “4” and is placed in the 
auth field. In this moment both nodes have the authentication 
data erased from both AASP layers. 

 

Figure 3.  Packet loss causing connection timeout 

In Figure 4, we can observe the authentication handshake 
being re-initiated by node 3 and terminating with another 
authentication connection established.  

 

Figure 4.  Re-authentication 

The packet with sequence number “7” is resent and 
received successfully at node 1 and acknowledged. The 
subsequent packets are treated in the same way. 

In the second scenario, we test the ability of Reliable AASP 
to provide integrity, and to detect that the packet has been 
altered during the routing process by a malicious node, or by 
errors during transmission. 

We use a section of a multi-hop network topology: node 3 
wants to send a data packet to node 1, but cannot reach it 
directly, only through node 2. Therefore it will use node 2 to 
route data packets to the destination node.  In this scenario, 
node 2 is a malicious node programmed by an attacker to 
modify the payload of the packets that it must route to 
destination.  

The previous version of the protocol did not provide packet 
integrity. Therefore packets could have been modified by an 
intermediate node, while the destination would not have 
noticed. However, it would have dropped packets starting with 
the next packet even if they would not have been altered, only 
because the altered packet would desynchronize the 
connection.  

In the current version of Reliable AASP, the packet 
includes the hash of the current message, called current hash, 
which is computed using a secret key different than the one that 
is used to compute the hash of the last message. This way, even 
if the intermediate node changes the payload, the packet will be 
dropped at the destination because the current hash contained 
in the packet would not match the hash computed at the 
destination. This does not desynchronize the connection, 
because the source node waits for an acknowledgement before 
sending the next message. If the message is dropped by the 
destination, the acknowledgement is not received, and the 
message is retransmitted.  

In Figure 5, we consider that node 2 does not alter the 
message. Therefore, we can observe the normal flow of 
packets. We omitted the authentication handshake process, and 
the information about the last hash and auth fields. 

 

Figure 5.  Non-malicious routing node 

The data packet is routed by node 2 and reaches node 1 
without being altered. Node 1 computes the hash of the payload 
using the second secret key, and it verifies if the value is equal 
to the current hash found in the packet. The values are equal, 
therefore node 1 generates an acknowledgement packet and 
sends it to node 3 through node 2. 

In Figure 6, we consider that node 2 alters the message 
received from node 3, and then routes it to node 1. Node 2 
cannot re-compute the current hash, because it does not have 
the secret key.  Therefore, it sends the packet with the altered 
payload and the old current hash. The altered data packet 
reaches node 1, and is inspected by the MAC layer, which 
detects that the computed hash is different from the one 
contained in the packet send it to the Authentication layer with 
an error code of “3” in the auth field of the packet. The 
Authentication layer receives the packet, generates an “Altered 
packet” message and drops the packet. It does not send any 

(3): AuthLayer: Packet sent seq=124 hash=0 auth=0. 
[..] 
(1): AuthLayer: Managed to authenticate myself to node 3 
(3): AuthLayer: Managed to authenticate myself to node 1 
(3): AuthLayer: Packet sent [seq=7 hash=4442 auth=1 ack=0 (3->1)] 
(1): AuthLayer: Packet received [seq=7 hash=4442 auth=1 ack=0 (3->1)] 
(1): AuthLayer: Packet sent [seq=7 hash=24000 auth=1 ack=1 (1->3)] 
(3): AuthLayer: Packet received [seq=7 hash=24000 auth=1 ack=1 (1->3)] 

(3): AuthLayer: Packet sent [msg=222 chash=64327  seq=1 ack=0 (3->1)] 
(2): RoutingLayer: Packet received [msg=222 chash=64327  seq=1 ack=0 (3->1)] 
(2): RoutingLayer: Packet sent [msg=222 chash=64327  seq=1 ack=0 (3->1)] 
(1): AuthLayer: Packet received [msg=222 chash=64327  seq=1 ack=0 (3->1)] 

(3): AuthLayer: Packet sent [seq=1 hash=4442 auth=1 ack=0 (3->1)] 
(1): AuthLayer: Packet received [seq=1 hash=4442 auth=1 ack=0 (3->1)] 
(1): AuthLayer: Packet sent [msg=1 hash=24000 auth=1 ack=1 (1->3)] 
(3): AuthLayer: Packet received [msg=1 hash=24000 auth=1 ack=1 (1->3)] 
(3): AuthLayer: Packet sent [seq=2 hash=123 auth=1 ack=0 (3->1)] 
(1): AuthLayer: Packet received [seq=2 hash=123 auth=1 ack=0 (3->1)] 
(1): AuthLayer: Packet sent [msg=2 hash=123 auth=1 ack=1 (1->3)] 
(3): AuthLayer: Packet received [msg=2 hash=123 auth=1 ack=1 (1->3)]

(3): AuthLayer: Packet sent [seq=7 hash=97 auth=1 ack=0 (3->1)] 
(3): AuthLayer: Timeout ack node 1 
(3): AuthLayer: Packet sent [seq=7 hash=97 auth=1 ack=0 (3->1)] 
(3): AuthLayer: Timeout ack node 1 
(3): AuthLayer: Packet sent [seq=7 hash=97 auth=1 ack=0 (3->1)] 
(3): AuthLayer: Timeout ack node 1 
(1): AuthLayer: Timeout connection node 3 
(1): AuthLayer: Reset packet sent [seq=0 hash=0 auth=4 ack=0 (1->3)] 
(3): AuthLayer: Packet received [seq=0 hash=0 auth=4 ack=0 (1->3)]
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acknowledgements, and after the ack period has passed on 
node 3, it resends the data packet.  

 

Figure 6.  Malicious routing node 

However, if the attacker continues to alter the data packets, 
it will cause the connection to terminate, because the correct 
data packet would not be received by the destination. This is 
considered to be a Denial of Service attack. 

VIII. DISCUSSION 
As we have stated in the previous section, a node that acts 

as a router between source and destination nodes can cause a 
Denial of Service attack by altering all messages that must be 
routed. The source and destination node would wait the idle 
time period and close the connection. The best solution would 
be to modify the routing protocol in order to choose another 
intermediate node to route the data packets to destination, if the 
current one does not deliver the packets correctly. Another 
solution would be to send negative acknowledgements to the 
source of the data packets in order to reduce the waiting time of 
the source node before choosing another route to destination. A 
serious problem would appear if the malicious node is the only 
way to the destination, meaning that it is the only node that can 
reach the destination. Therefore, even if we consider that the 
source and destination are at least two hops away, if the last 
hop is the only one that can reach the destination, changing the 
route would not exclude that node, therefore, the 
communication with that specific destination will be 
irremediably lost. 

Adequate values must be determined experimentally for 
acknowledge and idle periods. Both values must be computed 
for the specific deployed network and application. We consider 
that some requirements must be satisfied in order to find the 
appropriate values.  

In WSNs, we have two types of data messages: periodic 
and triggered. The periodic messages contain data that is 
periodically collected from the environment and sent to the 
base station. The triggered messages are generated in 
emergency situations and should reach the base station as soon 
as possible. The idle period of AASP should be greater than the 
period of data collecting. Otherwise, before every data 
collecting moment, the connection would expire and another 
connection must be established introducing overhead because 
of the authentication handshake. Because triggered messages 
can be generated anytime, it is impossible to configure the idle 
period using predictions about these messages.  

The acknowledge time period should be greater than the 
two-way message exchange time between two nodes multiplied 
by the maximum number of hops between two nodes in the 

sensor network. This way, if an authentication connection is 
established between two nodes that have the maximum number 
of hops between them, the acknowledgement should have time 
to reach the source of the data packets. Otherwise, the source 
would send the data packet, and the acknowledgement time 
period would expire before the acknowledgement would arrive 
and the data message will be unnecessary retransmitted.  The 
two-way message exchange time period depends on the 
network traffic. This value can only be determined 
experimentally after the deployment of the network and 
application. 

Therefore, idle time period depends on the application and 
its period of collecting and transmitting data. The acknowledge 
time period depends on the actual topology and the network 
traffic. 

A problem is introduced by the high quantity of 
acknowledgements required in order to detect packet loss. In 
the actual implementation, the number of acknowledgements is 
equal to the number of data packets. However, other methods 
exist in which an ack packet is used to acknowledge a set of 
data packets instead of one single packet, but they would 
require a large number of messages to be stored at the source 
node before they are acknowledged. 

Another problem regarding acknowledgements is that ack 
packets can also be lost. This would determine the source node 
to send the packet again. The duplicate would reach the 
destination and would be dropped because it would have the 
same sequence number. Duplicate packets are undesirable 
because they waste bandwidth and consume energy. 

Nodes are still vulnerable to flooding with “Authentication 
requests”, but this attack can be detected using Storm Control 
Mechanism [14]. 

IX. CONCLUSION 
Wireless Sensor Networks provide monitoring services in 

critical domains such as military, security and medical, a 
lightweight security protocol has to be used in order to secure 
the communication within the sensor network.  

AASP is a lightweight security protocol that was designed 
to provide security features such as authentication, freshness 
and intrusion detection. In this paper, we present three 
reliability enhancements to AASP: acknowledgements, re-
authentication and integrity hash. 

Acknowledgements are used to detect the loss of packets. 
When a node sends a data packet, it sets a timer and waits for 
an acknowledgement for that data packet. If the ack does not 
arrive until the timer has expired, the packet is resent.  

Re-authentication is needed in various situations, from 
desynchronized connections to restarted nodes. To proceed 
with the re-authentication, the previous connection must be 
terminated, otherwise all packets are blocked. The connection 
is terminated after a specific period of time in which no packet 
is received by the node.  

The initial protocol version did not provide the integrity of 
the current message. The enhanced protocol version contains 

(3): AuthLayer: Packet sent [msg=222 chash=64327  seq=1 ack=0 (3->1)] 
(2): RoutingLayer: Packet received [msg=222 chash=64327  seq=1 ack=0 (3->1)] 
(2): RoutingLayer: Packet sent [msg=999 chash=64327  seq=1 ack=0 (3->1)] 
(1): MacLayer: Packet received [msg=999 chash=64327  seq=1 auth=1 ack=0  (3-
>1)] 
(1): AuthLayer: Packet received [msg=999 chash=64327  seq=1 auth=3 ack=0  (3-
>1)] 
(1): AuthLayer: Altered packet received. Packet dropped. 
(3): AuthLayer: Packet sent [msg=222 chash=64327  seq=1 ack=0 (3->1)] 
[…] 
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an integrity hash placed in the packets. This hash is a Message 
Authentication Code computed using a second secret key. The 
hash is recomputed at the destination and compared with the 
one received in the packet. This way, altered packets can be 
dropped.  

Reliable AASP has been implemented in TinyOS by 
modifying the previous version of AASP. The protocol was 
tested in TOSSIM, a simulator for TinyOS applications. 

Further work will consist in testing the performance of the 
protocol in terms of energy and bandwidth consumption. The 
number of messages exchanged by sensor nodes has doubled 
because of the acknowledgements. However, 
acknowledgement packets are relatively small compared to the 
data packets, and are necessary in order to detect the loss of 
packets.  

Also as a future work, we wish to test our protocol on a real 
Wireless Sensor Network and compare our simulation results 
to the ones obtained on the physically deployed sensor 
network. 
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