
Automatic Service Retrieval in Converged Environments

Based on Natural Language Request

Edgar Camilo Pedraza

GIT

University of Cauca

Popayán, Colombia

epedraza@unicauca.edu.co

Julián Andrés Zúñiga

GIT

University of Cauca

Popayán, Colombia

gzja@unicauca.edu.co

Luis Javier Suarez Meza

GIT

University of Cauca

Popayán, Colombia

ljsuarez@unicauca.edu.co

Juan Carlos Corrales

GIT

University of Cauca

Popayán, Colombia

jcorral@unicauca.edu.co

Abstract—Finding services in dynamic and heterogeneous

contexts, as converged environments (Next Generation

Networks), is a very complex task and a crucial aspect in this

new paradigm of convergence. Therefore, it is essential to have

efficient and effective mechanisms for seeking services, to take

advantage of resources in the network (Web and

telecommunications services). Recent studies have developed

Service Creation Environments for Telecommunications and

Internet converged services, where user´s requests are

represented by complex expressions that describe the required

services. Thus, the search and selection of these services

depend on the ability of the developer to retrieve the most

suitable ones, converting this labor in an inefficient work. With

this in mind, and in order to improve the time to create

convergent services, this paper proposes a novel approach that

supports the automatic retrieval of services in converged

environments, considering functional and non-functional

requirements of end-user's requests in natural language, to

optimize the process of convergent services creation.

Keywords-automatic service retrieval; converged

environments; natural language request; Telecom and Internet

converged service.

I. INTRODUCTION

The ability to retrieve services that accomplish user
requests, has led to the development of various projects,
focused on service retrieval, understood as an important
stage in the composition process [1] that allows the user to
find and use a service based on a published description of its
functionality or operational parameters [2]. Currently,
services retrieval offers new challenges driven by the
convergence of Web and telecommunications domains
around the IP protocol, enabling the use of diverse and
innovative services, regardless of the customer access
network [3]. The above-mentioned, both with new trends in
application environments, where users are important
generators of content and applications, opens up towards a
new paradigm in which non-technical individuals are able to
design and create their own fully customized services by
integrating Web and telecommunication components, an
activity that years ago was done only by expert developers
due to its complexity.

From the above notion, in this paper, we propose an
architecture for automatic service retrieval in converged
environments, considering the services functional properties
(e.g., inputs, outputs, preconditions and effects) and

nonfunctional properties (e.g., QoS, such as: availability,
response time, reputation, etc) requested by the user in
natural language (NL), to speed up the creation of converged
services.

Typically, natural language processing (NLP) is useful to
analyze and produce semantic representations of the user's
request, providing information needed to identify the generic
control flow, as well as functional and nonfunctional
properties of services. Therefore, in this paper, we propose
the use of NLP techniques to automate the process of service
retrieval from requests made in NL. Thus, with semantic
descriptions supported by NLP techniques and adaptation of
algorithms for matching services and user's request, it is
possible to make an accurate and automatic retrieval of
services available within both Web and telecommunications
domains.

The remainder of this paper is structured as follows: in
the next section, we review the work related to the different
topics involving the current research. Then, in Section III, a
high level description of the proposed architecture is
presented. To provide greater clarity an example is discussed
in Section IV. Finally, in Section V we conclude the paper.

II. RELATED WORK

Service retrieval can be addressed under two main
approaches: syntactic and semantic. The searching of
services from a syntactic approach, considers either,
interfaces matching techniques or keyword searching [4]
that require exact matches at the syntactic level between the
descriptions of services and the parameters used, which
leads to deficient results in the retrieval of service. The
semantic approach allows the establishment of relationships
between concepts that define the functionality of services
(functional properties) and additionally, considers formal
descriptions constructed by non-functional properties [5],
achieving a more precise description of services, improving
the quality of results to retrieve services according to user
needs [6].

From the foregoing, and given the nature of the problem,
the proposed solution focuses on services retrieval based on
semantics and NLP. In this sense, some existing solutions are
described below. In [7], the IBM research team developed a
supercomputer that performs analysis phases of natural
language questions composed by hundreds of algorithms,
some of these phases present a similar approach with the

52

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

proposed ones in this paper. However, it requires a complex
system composed of multi-core hardware processor.

In [8], the authors address the selection of Web services
based on requests expressed in NL, this solution is based on
language restrictions, matching the structure of the request
with predefined patterns for decomposition into blocks using
keywords. Subsequently, the request is processed and
transformed into a data flow and control model expressing
the general logic of the new service. In addition, the authors
propose the use of a common ontology and a NL dictionary,
in order to relate textual fragments with functional
parameters of such services. This paper presents
disadvantages when limiting requests to simple sentences.

Based on concepts graphs and conceptual distance
measure, a solution is presented in [1]. Its purpose is to
calculate the similarity between the user's request,
represented by keywords, and services available in a
repository. Within the linguistic analysis, different processes
are performed: text segmentation, irrelevant word removal,
elimination of derivatives (stemming) and grammatical
corrections. The authors admit their proposal's lack of
dynamic adaptation at runtime.

The approach of [5] re-uses the converged services
creation environment of project SPICE (Service Platform for
Innovative Communication Environment) [9, 10] to facilitate
services retrieval with different types of semantic
annotations. The author focuses his work on the development
of an intelligent agent in charge of analyzing the application
in NL to extract semantic information, specifically the goals,
from which additional semantic information is derived, as
inputs and outputs, which are used to retrieve services and
report their order composition. However, retrieval's
throughput and processing critically depend on the amount
of services stored in the repository.

From the previous review, limitations are evident
because they are based on functional preferences, leaving
aside non-functional requirements that provide great sense of
services semantic descriptions. Finally, the automatic
retrieval of services in converged environments is a recent
topic of research, where, considering the above
characteristics, no work has been done.

III. ARCHITECTURE

In this section, we present our proposed architecture for
automatic services retrieval in converged environments,
which receives as input the user's request made in NL from a
mobile device, and gives a service ranking and a generic
control flow, as output. Figure 1 shows the modules of the
architecture, organized in four phases, which correspond to:
Natural Language Analysis, Matching, Recommender and
Inference phase, these modules are described below:

 Tokenizer: as input, it has the NL request and from this,
it obtains words, phrases or symbols called tokens.

 Filter Words: responsible for removing non-sense words
by comparing with a set of words previously identified.

 Words Tagging: tags words according to its grammatical
category (e.g., she "pronoun”, loves "verb", animals
"noun").

 Named Entity Recognition: classifies the words into
“functional” or “control” categories.

 Semantic Analyzer: in charge of semantic
disambiguation process of input words.

 Non Functional Requirements Recommender: searches
non-functional parameters in the repository from
functional request previously written by user.

 Services Recommender: searches request-service
information in the repository obtained from prior inputs
of users.

 Matcher Functional Requirements: obtains from cluster
services, the first rank, by matching functional
requirements.

 Ranking Generator: obtains the final ranking of services
considering, if exists, non-functional requirements, of
services, such as QoS.

 Cluster of Services: conformed by abstract descriptions
of Web and Telecommunications domain services,
which are conceptually organized as functional
properties.

 Upper Ontology: involves general concepts that are the
same across all knowledge domains (e.g. QoS, Telco,
IT, among many others), supporting the functional and
non-functional properties description and enabling the
ontology reasoning.

 Flow Ranking Repository: stores an association of
service (tags) obtained at the end of the semantic
matching phase.

 Non functional Repository: stores an association of non-
functional and functional parameters of cluster´s
services.

 Generic Flow Generator: generates an approximate
generic control flow, based on keywords taken from the
user request processed.

 Flow-Ranking Associator: associates the flow obtained
in the Generic Flow Generator module with the ranking
output of the matching semantic phase, obtaining the
final output of the architecture.

Most relationships between architecture modules are

sequential. However, there are interactions between stages
that do not follow this behavior. Below, a more detailed
description is made, of the different phases and processes
that take place inside of them.

53

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

Figure 1. Architecture of the System.

A. Phase of Natural Language Analysis (NLA)

Initially, a user makes a request from his/her mobile

device in NL, which is received by the Tokenizer, where

tokenization operation starts, it obtains simple lexical units

from complex sentences, by removing existing spaces.

Additionally, this module corrects simple lexical errors that

may arise in the request, i.e., misspelled word errors that are

easily identifiable. Afterward, the sentences are processed

through Filter Words Module and later they pass through

Words Tagging, with which, it is pretended to classify (tag)

words of the sentence according to their grammatical

category. The module also aims to undertake an analysis

based on linguistic rules, trying to identify and compensate

syntactic and structural errors. Some techniques used to

implement the modules above are GateNLP, OpenNLP,

Apache UIMA, among others. One of the most important is

GateNLP [12], which offers an architecture that contains

functionality for plugging in all kinds of NLP software:

(POS taggers, sentence splitters, named entity recognizers)

and all are java based.

Once completed these operations, the request is more

consistent, but remains complex. Therefore, we established

the Named Entity Recognition, which performs a

classification between “Control” and “Functional” words

according to its meaning, from which, control words are

directed to Flow Ranking Generator Module, whereas

functional words are directed to Semantic Analyzer

and also to Recommender modules. Within the final stage of

linguistic analysis, it is important to consider the semantic

ambiguity, for which the Semantic Analyzer identifies the

correct sense of words according to their context,

i.e., identifies the correct one from a word within multiple

meanings that can occur in a sentence. This allows an easy

identification of keywords with their respective grammatical

category (e.g., noun, verb, adjective, conjunction) that

define the user's request and with which service selection

will be made. Thus, this stage offers the user greater

flexibility in the use of language and allows the

establishment of a wider range of possibilities. On the other

hand, this phase also allows conditional words identification

(e.g., if, then, later) and words of order (sequence)

(e.g., first, second) important for the Generic Flow

Generator in the inference phase.

B. Recommender

This phase is composed of two modules and it is

executed while matching phase performs the searched of

services with functional requirements. Additionally, the

phase shows a hint to the user of generic control flow stored

in a repository, if the user select one, the execution of the

two remaining phases would be avoided, and straightaway

the process finished, otherwise, the process continues in the

matching phase. For the above task, the module in charged

is the Service Recommender, which obtains a list of generic

control flow with services of the repository from obtained

keywords classified as functional. The second one module is

named Non Functional Requirements Recommender, this

searches non-functional parameters from the Non

54

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

Functional Repository using the obtained keywords

classified as functional, the result is shown to the user, and

if he/she selects one, it becomes the input of the Ranking

Generator module.

C. Matching Phase

At this stage there are two important modules: the first
one is related with the use of an upper ontology for the
matching of functional requirements, to obtain the first
ranking of services (Matcher Functional Requirements). The
second one refers to the Generator Ranking module which
use a weighting algorithm, once the first ranking of services
is obtained, it weights ranking with non-functional keywords
which are taken from the Recommender phase, for which,
the Generator Ranking module uses a timer. It provides a
time out for an entry of those parameters. If after a certain
time, income of non-functional words does not exist, the
module will get a ranking with only functional parameters.
Non-functional parameters are very important in the request
because they represent aspects such as quality, efficiency,
availability, etc., with which is possible to offer more
adequate services to users. It considers that request can be
enriched with non-functional parameters, in order to provide
optimum results that best fit to end user requirements.

D. Inference phase

This stage begins with the Generic Flow Generator,
which receives as input Keywords classified as Control
obtained from NER through NLA phase. With this, the
module infers a basic structure of ordered operations that
represents the basic control flow, useful for the composition
of services, which is performed after the service retrieval.
Flow-Ranking Associator receives as inputs a service
ranking from the semantic matching phase and the basic
control flow (obtained from the previous module) in order to
generate the services generic control flow that is stored in
Flow Ranking Repository and becomes the output of the
whole architectures.

IV. EXAMPLE

This section describes the functionality of the proposed

architecture through an example that details each of the

phases of the process for automatic retrieval of services in

converged environments. To do so, consider the following

situation. Using natural language, an executive requests from

his cell phone a meetings coordination service, so: "I want to

receive traffic reports of Bogotá via messages, minutes

before the meeting and if I have not made it to the meeting, I

want to receive audio content of the decisions taken."

A. Information Retrieval with Natural Language Analysis

1) Tokenizer: the result of this procedure is as

follows:

“I –Want –to- receive – traffic – reports – of – Bogotá…”

2) Filter Words: removes unimportant words for the

request (in this case, words as: I - want are removed),

resulting:

“To receive – traffic – reports – Bogotá…”

3) Words Tagging: labels and classifies the words

obtained before as follows:

“To receive: Verb – traffic: Noun...”

4) Named Entity Recognition: the system classifies

the words into “functional” or “control” categories,

grouping the words of the functional category in blocks

separated by words of the control category, resulting in:

“Block 1: Receive (functional) –traffic(functional) –

reports(functional)… Control: before (control) –

and(control) – if(control)…Block 2… ”

5) Semantic Analyzer: at this point we detail the

semantic disambiguation of the words classified as

functional, based on dictionary [11]. For this example,

"report" can be verb or noun, and may have several

meanings including: a written document describing the

findings of some individual or group, a short account of the

news, and others, from which the system determines the

second choice as relevant to this case, using a variant of the

Lesk algorithm mentioned in [9].

B. Recommender

1) Recommender Services: it compares obtained

keywords classified as functional with a flow ranking

recommendation repository, considering the case for the

existence of some match with the words: “traffic reports”,

the result shown to the executive, is a list of generic flows

with services, outcome from previous requests to the

system:

“First: SendSMS to GetTraffic …

Second: GetPosition to GetTraffic to SendSMS …”

The executive doesn’t select any recommendation, so the

remaining processing continues.

2) Non Functional Requirements Recommender: this

recommender searches non functional parameters from the

Non Functional Repository using the obtained keywords

classified as functional, the result, considering the case for

the existence of matches with the words: “traffic reports” is

as follows:

"Precision, real-time ..."

The executive chooses the option “precision” and it’s

accepted by the system.

C. Semantic comparison between the processed request and

Service Cluster

1) Matcher functional parameters: the input for this

stage is represented by two blocks: " receive traffic reports

Bogotá message minute meeting" and "receive content

audio decision”, now assuming that, from the process of

comparison and service retrieval, the following services

were obtained: for the first block: SendSMS, GetTraffic,

GetSMS, SetUpMeeting, AlertMeeting, GetMMS, for the

second block: GetAudioContent, SendAudioContent,

SendMMS, getMMS, GetPosition. These services are

organized according to the functional parameters

55

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

comparison (goals, inputs and outputs) getting two ranking

of services for each input block respectively: 1-

AlertMeeting, 2-GetTraffic,3-GetSMS, 4-GetMMS, 5-

SetUpMeeting and 6-SendSMS; and 1-GetPosition, 2-

GetMMS, 3-GetAudioContent, 4-SendAudioContent, 5-

SendMMS.

2) Ranking Generator: The system waits a determined

time for the input of non-functional parameters, as the

executive chose the parameter "precision", the retrieved

ranking of service is subjected to a weighting based on this

non-functional parameter, generating a new ranking for the

two blocks: 1-AlertMeeting, 2-GetTraffic, 3-GetMMS, 4-

GetSMS, 5-SendSMS and 6-SetUpMeeting; and 1-

GetPosition 2-GetAudioContent, 3-GetMMS, 4-

SendAudioContent and 5- SendMMS.

D. Retrieval-based inference

1) Generation of the generic flow control: as a result

we have two generic blocks and the words classified as

control. “before and if not”.

2) Association of ranking and flow: in this phase, the

system replaces the generic blocks generated in the previous

phase, for the list of services retrieved for each block.

3) Result Storage: the words are stored keeping a

relationship with the services that were retrieved, given the

possibility of future requests, reduces processing time.

V. CONCLUSION

In this article, we presented an approach that speeds up

creation of services in converged environments, critical

issues in service deployment by companies in the

telecommunications sector. The proposed architecture starts

off from a request made by the user in NL from a mobile

device and delivers a generic control flow as output which

identifies the most suitable services to users. Our proposal

also includes the use of top level ontology, which provides

greater performance at services selection and also uses a

requests-services repository, where records that speed up

retrieval time are stored. No incoming requests restriction

allows inexperienced users to make requests to the system,

unlike other solutions that use templates restricting user’s

expression.

As a complementary work, we can consider methods for

making non-textual requests, like voice, adding a linguistic

level (phonetic) to the NLP, increasing the range of end-

users. Also, we do not discard the possibility of considering

user information, such as Profile and Context.

REFERENCES

[1] Pop F.-C., Cremene M., Tigli J.-Y., Lavirotte S., Riveill M., and
Vaida M., Natural Language based On-demand Service Composition.
International Journal of Computers, Communications & Control,
2010. V (4): pp. 871-883.

[2] Bandara, A., Semantic Description and Matching of Services for
Pervasive Environments, in Engineering, Science and Mathematics
2008, Universidad de Southampton Southampton. pp. 100-150.

[3] ITU-T, General overview of NGN, in Scope and Propose 2004, ITU-
T. pp. 10.

[4] Corrales, J.C., Behavioral matchmaking for service retrieval, in
Computer Science 2008, University of Versailles Saint-Quentin-en-
Yvelines: Versailles. pp. 88.

[5] Sutthikulphanich, K., A Demonstration on Service Compositions
based on Natural Language Request and User Contexts, in Telematics
2008, Norwegian University of Science and Technology: Trondheim.
pp. 172.

[6] Al-Masri, E. and Q. Mahmoud, Discovering the Best Web Service:A
Neural Network-based Solution, in Proceedings of the 2009 IEEE
International Conference on Systems, Man, and Cybernetics 2009:
San Antonio, TX, USA. pp. 4250-4255.

[7] IBM (2011). "What is Watson?” Retrieved August 13, 2011, from
http://www-03.ibm.com/innovation/us/watson/what-is-
watson/index.html.

[8] Bosca, A., Corno F., Valetto G., and Maglione G., On the fly
Construction of Web Services Compositions from Natural Language
Requests. Journal of Software, 2006. 1(1): pp. 40-50.

[9] Tarkoma, S., Prehofer, C., Zhdanova A., Moessner K., and Kovacs
E., (2007). SPICE: Evolving IMS to Next Generation Service
Platforms. International Symposium on Applications and the Internet
Workshops. Hiroshima, Japan: pp. 6.

[10] Cordier, C., and Kranenburg, H., Specification of the Knowledge
Management Framework, The SPICE project, January 2006, pp 1-49.

[11] Nica, I., Automatic semantic disambiguation, in Language and
communication 2002, University of Barcelona: Barcelona.

[12] GateNLP (2011). “Developing Language Processing Components
with GATE Version 6” Retrieved August 15, 2011 from
http://gate.ac.uk/sale/tao/split.html.

56

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

http://www-03.ibm.com/innovation/us/watson/what-is-watson/index.html
http://www-03.ibm.com/innovation/us/watson/what-is-watson/index.html
http://gate.ac.uk/sale/tao/split.html

