
Complex Event Processing for Usage Control

in Service Oriented Infrastructures

Alexander Wahl, Stefan Pfister, Bernhard Hollunder

Department of Computer Science

Hochschule Furtwangen University

Furtwangen, Germany

alexander.wahl@hs-furtwangen.de, stefan.pfister@hs-furtwangen.de, bernhard.hollunder@hs-furtwangen.de

Abstract—Service oriented architectures (SOA) should adhere

to clearly defined quality attributes, which are formalized

using policies. Well-known attributes in the security realm are

access control and usage control. Our approach is to analyze

operations (e.g., data deletion) and data flows that occur within

a SOA. We use the extracted information to monitor policies,

especially usage control policies. We focus on usage control,

which is by far not as well investigated as access control, but

highly relevant for providers of sensitive data who do not want

to lose control on their data. We show that there is a transfor-

mation that maps usage control formulas, formalized in an

appropriate policy language, to rules based on Complex Event

Processing (CEP) technology. We further argue that by the

combination of a policy language, the CEP technology, sensor

components and a transformation from policy language to

CEP rules SOA infrastructures can be enabled for usage con-

trol.

Keywords - Service Oriented Architecture; Web service;

Usage Control; Complex Event Processing;Policies.

I. INTRODUCTION

Today, data are commonly exchanged in distributed comput-
er systems. For some of these data stakeholders have increas-
ing interest to control access to these data and to further
control the usage of data once they are distributed. For ex-
ample, medical data of patients generated by physicians
during treatment are to be highly protected. Such data may
be accessed by authorized persons only, like other physi-
cians, but may usually not be handed over to any others
without permission of the patient. In Germany this is regulat-
ed by law, e.g., the so-called “Bundesdatenschutzgesetz” [1].
Access to data is covered by access control, but to prohibit
propagation of data a concept for usage control is required.

Access control deals with the question: Who may access
data at first instance? For access control, there are well-
known approaches, such as the role based access control
(RBAC) principle [2].

A. Usage control

Usage control [3] deals with the question: what happens
to data once they are given away? Distributed usage control
[4] is an extension of usage control in distributed systems.

There are two main parties in usage control: data provid-
ers and data consumers. A data provider owns data and
controls access to them. The data consumer wants to gain
access to and perform operations on these data. Once the
access is granted, data are handed over to the data consumer.
Without usage control the data provider from then on has lost
control on his data. The data consumer may perform un-
wanted operations on the data of which the data provider
may not get informed. For example, confidential information
intended to be used within a company and its suppliers
would be passed to a competitor without being noticed. With
usage control the data provider regains control on his data.
He may now specify usage control rules.

Usage control rules describe the conditions a certain op-
eration on data is allowed or prohibited. Such conditions are
either provisions or obligations. Provisions are those that
refer to the past and the present, respectively whether data
may be released in the first place. Conditions that govern the
present and future usage of the data are so-called obligations
[5]. Typical examples for usage control rules are “Delete a
particular document within 30 days”, “Do not give data D to
anybody else”, “Data D may be copied at most 2 times”,
“Data D may only be sent if contract exists” or “Using data
D for some purpose requires an acknowledgement of data
provider”. Usage control rules are of different types, as can
be seen with the given examples. They either relate to time,
cardinality, environment, purpose or occurrence of events
[6].

A usage control policy is a formal representation of a us-
age control rule. It consists of usage control formulas. To
describe usage control policies in a formally correct manner
usage control policy languages were introduced, like e.g.,
Obligation Specification Language (OSL), Usage Control
(UCON) and Extended Privacy Definition Tool (ExPDT).
We will get back to these later.

92

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

Once usage control policies are formulated and applied to
data, the infrastructure is in charge to ensure compliance to
that sets of formulas, i.e. policies. That means that once a
usage control formula is violated the execution of an opera-
tion should inform the data provider. Some usage control
formulas, like “Do not give data D to anybody else” or “Data
D may be copied at most 2 times”, may even hinder the
execution of an operation (e.g., copying the data) and return
a fault.

B. Using Complex Event Processing for Usage control

For usage control, especially for distributed usage con-
trol, the availability of appropriate technologies is still very
limited. There are a few approaches on usage control, as we
will see in section “Related Work”. They are either prototyp-
ic, proprietary, or they are limited to SOA infrastructures that
contain specific components, such as enterprise service bus
(ESB). All these approaches have in common that they en-
force policy formulas, defined in a specific policy language,
directly to the runtime system (see Figure 1). We think, that
by introducing a solution based on a well-established and
well-tested technology, like Complex Event Processing
(CEP) [7], we can overcome the issues described before. We
further argue that the usage of CEP simplifies the mapping
from policy language formulas to a runtime environment.

In this work, we combine a usage control policy lan-
guage, the CEP technology, sensor components and a trans-
formation of usage control formulas to CEP rules. The nov-
elty of our approach is that instead of mapping a policy di-
rectly to the runtime, e.g. by the usage of a proprietary inter-
preter [8], we introduce an intermediate step that maps a
policy to CEP rules. The main advantages are the usage of a
well-established and well-tested technology and the less
complexity of mapping to the runtime, since the evaluation
of CEP rules is performed by an already existing component,
namely the CEP engine.

We use the Continuous Query Language (CQL) [9] to
formulate the CEP rules. With CQL, the formula is still
comprehensible once the formulas are transformed. The
advantage is that the mapping from CEP rules to a runtime
environment already exists. In addition our solution can be
used to enable existing SOA infrastructures for usage control
with minor modifications only. Our approach is based on the
overall architecture described in [10].

This paper is structured as follows: Section 2 gives an
overview on related work in the area of usage control. In
Sections 3 we describe our approach in detail. In Section 4

we describe a strategy to transform usage control formulas
into a technical representation. We further discuss events and
show how CEP rules are evaluated based on events. We will
also show that there is a direct relationship between formu-
las, events and necessary information to be extracted from
the SOA infrastructure. Section 6 is about the relationship
between CEP rules and policies. In the last section, we will
conclude our work and give a forecast to our future work.

II. RELATED WORK

In this section, we will describe the most significant publica-
tions on usage control, usage control models and usage con-
trol policy languages.

Hilty, Pretschner and coauthors gave, in a series of publi-
cations, a detailed overview on enforcement of usage control
[11, 12] and distributed usage control [4]. They introduce a
usage control policy language called Obligation Specifica-
tion Language (OSL) [6], monitors for OSL-based usage
control [8] and usage control in service oriented architectures
(SOA) [13]. OSL enables to formulate temporal descriptions
of obligations. In “Monitors for Usage Control” a prototypi-
cal implementation of a Java based obligation monitor for
OSL is mentioned [8]. In “Usage Control in Service-
Oriented Architectures” they stated, that “Implementing the
architecture is a next step” [13].

Park and Sandhu introduced the concept of usage control
[14] and the ABC-Model for usage control (UCONABC) [3,
15]. This model integrates Authorization (A), oBligation (B)
and Condition (C) components. The latter, conditions, are
environmental restrictions before or during usage of data.
However, to our best knowledge they did not implement
their approach for a SOA infrastructure.

Gheorghe et al. implemented a policy enforcement
mechanism on ESB level [16]. They called it xESB, which is
an ESB enhanced by an additional component based on Java
Business Integration (JBI) [17]. First they used a specific
policy language, but in a following publication they enforce
UCON policies, respectively POLPA [18], which is used to
implement the UCON model. This elegant approach is lim-
ited to SOA infrastructures using ESB technology. However,
there are SOA infrastructures that are not implemented from
scratch and that do not use ESB. And for those this approach
is not applicable.

Kaehmer et al. [19–22] introduce ExPDT. With ExPDT,
permissions, prohibitions and orders based on contextual
conditions or obligations can be described. It enables for
access and usage control, and also supports the comparison
of two policies.

To sum up, there are several expressive policy languages
for usage control. With these policy languages obligations,
conditions, permissions, prohibitions and orders can be for-
malized, depending on their expressiveness. Also a few im-
plementations to monitor usage or to enforce usage control in
infrastructure are available. However, these are either proto-
typic, limit themselves by requirements on the existing SOA
infrastructures, and use more complex transformations from
the policy language to the runtime.

Figure 1. Mapping of policies to runtime. 1) Direct mapping; 2)

Intermediate mapping 3) Mapping to runtime.

93

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

III. USAGE CONTROL POLICY LANGUAGES

To build a SOA and to apply usage control to it is a quite
sophisticated task. If a SOA is built from scratch usage con-
trol mechanisms can be taken into account from the very
beginning. An appropriate approach, like xESB, can be cho-
sen. The same approach can be used for SOA infrastructures
that already use an ESB. But in real world, most often there
is an existing SOA that is to be enabled to usage control, as
described in the example of the Hong Kong Red Cross by
[23]. But unfortunately not all SOA infrastructures do use an
ESB, and for those alternative approaches are needed.

Within an existing SOA based on Web service technolo-
gy, service providers and service consumers exchange data.
Thereby some of these data might be sensitive ones, like e.g.,
confidential patient data within a hospital, or data for internal
use only within a company. To achieve usage control, such
data are associated with usage control policies. Well-known
candidates for specifying declarative policies are (among
others): eXtensible Access Control Markup Language
(XACML) [24], Extended Privacy Definition Tool (ExPDT)
[20] (compliance validation, privacy preferences, permis-
sions, prohibitions), Usage Control (UCON) [14], and Obli-
gation Specification Language (OSL) [6].

XACML offers a policy language to describe general ac-
cess control requirements. It offers a request/response lan-
guage to determine whether an action is allowed or not. The
focus of XACML is on access control. However, to a certain
extend it can be used for usage control, especially if en-
hanced by additional features. U-XACML [25], for example,
enhances XACML with UCON features.

OSL supports the formalization of a wide range of usage
control requirements. It mainly focuses on obligation. The
language contains propositional operators (AND, OR, NOT,
IMPLIES), temporal operators (UNTIL, AFTER, DURING,
WITHIN), cardinality operators (REPUTIL, REPMAX) and
permit operators (MUST, MAY).

UCON is a general model for usage control. With
UCONABC a policy specification is provided to support pre-
and post-authorization, obligation rules and conditions.

Finally, ExPDT is a policy language developed to define
privacy preferences. It allows describing permissions, prohi-
bitions and orders that are to be followed once certain con-
textual conditions are met or if obligations have to be ful-
filled.

In this work, we will limit to a transformation from OSL
formulas to CEP rules (due to the restricted number of pag-
es). The expressivity of OSL is sufficient for the examples
used in this work. Transformations from other languages,
like ExPDT, will be future work.

IV. APPROACH

In general, a SOA consists of multiple collaborating entities:
i) service providers and service consumers, ii) data providers
and data consumers, iii) infrastructure, iv) data and v) events.
Service providers offer some functionality that is utilized by
service consumers. A service consumer itself may be a ser-
vice provider for another service consumer (transitivity).
Similar to that, data providers offer data to data consumer.

Transitivity also applies here. The infrastructure is the col-
lectivity of system components, frameworks, applications,
etc. necessary to run the SOA.

Data are information sets that are generated, copied and
deleted at the infrastructure (see Figure 2). Creating data
means that information is passed to and stored within the
infrastructure, e.g., adding a dataset for a person to a data-
base. Copying data means, that data existing within the infra-
structure is duplicated and sent elsewhere. For example,
copied data are exchanged between data provider and con-
sumer within the body of a message. Deleting data describes
removing of data from the infrastructure. In any case the
infrastructure is involved at any operation that is executed on
data, and is therefore potentially able to inform about these
operation.

An alternative to inform a third party, e.g., a usage con-
trol monitor, about an operation on data is the following one:
At an existing SOA infrastructure so-called sensor compo-
nents are applied at appropriate entities, e.g., a SOAP mes-
sage handler attached to a Web service, a JBI component for
an ESB (if part of the SOA), or a sniffer that analyses the
traffic at the application servers port (see also [10]). The aim
of the sensor component is i) to detect operations executed
on data (either before or after the execution), and ii) to in-
form a third party by emitting an event.

In the context of sensor components an event is a mes-
sage that identifies the executed operation and the affected
data. It contains a timestamp and additional data, e.g., the
principal of an operation. The event is emitted by the sensor
component and received by the third party, like the usage
control monitor. Within the usage control monitor the in-
cluded formulas are evaluated based on the received events.

The usage control formulas to be evaluated are specified
by a developer via a usage control policy language. After-
wards they are transformed by the developer to a representa-
tion the monitor is able to interpret.

For example: A service consumer calls a Web service in
order to get a copy of a certain data. The Web service there-
fore calls the infrastructure for a copy of this data. Within the
infrastructure, each time a data is copied a sensor component
is involved prior to copying. This sensor component produc-
es a copy event. This event, for example, includes infor-
mation that identifies the data to be copied, a timestamp and
principal of the copy request. The copy event is then emitted
by the sensor component and received by a usage control
monitor.

Figure 2. Operations on data produce events

94

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

The usage control monitor is responsible to evaluate if
the usage control formulas are satisfied. The usage control
monitor, in essence, is the CEP engine equipped with formu-
las as required. The evaluation is performed based on the
events received by the CEP engine.

V. STRATEGY

In the previous section, we described an approach that uses
events (emitted by sensor components that are attached to the
SOA entities) to evaluate a CEP rule, i.e., a transformation of
a usage control policy. In this section we will consider in
more detail the transformation from a usage control formula,
specified in a policy language, to a CEP rule (Figure 1). We
will further illustrate how a CEP rule is evaluated based on
events. We will also show that there is a correspondence
between CEP rules and the events that are necessary to de-
termine if a CEP rule is satisfied, i.e., a corresponding usage
control policy is satisfied.

The notion “satisfied” in the context of usage control pol-
icy means that its related formulas are fulfilled. In the con-
text of CEP rules satisfied means that based on the collected
events the preconditions of a CEP rule evaluate to true and
the CEP rule fires. If a CEP rule fires a corresponding event
is generated and emitted to a subsequent actor (see Figure 3).
The actor then initiates a corresponding action, e.g., a delet-
ing data.

Usage control is applied to a SOA by binding usage con-
trol policies to data using the sticky policies paradigm [26].
Each formula follows a pattern similar to “if <condition>
then <action>” or “if <condition> then (not) <usage>” [6].
For example, assume the usage control formula “Delete
document within 30 days”. This formula can be reformulat-
ed: “if document D will not be deleted within 30 days then
indicate violation”. In OSL this formula is specified as fol-
lows:

In this example delete specifies the event, data specified a
parameter and D the value of the parameter data. The trans-
formation of this formula to a CEP rule is based on the fol-
lowing considerations:

1) This formula specifies time duration of 30 days. So
we have two points in time: a creation timestamp
and deletion timestamp.

2) We want to get informed if the formula is violated.
The first consideration implies that we need to get informed
on the creation of data and on the deletion of data. From that
information we can derive that we will need two events to
evaluate satisfaction of this formula: create(D) and de-
lete(D). We suppose that D is not copied in the meantime.
Create(D) is emitted on data creation, delete(D) on data
deletion.

As we already described, the infrastructure does have the
potential to inform about an operation that is performed on
data. So it needs to be enabled to emit events. We therefore
modify the infrastructure by adding sensor components at
appropriate positions.

A sensor component in brief is a piece of software that is
attached to the SOA infrastructure at appropriate SOA enti-

ties. Sensor components can be of different types. They can
be message handlers (e.g., SOAP message handlers), JMX
client components, sniffers or even GUI elements. These
sensor components have in common, that they collect and
analyse actual data within the SOA infrastructure and emit
these data as events. For a more detailed description please
refer to [10].

Since sensor components are additional components one
has to expect certain performance penalties once they are
applied. However, the performance penalty for extracting
data and emitting an event should be small. And since the
expensive (in terms of execution time) evaluation of CEP
rules can be performed in asynchronous manner by a third
party, e.g. a dedicated machine running a CEP engine, the
influence on performance can be kept to a minimum.

In our example we need to apply a sensor component that
emits create events, and a second one that emits delete
events. The events emitted by the sensor components are
defined by a developer. His task is to analyze i) which in-
formation is necessary to evaluate the CEP rule, ii) from
where in the SOA the information can be fetched. Based on
this he defines the event types. Figure 2 shows a few exem-
plary event types. There are several other events one can
think of, also complex events. For example the event con-
sumption(D), which might be defined as create(D) OR
copy(D) consumption(D). In words, each time D is creat-
ed or copied, a consumption event is produced. With that
further usage control formulas can be formulated, like “IF
consumption(D) THEN check(contract)” or “IF consump-
tion(D) THEN inform(data provider)”.

The events are collected by corresponding event streams
in the CEP engine, i.e. the input of a CEP rule. Each CEP
rule has its own set of event streams. By these streams the
CEP rule defines which events must be emitted by the infra-
structure and the sensor components, respectively. So, for
each CEP rule there is a well-defined set of events to evalu-
ate its satisfaction. In consequence, there is a direct relation
between CEP rules and events. A CEP rule is transformed
from a usage control policy formula. Therefore the relation
to events also applies the latter (and finally to the verbal
formulation of them).

In the example “Delete document within 30 days”
stressed before there are two event streams, namely: Cre-
ateStream (contains all collected events create(D)) and De-
leteStream(contains all events delete(D)). These two event
streams are the input of our CEP rule. An instance of an
event create(D) is named createEvent, respectively delet-
eEvent for delete(D).

As considered previously, we want to get informed on
violation. By the way, it is also possible to indicate that the
formula is satisfied. In either case we can again use events to
denote violation or satisfaction. In our example we define an
event violation(D) that is emitted by the CEP rule once the
formula is not satisfied. In other words, the output of our
CEP rule is an instance of violation(D), namely violation-
Event.

A CEP rule defines how events are correlated. Consider
the OSL formula “Within(30days,delete,{(object,D)})”.

Within(30days,delete,{(data,D)})

95

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

Based on the information of the former text this policy can
be translated into a CEP rule:

In other words: createEvents from CreateStream and delet-
eEvents from DeleteStream that operate on same data, and
whose timespan between creation and deletion is greater than
30 days cause an violationEvent to be created and emitted.

It is obvious, that if events of create(D) and of delete(D)
are not emitted by sensor components the formula cannot be
evaluated and fire a violationEvent.

Summing up, a SOA infrastructure has to be enabled for
CEP based usage control. Therefore, sensor components
have to be installed in the SOA at appropriate positions.
Sensor components analyze information within the SOA and
emit events. Events are collected and correlated to evaluate
CEP rules. There is a direct relation between a CEP rule and
the events needed. Since the CEP rule is a transformation of
a policy language formula this relation also applies to the
latter.

VI. CEP RULES AND POLICIES

Between usage control policies, usage control formulas
and CEP rules there are several relations, as depicted in Fig-
ure 3.

First, a usage control policy is a set of usage control for-
mulas, i.e., it consists of zero or more formulas. A usage
control policy is (usually) satisfied iff all of its usage control
formulas are satisfied.

A usage control formula can be described by one or more
CEP rules. So a usage control formula is satisfied iff all the
corresponding CEP rules are satisfied.

If a CEP rule is satisfied a corresponding events is gener-
ated and emitted. The event (e2 in Figure 3), or a set of
events, is used to trigger a related actor that executes a relat-
ed action.

A CEP rule is evaluated by the CEP engine based on a
set of events (e1 in Figure 3). So for each CEP rule the num-
ber and kinds of events that are necessary to evaluate it is
known.

Since the kinds of events to evaluate a CEP rule are
known, the sensor components that need to be installed in the
SOA infrastructure is also known.

Finally, a usage control policy can be represented by a set
of CEP rules. That is because a usage control policy consists
of a set of usage rules, and a set of usage control rules can be
represented by a corresponding set of CEP rules. So, a usage
control policy is satisfied iff a corresponding set of CEP
rules.

VII. CONCLUSION AND FUTURE WORK

A. Summary

The mapping of usage control formula to the runtime is a
difficult and complex task. The introduction of an intermedi-
ate step, as shown in Figure 1, is reasonable and brings ad-
vantages. By using CEP, the mapping of a usage control
policy to the runtime is reduced to mapping to a CEP rule. In
this work we mapped an exemplary OSL formula to CEP
rule. However, we think that this is also feasible for other
policy languages, which is future work. This mapping can be
performed more easily. The satisfaction of a CEP rule to
runtime is determined by the CEP engine. However, it is
necessary to install sensor components in the SOA infra-
structure. With these sensor components the SOA is enabled
to emit events on operations.

Using CEP the requirements to an SOA infrastructure
and the necessary changes within to enable for CEP are kept
to a minimum. The approach does not require special CEP
components, like e.g., ESB, to be applicable. It is flexible to
apply to a variety of SOA infrastructures. Just sensor com-
ponents need to be applied. The sensor components and
events needed to evaluate satisfaction of a CEP rule are in a
direct relation. However, currently the sensor components
need to be implemented, configured and installed manually.

With CEP not only single formulas can be mapped, but
also whole policies. This is interconnecting CEP rules with
each other.

B. Perspective

The perspective of our work is to enrich existing systems
by Quality of Service (QoS) attributes insufficiently support-
ed or yet unsupported at all. We see usage control as one of
these QoS attributes. Based on an architecture described
elsewhere [10] we currently implement exemplary usage
control formulas using CEP technology, and the appropriate
sensor components.

We further work on an implementation of a tool chain
that supports developers to equip existing SOA infrastruc-
tures with QoS attributes [27]. Also a part of these efforts is
to automate the transformation from a policy (formula) to a
CEP rule. Beside these steps we also plan to include further
analysis, like the influence of sensor components on the
performance.

Finally, the statements within Section 6 need to be for-
mulated and proved in a more formal manner. Also, this will
be part of our future work.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for giv-
ing us helpful comments. This work has been partly support-

SELECT createEvent, deleteEvent

FROM CreateStream, DeleteStream

WHERE createEvent.Data = deleteEvent.Data

AND deleteEvent.Time - createEvent.Time > 30 days

THEN CREATE violationEvent

Figure 3. Relations between CEP rules and usage control policies.

96

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

ed by the German Ministry of Education and Research
(BMBF) under research contract 17N0709.

REFERENCES

[1] Bundesministerium der Justiz, Bundesdatenschutzgesetz (BDSG).
Available: http://www.gesetze-im-internet.de/bdsg_1990/index.html,
last accessed 2011, June 27.

[2] M. Benantar, Access Control Systems: Gardners Books, 2010.

[3] J. Park and R. Sandhu, “The UCONABC usage control model,” ACM
Trans. Inf. Syst. Secur, vol. 7, pp. 128‐174, 2004.

[4] A. Pretschner, M. Hilty, and D. Basin, “Distributed usage control,”
Commun. ACM, vol. 49, pp. 39‐44, 2006.

[5] M. Hilty, D. Basin, and A. Pretschner, “On Obligations,” in Lecture
Notes in Computer Science, Computer Security – ESORICS 2005, S.
Di Vimercati, P. Syverson, and D. Gollmann, Eds.: Springer Berlin /
Heidelberg, 2005, pp. 98–117.

[6] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter, “A
Policy Language for Distributed Usage Control,” in Lecture Notes in
Computer Science, Computer Security – ESORICS 2007, J. Biskup
and J. López, Eds.: Springer Berlin / Heidelberg, 2007, pp. 531–546.

[7] D. C. Luckham, The power of events: An introduction to complex
event processing in distributed enterprise systems. Boston: Addison-
Wesley, 2002.

[8] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter,
“Monitors for Usage Control,” in IFIP International Federation for
Information Processing, Trust Management, S. Etalle and S. Marsh,
Eds.: Springer Boston, 2007, pp. 411–414.

[9] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query
language: semantic foundations and query execution,” The VLDB
Journal, vol. 15, pp. 121‐142, http://dx.doi.org/10.1007/s00778-004-
0147-z, 2006.

[10] A. Wahl, A. Al-Moayed, and B. Hollunder, An Architecture to
Measure QoS Compliance in SOA Infrastructures. Available:
http://www.thinkmind.org/index.php?view=article&articleid=service
_computation_2010_2_10_20064, last accessed 2011, June 27..

[11] Manuel Hilty and Er Pretschner et al, Enforcement for Usage
Control- An Overview of Control Mechanisms Deliverables 1 and 2
DoCoMo Euro-Labs Publication, last accessed 2011, June 27.

[12] A. Pretschner, M. Hilty, F. Schutz, C. Schaefer, and T. Walter,
“Usage Control Enforcement: Present and Future,” Security Privacy,
IEEE, title=Usage Control Enforcement: Present and Future, vol. 6,
no. 4, pp. 44–53, 2008.

[13] A. Pretschner, F. Massacci, and M. Hilty, “Usage Control in Service-
Oriented Architectures,” in Lecture Notes in Computer Science,
Trust, Privacy and Security in Digital Business, C. Lambrinoudakis,
G. Pernul, and A. Tjoa, Eds.: Springer Berlin / Heidelberg, 2007, pp.
83–93.

[14] J. Park and R. Sandhu, Eds, Towards usage control models: beyond
traditional access control.

[15] R. Sandhu and J. Park, “Usage Control: A Vision for Next Generation
Access Control,” in Lecture Notes in Computer Science, Computer
Network Security, V. Gorodetsky, L. Popyack, and V. Skormin, Eds.:
Springer Berlin / Heidelberg, 2003, pp. 17–31.

[16] G. Gheorghe, S. Neuhaus, and B. Crispo, “xESB: An Enterprise
Service Bus for Access and Usage Control Policy Enforcement,” in
IFIP Advances in Information and Communication Technology, Trust
Management IV, M. Nishigaki, A. Jøsang, Y. Murayama, and S.
Marsh, Eds.: Springer Boston, 2010, pp. 63–78.

[17] Sun Java Community Process Program, Sun JSR-000208 Java
Business Integration. Available:
http://jcp.org/aboutJava/communityprocess/final/jsr208/index.html,
last accessed 2011, June 27.

[18] F. Baiardi, F. Martinelli, P. Mori, and A. Vaccarelli, “Improving Grid
Services Security with Fine Grain Policies,” in Lecture Notes in
Computer Science, On the Move to Meaningful Internet Systems
2004: OTM 2004 Workshops, R. Meersman, Z. Tari, and A. Corsaro,
Eds.: Springer Berlin / Heidelberg, 2004, pp. 123–134.

[19] Martin Kähmer and Maike Gilliot, Extended Privacy Definition Tool.
Available: http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-328/paper12.pdf, last
accessed 2011, June 27.

[20] M. Kahmer, M. Gilliot, and G. Muller, Eds, Automating Privacy
Compliance with ExPDT, 2008.

[21] M. Kahmer and G. Muller, Automating Privacy Compliance for
Personalized Services.

[22] M. Kähmer, ExPDT: Vergleichbarkeit von Richtlinien für
Selbstregulierung und Selbstdatenschutz, 1st ed. Wiesbaden: Vieweg
+ Teubner, 2010.

[23] G. Gheorghe, B. Crispo, D. Schleicher, T. Anstett, F. Leymann, R.
Mietzner, and G. Monakova, “Combining Enforcement Strategies in
Service Oriented Architectures,” in Lecture Notes in Computer
Science, Service-Oriented Computing, P. Maglio, M. Weske, J. Yang,
and M. Fantinato, Eds.: Springer Berlin / Heidelberg, 2010, pp. 288–
302.

[24] eXtensible Access Control Markup Language (XACML), 2005.

[25] M. Colombo, A. Lazouski, F. Martinelli, and P. Mori, “A Proposal on
Enhancing XACML with Continuous Usage Control Features,” in
Grids, P2P and Services Computing, F. Desprez, V. Getov, T. Priol,
and R. Yahyapour, Eds.: Springer US, 2010, pp. 133–146.

[26] G. Karjoth, M. Schunter, and M. Waidner, “Platform for enterprise
privacy practices: privacy-enabled management of customer data,” in
Proceedings of the 2nd international conference on Privacy
enhancing technologies, Berlin, Heidelberg: Springer-Verlag, 2003,
pp. 69‐84.

[27] B. Hollunder, A. Al-Moayed, and A. Wahl, “A Tool Chain for
Constructing QoS-aware Web Services,” in Performance and
dependability in service computing: Concepts, techniques and, V. C.
E. Cardellini, K. R. L. J. C. Branco, J. C. Estrella, and F. J. Monaco,
Eds, Hershey: Information Sci Refer Igi, 2011.

97

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

