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Abstract—Web service composition is the process of 

aggregating a set of existing web services in order to create 

new functionality. Current approaches to automatic web 

service composition are based, in general, on various Artificial 

Intelligence (AI) techniques, in particular search algorithms. 

Automated planning is one of the most frequently used. A 

limitation of these approaches is that they do not involve 

learning from previous attempts in order to improve the 

planning process. A new approach for automatic web service 

composition, based on Reinforcement Learning, is proposed. 

The method is suited for problems that do not define a 

particular goal to be reached but a reward that has to be 

maximized. 

Keywords - Web Services; Reinforcement Learning. 

I.  INTRODUCTION 

The process of composing web services according to a 

workflow enables business-to-business and enterprise 

application integration [1]. Automatic web service 

composition and execution is a multidisciplinary issue, 

involving three important domains: Service Oriented 

Architecture (SOA), Semantic Web (SW), and Artificial 

Intelligence (AI). 

Service Oriented Architecture represents a style of 

building distributed systems that deliver functionality as 

services, with the additional emphasis on loose coupling 

between interacting services. Web services technology is a 

popular choice for implementing SOA [1]. 

Semantic Web [2] is a vision for a web that may be used 

by humans and also by computers. SW has at its core the 

concept of ontology, defined as a “formal representation of 

a set of concepts within a domain and the relationships 

between those concepts”. Semantic Web services are 

combining the versatility of web services with the power of 

semantic based technologies. A semantic web service 

processes data that is described using terms formally 

defined in common ontology. Semantic web services offer 

new possibilities such as: automatic discovery, automatic 

invocation, automatic composition and automatic 

monitoring. 

The field of Artificial Intelligence has a long history. At 

the beginning, the expectations from AI were very high. 

Even if these expectations were not fulfilled, AI offers 

valuable techniques for knowledge representation and 

problem solving. The semantic web vision promotes the 

concept of software agent provided with “intelligence”. A 

software agent is usually considered to be a complex 

software entity capable of a certain degree of autonomy in 

order to accomplish tasks on behalf of human or other 

software agents. A semantic web agent is capable of 

accessing, processing and managing web resources and web 

services. A classification of software agents based on their 

abilities to cope with the environment is proposed in [3]: 

 Simple reflex agents. A simple reflex agent is acting 

based on what it perceives from the environment and 

ignores the past. 

 Model-based reflex agents. The agent maintains a 

time-based environmental model and acts based on the 

current situation taking into account the old model of 

the environment. 

 Goal-based agents. In this category are included agents 

driven by a particular goal. The goal-based agent uses 

an environment model. The actions to be taken in order 

to achieve the goal are automatically discovered. 

 Utility-based agents. A utility function is a more 

general performance measurement than a goal. The 

utility-based agent tries to maximize one or more utility 

functions that are considered known. 

 Learning agents. A learning agent is superior to the 

agents presented before because it can operate also in 

an unknown environment. Such an agent is able to learn 

from its actions and becomes more competent by 

learning. 

Learning is one of the most important feature of a human 

being. Machine learning tries to employ this mechanism by 

offering various techniques. Such techniques can be used to 

develop software agents capable of learning, in order to 

better interact with their environment. 
There is a wide range of applications that can be 

addressed using web services composition. In many cases, 
the problem is specified by a particular goal that needs to be 
reached. For instance, a semantic web-enabled software 
agent may receive a request for buying a particular product. 
In this case, the agent will try to produce a workflow 
containing services for searching products and also services 
for secure payment. A solution based on classical search 
algorithms or AI Planning is suited for this scenario. Our 
previous work in this area can be found in [4].  

However, in many other scenarios a concrete goal cannot 
be explicitly specified. Instead, it is possible to compute a 
reward/penalty (from the environment) depending on the 
actions performed by the agent. In these cases, the objective 
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of the agent will be to maximize the total reward. Such 
scenarios may be addressed by reinforcement learning 
techniques. 

The rest of this paper is organized as follows: Section 2 
presents a scenario addressed using machine learning 
techniques, Section 3 provides an introduction to 
reinforcement learning and related methods. Section 4 
presents a composition technique based on reinforcement 
learning and semantic web technologies. The proposed 
composition system architecture and the model for the 
semantic web services are described also in this section. 
Section 5 presents some related work and Section 6 
concludes the paper. 

II. A MOTIVATING EXAMPLE 

Consider a software system responsible for generating 
advertisement information for various users accessing an e-
commerce Web site. The system is based on web services. 
Each web service is associated with a particular category of 
advertisement. The system is responsible for composing a set 
of web services into a business process. A problem is how to 
select particular web services, in order to offer relevant 
advertisement information for the user. Such a problem is not 
suited to be addresses using AI Planning techniques, since 
the goal of the problem cannot be easily specified in a formal 
manner. 

When a user enters the web site for the first time, the 
system is not aware about his interests. In this case, the 
system will create a random list of web services and will 
show the generated advertisement to the user. If the user 
access some parts of the advertisement information, the 
related web services will be associated with a positive 
reward. The next time the user enters the web site, the 
system will select with a higher probability the services 
associated with the positive reward. Each web service will be 
associated with a particular probability for each user. In the 
initial case all web services have the same probability. These 
probabilities will be updated during the service usage 
depending on the user actions. Thus, the system will learn to 
provide the user with more relevant advertisement 
information. 

This example may be seen as a particular case of the n-
armed bandit problem [5]. In the Probability Theory, the n-
armed bandit problem is the problem in which one is faced 
repeatedly with a choice among n different options. Each 
option is associated with a reward. The reward for a 
particular choice is known only after that choice is selected. 
A probabilistic reward is also possible. The objective of the 
problem is to maximize the expected total reward over a 
period of time. The solution to this problem should respect a 
tradeoff between exploration and exploitation. Exploration 
means that new options are selected during the service usage, 
while exploitation is a greedy method of selecting the best 
options already tried. 

III. REINFORCEMENT LEARNING 

Reinforcement learning is informally defined as a 

learning method that tries to maximize a kind of reward. 

The reward is usually a numerical value and it is application 

specific. A software agent based on reinforcement learning 

has no rules to tell him what to do. Instead, it must discover 

what actions yield to a maximum reward. Reinforcement 

learning do not characterizes some learning methods but a 

learning problem [6]. 

A reinforcement learning system is characterized by 

three elements [6]: a) a policy, b) a reward function and c) a 

value function. The policy defines the behavior of the agent. 

The policy can be seen as a relation between the 

environment state and the actions that can be taken. For 

simple problems the policy is just a lookup table. The 

reward function defines the goal of the learning agent. The 

reward function maps the state of the environment to a 

reward, indicating the desirability of that state. The 

objective of the learning agent is to maximize the total 

reward. The value function specifies what is “good” for the 

agent considering a long term, while the reward indicates 

the short term desirability. The rewards are directly given by 

the environment while the value functions must be in 

general estimated by the agent. 

A reinforcement learning model may be formally 

defined as a Markov Decision Process (MDP) [6]: 

 

 A finite set of environment states S; 

 A finite set of actions A; 

 The probability that action   in state   at time   will 

lead to state   at time    : 

 

  (   
 )    (                 )        

 

 The expected reward associated with the transition from 

the state   to the state    with the transition 

probability   (   
 ): 

 

  (   
 )   (                      )       

 

In MDP, the agent, also called the decision maker, 

interacts with the environment at each of a sequence of 

discrete time steps,            . At each time   the agent 

perceives the state of the environment     . The agent also 

receives a numerical reward,        when it enters a new 

state      . MDP allows to model uncertainty in a sense that 

the actions can be stochastic. 

The agent implements a policy, a mapping from states to 

actions, called   . For instance,   (   ) is the probability 

that      if     . 

The reinforcement learning problem is to find an optimal 

policy that will maximize the expected return. The expected 

return is defined as some specific function of the reward 

sequence. Typically, the expected return is defined as a 

discounted sum over the individual rewards: 

 

∑    
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The discount factor   satisfies       and the action 
   is given by the policy  . 

Reinforcement learning was successfully employed in 
various applications such as: elevator scheduling, inverted 
cart-pole, robot control, game playing, and others. 
Reinforcement learning was particularly successful in the 
game of Backgammon [7] for instance. 

IV. PROPOSED COMPOSITION METHOD 

A. System architecture 

The proposed system architecture is depicted in Figure 1. 
The system is based on a closed-loop mechanism. The 
closed-loop, also known as feedback loop, allows the 
composer component to use the feedback generated by the 
executor component.  
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Figure 1.  Proposed system architecture. 

The proposed architecture is based on the architectural 
pattern called “pipes and filters”. The composition request 
will usually indicate to the system what web services have to 
be used and what reward should be considered. The 
architecture modules are described further. 

Request Analyzer component verifies if the composition 
request is valid. RL Composer component receives the 
composition request from Request Analyzer and tries to 
aggregate a workflow containing web services based on the 
functional requirements, defined by the request. This 
workflow is abstract (it contains abstract web services). 

Selector component is responsible with the concrete 
services selection. 

RL Composer uses the Learning Module component to 
take into account the feedback from previous executions of 
the generated workflow. BPEL Executor component is 
responsible for executing the workflow and for generating 

the feedback. The feedback is used by the Learning Module 
to acquire new information about the problem. 

The composition system uses BPEL (Business Process 
Execution Language) [8] for representing workflows based 
on Web services. BPEL Generator component is responsible 
for generating the workflow BPEL description. BPEL 
Executor component is responsible for executing the BPEL 
workflow and it uses the BPEL Engine Connector 
component representing the interface to a BPEL Engine, 
which is a software container designed to run BPEL 
processes. 

BPEL Decorator component is responsible for modifying 
the BPEL workflow by inserting calls to a web service 
exposed by Learning Module component. This web service, 
called RegisterRewardService, is invoked after the 
invocation of a web service associated with a reward. This 
mechanism for collecting the reward is presented in Figure 2. 
Considering a workflow containing three web services, the 
BPEL Decorator will insert two calls to RegisterReward-
Service, one for each Web service associated with a reward. 
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Figure 2.  The mechanism for collecting the reward. 

The call to RegisterRewardService will contain the ID of 
the workflow, the name of the web service invoked, the 
name of the web method called, the name of the parameter 
associated with the reward and the value of the reward (the 
value of the parameter associated with the reward). This 
mechanism for collecting the reward is independent of the 
used BPEL engine. 

B. Web service model 

One important aspect of the composition process is how 
the Executor component determines the rewards during the 
execution of web services. A call to a Web service 
corresponds to the execution of an action in the 
reinforcement learning model. The semantic web service is 
modeled by its input parameters, output parameters, 
preconditions and effects (Figure 3).  
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Figure 3.  The model of a semantic Web service. 

The preconditions define what conditions related to the 
environment has to hold in order to call the service. The 
effects define what conditions are true after the service is 
executed. Preconditions and effects are addressing design 
time requirements and they are not changing during the 
runtime. On the other hand, inputs and outputs are known 
only at runtime. One reason for using preconditions and 
effects for the Web service model is to combine 
reinforcement learning with AI planning techniques. 

Considering this model of a Web service, the reward 

corresponding to such a Web service will be associated with 

one of the output parameters (Figure 3). The output 

parameter is associated with a formal concept defined by an 

ontology. The composition request has to contain the reward 

parameter. While executing a Web service workflow, the 

Executor component will determine the reward associated 

with each Web Service call. At the end of the execution, the 

list of rewards will be sent to the Learning Module. It is not 

necessary that all web services contained in the executable 

workflow to be associated with a reward. There can be web 

services that have no reward parameter. The reward itself is 

computed by dedicated web services. 

C. Composition algorithm 

The algorithm used to guide a reinforcement learning 
agent is trying to find out which actions are “good” by 
considering the past experience. Many reinforcement 
learning algorithms are based on estimating the value 
function. A value function is a function of state-action pair 
that estimates the future rewards that can be expected for the 
agent that selects a particular action, in a given state. A 

specific value function is associated with a particular policy. 
Formally, a value function is defined as: 
 

  ( )    {       }    { ∑  

 

   

           }  ( ) 

 
This equation defines the value of a state   under the 

policy  , denoted   ( ) .    specifies the expected value 
considering that the agent uses the policy  . 

The algorithm used for composition is based on value 
iteration algorithm. Value iteration algorithm recursively 
calculates the value function so that in the end the optimal 
value function is computed: 
 

    ( )      ∑    
 

  

[    
     ( 

 )]         ( ) 

 
The idea is to select the best action, denoted by     , 

according to the sum of the expected rewards over the 
possible states available from that action. The sum is 
discounted,      .     

  represents the probability that 

action   in state   will lead to state    while     
  represents 

the expected immediate reward. After the optimal or near 
optimal value function is computed the optimal policy is 
generated with the following method: 

 

 ( )          ∑    
 

  

[    
     ( 

 )]       ( ) 

 
The proposed algorithm is the following: 

 
1  V   vector 
2  threshold   small positive value 
3  delta   0 
4  optimalPolicy   NULL 
5  

6  foreach state s in S 

7  V(s) = rand() 

8  end foreach 

9  

10 do 

11  delta   0 
12 v   V(s) 
13 V(s)   ComputeValueFunction() 
14 delta   Max (delta, |v - V(s)|) 
15 while threshold > delta 

16  

17 optimalPolicy   ComputeOptimalPolicy()
   

Firstly, the value function vector V is randomly 
generated (lines 6-8). After that, the value functions for each 
state are computed until the difference between two 
consecutive iterations is smaller than a predefined threshold 
(lines 10-15). In the end, the optimal or near optimal value 
function will be available. Finally (line 17), the optimal 
policy is computed based on the optimal value function. 

In this phase, we are considering only a limited set of 
candidate problems. These limitations are related to the fact 
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that the value iteration method has to know the expected 
rewards and the transition function between states. Currently 
we are investigating also some other methods for solving the 
reinforcement learning problem. For instance, temporal 
difference methods seem to be good candidates for 
addressing the limitations of the proposed approach. 

V. RELATED WORK 

The majority of existing solutions for automatic web 

service composition is based on classical search or AI 

planning combined with logic formalisms. Hendler et al. [9] 

and Sirin et al. [10] present a method for automatic web 

service composition using Hierarchical Task Network 

(HTN) planning. HTN planning is an approach to automated 

planning in which the dependency among actions is given in 

the form of hierarchical networks. 

Yuhong et al. [11] and Yang et al. [12] present two 

methods for automatic web service composition using the 

“Graphplan” algorithm. The Graphplan algorithm uses a 

data structure called planning graph to search for a solution 

to a given planning problem. This method of planning is 

very fast and many AI planners are based on this approach.  

McDermott [13] extends the PDDL (Planning Domain 

Definition Language) planning language in order to 

associate web services with planning operators. The 

extended planning operator is able to represent the messages 

exchanged by a web service. This approach transforms the 

composition problem into an AI planning problem. 
Hongbing et al. [14] propose a reinforcement learning 

algorithm for web services composition based on logic of 
preference. However, this solution seems to have limited 
applicability.  

Web service composition using Markov Decision 
Processes was approached by Gao et al. [15]. In this case, the 
composition is based on QoS description for Web services. 
Workflow patterns like sequential, conditional or parallel 
constructs are modeled using Markov Decision Processes.   

VI. CONCLUSION 

A new approach for web service composition, based on 
reinforcement learning is proposed. There are cases when a 
concrete goal is not possible to specify. In these cases, a 
software agent tries to learn from the environment in order to 
maximize the total reward. 

The proposed solution uses a value iteration algorithm in 
order to find an optimal or near optimal policy. In order to 
employ this method we consider a semantic web service 
model. The difference compared with other approaches is 
that our composition system uses a web service model based 
on Semantic Web technologies. The composition system 
uses an architecture based on a closed-loop mechanism. An 
original mechanism for collecting the reward, independent of 
the BPEL execution engine, is also proposed.  

 Composition based on reinforcement learning can be 
used in scenarios where a concrete goal cannot be explicitly 
specified. Instead, it is possible to compute a reward/penalty 

depending on the actions performed by the agent. Markov 
Decision Process is used for modeling uncertainty. This is 
another advantage over composition methods based on 
classical planning. 

Since this research is still a work in progress, the next 
objective is to implement a prototype for demonstrating the 
proposed idea. Another future development will be to 
combine the reinforcement learning method presented here 
with AI planning techniques.  
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