
Using Machine Learning in Web Service Composition

Valeriu Todica, Mircea-Florin Vaida, Marcel Cremene

 Technical University of Cluj-Napoca, Cluj-Napoca, Romania

valeriu.todica@gmail.com, Mircea.Vaida@com.utcluj.ro, cremene@com.utcluj.ro

Abstract—Web service composition is the process of

aggregating a set of existing web services in order to create

new functionality. Current approaches to automatic web

service composition are based, in general, on various Artificial

Intelligence (AI) techniques, in particular search algorithms.

Automated planning is one of the most frequently used. A

limitation of these approaches is that they do not involve

learning from previous attempts in order to improve the

planning process. A new approach for automatic web service

composition, based on Reinforcement Learning, is proposed.

The method is suited for problems that do not define a

particular goal to be reached but a reward that has to be

maximized.

Keywords - Web Services; Reinforcement Learning.

I. INTRODUCTION

The process of composing web services according to a

workflow enables business-to-business and enterprise

application integration [1]. Automatic web service

composition and execution is a multidisciplinary issue,

involving three important domains: Service Oriented

Architecture (SOA), Semantic Web (SW), and Artificial

Intelligence (AI).

Service Oriented Architecture represents a style of

building distributed systems that deliver functionality as

services, with the additional emphasis on loose coupling

between interacting services. Web services technology is a

popular choice for implementing SOA [1].

Semantic Web [2] is a vision for a web that may be used

by humans and also by computers. SW has at its core the

concept of ontology, defined as a “formal representation of

a set of concepts within a domain and the relationships

between those concepts”. Semantic Web services are

combining the versatility of web services with the power of

semantic based technologies. A semantic web service

processes data that is described using terms formally

defined in common ontology. Semantic web services offer

new possibilities such as: automatic discovery, automatic

invocation, automatic composition and automatic

monitoring.

The field of Artificial Intelligence has a long history. At

the beginning, the expectations from AI were very high.

Even if these expectations were not fulfilled, AI offers

valuable techniques for knowledge representation and

problem solving. The semantic web vision promotes the

concept of software agent provided with “intelligence”. A

software agent is usually considered to be a complex

software entity capable of a certain degree of autonomy in

order to accomplish tasks on behalf of human or other

software agents. A semantic web agent is capable of

accessing, processing and managing web resources and web

services. A classification of software agents based on their

abilities to cope with the environment is proposed in [3]:

 Simple reflex agents. A simple reflex agent is acting

based on what it perceives from the environment and

ignores the past.

 Model-based reflex agents. The agent maintains a

time-based environmental model and acts based on the

current situation taking into account the old model of

the environment.

 Goal-based agents. In this category are included agents

driven by a particular goal. The goal-based agent uses

an environment model. The actions to be taken in order

to achieve the goal are automatically discovered.

 Utility-based agents. A utility function is a more

general performance measurement than a goal. The

utility-based agent tries to maximize one or more utility

functions that are considered known.

 Learning agents. A learning agent is superior to the

agents presented before because it can operate also in

an unknown environment. Such an agent is able to learn

from its actions and becomes more competent by

learning.

Learning is one of the most important feature of a human

being. Machine learning tries to employ this mechanism by

offering various techniques. Such techniques can be used to

develop software agents capable of learning, in order to

better interact with their environment.
There is a wide range of applications that can be

addressed using web services composition. In many cases,
the problem is specified by a particular goal that needs to be
reached. For instance, a semantic web-enabled software
agent may receive a request for buying a particular product.
In this case, the agent will try to produce a workflow
containing services for searching products and also services
for secure payment. A solution based on classical search
algorithms or AI Planning is suited for this scenario. Our
previous work in this area can be found in [4].

However, in many other scenarios a concrete goal cannot
be explicitly specified. Instead, it is possible to compute a
reward/penalty (from the environment) depending on the
actions performed by the agent. In these cases, the objective

122Copyright (c) IARIA, 2012. ISBN: 978-1-61208-215-8

SERVICE COMPUTATION 2012 : The Fourth International Conferences on Advanced Service Computing

of the agent will be to maximize the total reward. Such
scenarios may be addressed by reinforcement learning
techniques.

The rest of this paper is organized as follows: Section 2
presents a scenario addressed using machine learning
techniques, Section 3 provides an introduction to
reinforcement learning and related methods. Section 4
presents a composition technique based on reinforcement
learning and semantic web technologies. The proposed
composition system architecture and the model for the
semantic web services are described also in this section.
Section 5 presents some related work and Section 6
concludes the paper.

II. A MOTIVATING EXAMPLE

Consider a software system responsible for generating
advertisement information for various users accessing an e-
commerce Web site. The system is based on web services.
Each web service is associated with a particular category of
advertisement. The system is responsible for composing a set
of web services into a business process. A problem is how to
select particular web services, in order to offer relevant
advertisement information for the user. Such a problem is not
suited to be addresses using AI Planning techniques, since
the goal of the problem cannot be easily specified in a formal
manner.

When a user enters the web site for the first time, the
system is not aware about his interests. In this case, the
system will create a random list of web services and will
show the generated advertisement to the user. If the user
access some parts of the advertisement information, the
related web services will be associated with a positive
reward. The next time the user enters the web site, the
system will select with a higher probability the services
associated with the positive reward. Each web service will be
associated with a particular probability for each user. In the
initial case all web services have the same probability. These
probabilities will be updated during the service usage
depending on the user actions. Thus, the system will learn to
provide the user with more relevant advertisement
information.

This example may be seen as a particular case of the n-
armed bandit problem [5]. In the Probability Theory, the n-
armed bandit problem is the problem in which one is faced
repeatedly with a choice among n different options. Each
option is associated with a reward. The reward for a
particular choice is known only after that choice is selected.
A probabilistic reward is also possible. The objective of the
problem is to maximize the expected total reward over a
period of time. The solution to this problem should respect a
tradeoff between exploration and exploitation. Exploration
means that new options are selected during the service usage,
while exploitation is a greedy method of selecting the best
options already tried.

III. REINFORCEMENT LEARNING

Reinforcement learning is informally defined as a

learning method that tries to maximize a kind of reward.

The reward is usually a numerical value and it is application

specific. A software agent based on reinforcement learning

has no rules to tell him what to do. Instead, it must discover

what actions yield to a maximum reward. Reinforcement

learning do not characterizes some learning methods but a

learning problem [6].

A reinforcement learning system is characterized by

three elements [6]: a) a policy, b) a reward function and c) a

value function. The policy defines the behavior of the agent.

The policy can be seen as a relation between the

environment state and the actions that can be taken. For

simple problems the policy is just a lookup table. The

reward function defines the goal of the learning agent. The

reward function maps the state of the environment to a

reward, indicating the desirability of that state. The

objective of the learning agent is to maximize the total

reward. The value function specifies what is “good” for the

agent considering a long term, while the reward indicates

the short term desirability. The rewards are directly given by

the environment while the value functions must be in

general estimated by the agent.

A reinforcement learning model may be formally

defined as a Markov Decision Process (MDP) [6]:

 A finite set of environment states S;

 A finite set of actions A;

 The probability that action in state at time will

lead to state at time :

 (
) ()

 The expected reward associated with the transition from

the state to the state with the transition

probability (
):

 (
) ()

In MDP, the agent, also called the decision maker,

interacts with the environment at each of a sequence of

discrete time steps, . At each time the agent

perceives the state of the environment . The agent also

receives a numerical reward, when it enters a new

state . MDP allows to model uncertainty in a sense that

the actions can be stochastic.

The agent implements a policy, a mapping from states to

actions, called . For instance, () is the probability

that if .

The reinforcement learning problem is to find an optimal

policy that will maximize the expected return. The expected

return is defined as some specific function of the reward

sequence. Typically, the expected return is defined as a

discounted sum over the individual rewards:

∑

()

123Copyright (c) IARIA, 2012. ISBN: 978-1-61208-215-8

SERVICE COMPUTATION 2012 : The Fourth International Conferences on Advanced Service Computing

The discount factor satisfies and the action
 is given by the policy .

Reinforcement learning was successfully employed in
various applications such as: elevator scheduling, inverted
cart-pole, robot control, game playing, and others.
Reinforcement learning was particularly successful in the
game of Backgammon [7] for instance.

IV. PROPOSED COMPOSITION METHOD

A. System architecture

The proposed system architecture is depicted in Figure 1.
The system is based on a closed-loop mechanism. The
closed-loop, also known as feedback loop, allows the
composer component to use the feedback generated by the
executor component.

Abstract

Plan

BPEL

Document

Request

Analyzer

Service

request RL

Composer
Selector

BPEL

Generator

Concrete

Plan

BPEL

Decorator

BPEL

Executor

BPEL Engine

Connector

BPEL

Engine

Learning

Module

RL

feedback

Figure 1. Proposed system architecture.

The proposed architecture is based on the architectural
pattern called “pipes and filters”. The composition request
will usually indicate to the system what web services have to
be used and what reward should be considered. The
architecture modules are described further.

Request Analyzer component verifies if the composition
request is valid. RL Composer component receives the
composition request from Request Analyzer and tries to
aggregate a workflow containing web services based on the
functional requirements, defined by the request. This
workflow is abstract (it contains abstract web services).

Selector component is responsible with the concrete
services selection.

RL Composer uses the Learning Module component to
take into account the feedback from previous executions of
the generated workflow. BPEL Executor component is
responsible for executing the workflow and for generating

the feedback. The feedback is used by the Learning Module
to acquire new information about the problem.

The composition system uses BPEL (Business Process
Execution Language) [8] for representing workflows based
on Web services. BPEL Generator component is responsible
for generating the workflow BPEL description. BPEL
Executor component is responsible for executing the BPEL
workflow and it uses the BPEL Engine Connector
component representing the interface to a BPEL Engine,
which is a software container designed to run BPEL
processes.

BPEL Decorator component is responsible for modifying
the BPEL workflow by inserting calls to a web service
exposed by Learning Module component. This web service,
called RegisterRewardService, is invoked after the
invocation of a web service associated with a reward. This
mechanism for collecting the reward is presented in Figure 2.
Considering a workflow containing three web services, the
BPEL Decorator will insert two calls to RegisterReward-
Service, one for each Web service associated with a reward.

Service1

R

RegisterReward

Service

Service2

Service3

RegisterReward

Service

Service1

Service2

Service3
RR

R

Figure 2. The mechanism for collecting the reward.

The call to RegisterRewardService will contain the ID of
the workflow, the name of the web service invoked, the
name of the web method called, the name of the parameter
associated with the reward and the value of the reward (the
value of the parameter associated with the reward). This
mechanism for collecting the reward is independent of the
used BPEL engine.

B. Web service model

One important aspect of the composition process is how
the Executor component determines the rewards during the
execution of web services. A call to a Web service
corresponds to the execution of an action in the
reinforcement learning model. The semantic web service is
modeled by its input parameters, output parameters,
preconditions and effects (Figure 3).

124Copyright (c) IARIA, 2012. ISBN: 978-1-61208-215-8

SERVICE COMPUTATION 2012 : The Fourth International Conferences on Advanced Service Computing

Ontology

Service

Precond 1

Precond 2

Precond p

Effect 1

Effect 2

Effect q

Concept1

Concept2Concept3

isAssociatedWithReward

RewardType

Inputs

Output m

Output 1

Output 2

xsd:double

hasValue

Figure 3. The model of a semantic Web service.

The preconditions define what conditions related to the
environment has to hold in order to call the service. The
effects define what conditions are true after the service is
executed. Preconditions and effects are addressing design
time requirements and they are not changing during the
runtime. On the other hand, inputs and outputs are known
only at runtime. One reason for using preconditions and
effects for the Web service model is to combine
reinforcement learning with AI planning techniques.

Considering this model of a Web service, the reward

corresponding to such a Web service will be associated with

one of the output parameters (Figure 3). The output

parameter is associated with a formal concept defined by an

ontology. The composition request has to contain the reward

parameter. While executing a Web service workflow, the

Executor component will determine the reward associated

with each Web Service call. At the end of the execution, the

list of rewards will be sent to the Learning Module. It is not

necessary that all web services contained in the executable

workflow to be associated with a reward. There can be web

services that have no reward parameter. The reward itself is

computed by dedicated web services.

C. Composition algorithm

The algorithm used to guide a reinforcement learning
agent is trying to find out which actions are “good” by
considering the past experience. Many reinforcement
learning algorithms are based on estimating the value
function. A value function is a function of state-action pair
that estimates the future rewards that can be expected for the
agent that selects a particular action, in a given state. A

specific value function is associated with a particular policy.
Formally, a value function is defined as:

 () { } { ∑

 } ()

This equation defines the value of a state under the

policy , denoted () . specifies the expected value
considering that the agent uses the policy .

The algorithm used for composition is based on value
iteration algorithm. Value iteration algorithm recursively
calculates the value function so that in the end the optimal
value function is computed:

 () ∑

[
 (

)] ()

The idea is to select the best action, denoted by ,

according to the sum of the expected rewards over the
possible states available from that action. The sum is
discounted, .

 represents the probability that

action in state will lead to state while
 represents

the expected immediate reward. After the optimal or near
optimal value function is computed the optimal policy is
generated with the following method:

 () ∑

[
 (

)] ()

The proposed algorithm is the following:

1 V vector
2 threshold small positive value
3 delta 0
4 optimalPolicy NULL
5

6 foreach state s in S

7 V(s) = rand()

8 end foreach

9

10 do

11 delta 0
12 v V(s)
13 V(s) ComputeValueFunction()
14 delta Max (delta, |v - V(s)|)
15 while threshold > delta

16

17 optimalPolicy ComputeOptimalPolicy()

Firstly, the value function vector V is randomly
generated (lines 6-8). After that, the value functions for each
state are computed until the difference between two
consecutive iterations is smaller than a predefined threshold
(lines 10-15). In the end, the optimal or near optimal value
function will be available. Finally (line 17), the optimal
policy is computed based on the optimal value function.

In this phase, we are considering only a limited set of
candidate problems. These limitations are related to the fact

125Copyright (c) IARIA, 2012. ISBN: 978-1-61208-215-8

SERVICE COMPUTATION 2012 : The Fourth International Conferences on Advanced Service Computing

that the value iteration method has to know the expected
rewards and the transition function between states. Currently
we are investigating also some other methods for solving the
reinforcement learning problem. For instance, temporal
difference methods seem to be good candidates for
addressing the limitations of the proposed approach.

V. RELATED WORK

The majority of existing solutions for automatic web

service composition is based on classical search or AI

planning combined with logic formalisms. Hendler et al. [9]

and Sirin et al. [10] present a method for automatic web

service composition using Hierarchical Task Network

(HTN) planning. HTN planning is an approach to automated

planning in which the dependency among actions is given in

the form of hierarchical networks.

Yuhong et al. [11] and Yang et al. [12] present two

methods for automatic web service composition using the

“Graphplan” algorithm. The Graphplan algorithm uses a

data structure called planning graph to search for a solution

to a given planning problem. This method of planning is

very fast and many AI planners are based on this approach.

McDermott [13] extends the PDDL (Planning Domain

Definition Language) planning language in order to

associate web services with planning operators. The

extended planning operator is able to represent the messages

exchanged by a web service. This approach transforms the

composition problem into an AI planning problem.
Hongbing et al. [14] propose a reinforcement learning

algorithm for web services composition based on logic of
preference. However, this solution seems to have limited
applicability.

Web service composition using Markov Decision
Processes was approached by Gao et al. [15]. In this case, the
composition is based on QoS description for Web services.
Workflow patterns like sequential, conditional or parallel
constructs are modeled using Markov Decision Processes.

VI. CONCLUSION

A new approach for web service composition, based on
reinforcement learning is proposed. There are cases when a
concrete goal is not possible to specify. In these cases, a
software agent tries to learn from the environment in order to
maximize the total reward.

The proposed solution uses a value iteration algorithm in
order to find an optimal or near optimal policy. In order to
employ this method we consider a semantic web service
model. The difference compared with other approaches is
that our composition system uses a web service model based
on Semantic Web technologies. The composition system
uses an architecture based on a closed-loop mechanism. An
original mechanism for collecting the reward, independent of
the BPEL execution engine, is also proposed.

 Composition based on reinforcement learning can be
used in scenarios where a concrete goal cannot be explicitly
specified. Instead, it is possible to compute a reward/penalty

depending on the actions performed by the agent. Markov
Decision Process is used for modeling uncertainty. This is
another advantage over composition methods based on
classical planning.

Since this research is still a work in progress, the next
objective is to implement a prototype for demonstrating the
proposed idea. Another future development will be to
combine the reinforcement learning method presented here
with AI planning techniques.

ACKNOWLEDGMENT

This project was supported by the national project code

TE 252, contract no. 33/2010, financed by the Romanian

Ministry of Education and Research CNCS-UEFISCDI.

REFERENCES

[1] Alonso, G., Casati, F., Kuno, H., and Machiraju, V., “Web Services:
Concepts, Architecture and Applications”, Springer Verlag, 2004.

[2] Berners-Lee, T., Hendler, J., and Lassila, O., “The semantic web”,
Scientific American, 284(5): pp. 34–43, 2001.

[3] Russel, S. and Norvig, P., “Artificial Intelligence: A Modern
Approach”, Prentice-Hall Inc., 3rd Edition, 2009.

[4] Todica, V., Cremene, M., and Vaida, M., “A Framework for
Developing Complex Systems of Services”, Coping with Complexity
COPCOM, pp. 77-88, 2011.

[5] Berry, D. and Fristedt, B., “Bandit problems: Sequential allocation of
experiments, Monographs on Statistics and Applied Probability”,
London: Chapman & Hall, 1985.

[6] Sutton, R. S. and Barto, A. G., “Reinforcement Learning: An
Introduction”, MIT Press, 1998.

[7] Tesauro, G. J., “TD-gammon, a self-teaching backgammon program,
achieves master-level play”, Neural Computation, 6(2): pp. 215-219,
1994.

[8] Weerawarana, S., Curbera, F., Leymann, F., Storey, T., and Ferguson,
D., “Web Services Platform Architecture: Soap, Wsdl, Ws-Policy,
Ws-Addressing, Ws-Bpel, Ws-Reliable Messaging and More”,
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[9] Hendler, J., Wu, D., Sirin, E., Nau, D., and Parsia, B., “Automatic
web services composition using SHOP2”. In: Proceedings of The
Second International Semantic Web Conference (ISWC), 2003.

[10] Sirin, E., Parsia, B., Dan, W., Hendler, J., and Nau, D., “HTN
Planning for Web Service Composition Using SHOP2”, International
Semantic Web Conference, Sanibel Island, Florida,USA, pp. 20-23,
2003.

[11] Yuhong, Y., Poizat, P., and Ludeng, Z., “Self-Adaptive Service
Composition Through Graphplan Repair”. In Proceedings of the 2010
IEEE International Conference on Web Services (ICWS '10). IEEE
Computer Society, Washington, DC, USA, 624-627, 2010.

[12] Yang, B. and Qin, Z., “Semantic Web service composition using
Graphplan”, Industrial Electronics and Applications, ICIEA 2009, 4th
IEEE Conference, pp.459-463, 2009.

[13] McDermott, D., “Estimated-regression planning for interactions with
Web services”, In the 6th International Conference on AI Planning
and Scheduling, (Toulouse) France, AAAI Press, 2002.

[14] Hongbing, W., Pingping, T., and Hung, P., “RLPLA: A
Reinforcement Learning Algorithm of Web Service Composition
with Preference Consideration”, IEEE Congress on Services Part II,
pp. 163 – 170, 2008.

[15] Gao, A., Yang, D., Tang, S., and Zhang, M., “Web Service
Composition Using Markov Decision Processes”, Advances in
WebAge Information Management, Vol. 3739, pp. 308-319, 2005.

126Copyright (c) IARIA, 2012. ISBN: 978-1-61208-215-8

SERVICE COMPUTATION 2012 : The Fourth International Conferences on Advanced Service Computing

