

 A Service Component-Oriented Design and Development Methodology for Developing

SOA-based Applications

Soumia Bendekkoum, Mahmoud Boufaida

LIRE Laboratory

Mentouri University of Constantine

Constantine, Algeria

{soumia_bendekkoum,mboufaida}@umc.edu.dz

Lionel Seinturier

LIFL Laboratory & INRIA Lille

University Lille 1, Villeneuve d’Ascq

Lille, France

Lionel.Seinturier@univ-lille1.fr

Abstract—The Service-Oriented Architecture (SOA) is a

promising technology based standard for easily developing

distributed, interoperable and loosely coupled applications. The

emergence of the Service Component Architecture (SCA)

standard, which uses service components, has more and more

facilitated the development and deployment of SOA

independently from technologies and standards. However, SOA

does not define a complete and clear methodology for developing

service based systems. It does not address the issue of the way

these services could be defined despite the fact that there exist

successful specification tools (UML profiles, Service Component)

for modeling service-based applications. This paper presents the

Service Component-oriented Design and Development

Methodology (SCDD-Methodology), which combines software

engineering approach and service component models to specify

and indentify adequate services. It discusses the key principles in

its design: the adoption of service component model for the

development of SOA-based applications for well defining the

structure of the application behind the service’s layer. The paper

presents a case study of a commercial company producing

machine tools (MTP).

Keywords-SOA; SCA; UML Profiles Modeling approaches;

Service Component.

I. INTRODUCTION

SOA is an architectural style for the reorganization and
redeployment of the information system [1]. It encapsulates the
functions of an application into a set of loosely coupled
services. These services are defined with a contract, and
published using an interface description, so that they can be
invoked by remote clients.

SOA is not only a technology or a recipe. It is a way of
thinking and structuring distributed information systems. It
requires appropriate modeling tools and good methodologies
for the design, development and management of distributed
applications conforming to its principals of autonomy, reuse,
interoperability and loose coupling of its different elements.
Despite the success of SOA, it remains a partial solution [2],
[3], because it describes how application’s functionalities are
structured into autonomic and distributed entities (services) as
well as how they are published and used on the web. But it
does not define what is behind the scene and how these
services are structured [4]. The recently developed Service
Component Architecture (SCA) is proposed to fulfill that
shortcoming with a set of specifications, which supports a view

of service as software component. This means that behind the
service layer there exists a set of components named “Service
components” implementing service behavior. Several platforms
have already been developed that implement SCA
specification, such as Tuscany [5], Newton [6] and FraSCAti
[7] for java-based SCA applications.

SOA development and implementation methods are

primarily different in their details, but they all have the same

principal, which is according to Heubès [8] in the same spirit as

the engineering business processes or information systems.

Zimmermann et al. [9] and Papazoglou and Heuvel [10] reveal

that there exist three methods for developing an SOA. The first

one is the Top-down in which the business logic of existing

processes is used to identify services. In contrast, Bottom-up

approach starts with the analysis of applications to determine

the existing functions of the information system, and from

these artifacts, it is possible to identify the functions that are

eligible to the level of service. Finally, the hybrid approach

called also Meet in the Middle approach advocates to conduct

in the same time a top-down and bottom up methods.

Therefore, the main steps of an SOA development approach

can be summarized as follows [11]: (1) business processes are

represented, (2) analyzed, (3) improved and (4) built on the top

of the existing legacy applications.
Unfortunately, although that there exist successful

specification tools for realizing a service-oriented development
project [12], these specification approaches do not rely on an
effective development methodology [3], especially for complex
service-oriented architecture projects, where we need
enormously. Our studies on existing SOA development
projects reveal that these approaches do not provide a
comprehensive, clear and precise strategy to achieve a
successful SOA development project. In consequence, the
developers are usually facing a major difficulty, which is the
definition of the concept of service. This problem causes to the
companies an important question which is what a service is,
and what level of granularity can it takes to properly define the
relevant services to a business based integration project.

In this paper, we present the Service Component-oriented
Design and Development Methodology (SCDD-Methodology),
which combines software engineering approach and service
component models to specify and construct as well as
structured SOA-based applications.

This paper is organized as follows. Section 2 presents the
SCA specification standard used in the SCDD methodology,

13Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

http://blog.xebia.fr/author/cheubes/

and discusses its key principals for achieving a service oriented
development project. Section 3 describes the service
component design and development methodology. Section 4
presents a case study of a commercial company producing
machine tools and describes some implementation aspects.
Section 5 discusses related work. Finally, Section 6 concludes
the paper and outlines some future works.

II. SCA MODELING APPROACH AND SOA CHALLENGES

The SCA is a set of specifications defining component
model for building Service-based applications using SOA and
component-based software engineering (CBSE) principals.

SCA entities are software components, which may provide
interfaces (called services), require interfaces (called
references) and expose properties. References and services are
connected through wires (Figure 1.).

These models allow us to offer specification tools, which
facilitate the modeling and implementation of architectures
using services as well as a flexible layer for application
interobperability. So that, these models have self-configuration
capacities that permit to cope with the continuous changes of
both the environment and client needs.

Service component models have important properties that
motivate our choice of research. We summarize those which
are related to our work, as follows [14]:

 Hierarchy: the SCA model is hierachical with

components being implemented by primitive

language entities or by subcomponent

 Autonomy: The service component architecture

model is equipped with the autonomy feature,

which is useful to define the functions of

components that implement business services

inside or outside of the grid services of the model

architecture.

 Reconfiguration: service component models are

equipped with an important property called self-

reconfiguration or dynamic reconfiguration [15],

which can be useful to ensure effortlessly the

adaptability of SOA business services. For

example, it is conceivable that any change in the

definition of a requested service can be easily

mapped in a reconfiguration of Fractal component

model [16]. This is due to the interfaces (internal

and external) and also the property of the plug and

play between components of the hierarchical

model.

Figure 1. Exemple of SCA Component Architecutre [13].

Figure 2. FraSCAti Platform Architecture [13].

SCA is based on the idea that business function is provided
as a series of services, which are assembled together to create
solutions that serve a particular business need. These
composite applications can contain both new services created
specifically for the application and also business function from
existing systems and applications, reused as part of the
composition. SCA provides a model both for the composition
of services and for the creation of service components,
including the reuse of existing application function within SCA
compositions [17], and this motivates more our choice of using
component model.

SCA aims to encompass a wide range of technologies for
service components and for the access methods, which are used
to connect them. For components, this includes not only
different programming languages, but also frameworks and
environments commonly used with those languages. For access
methods, SCA compositions allow for the use of various
communication and service access technologies that are in
common use, including, for example [13], Web services,
messaging systems and Remote Procedure Call (RPC).

We present, as an example, the SCA FraSCAti platform,
which we are chosing for the deployment of the service
component-based applications. The platform has four main
components, as shown in Figure 2: Component Factory,
Wiring and binding factory, Middleware services,and Assembly
factory [13].

In the next section, we detail the various phases of the
proposed approach, each of which is illustrated with an
exemple.

III. PHASES OF THE SCDD METHODOLOGY

The objective of the service component-oriented design and
development methodology is to achieve service integration and
to facilitate service interoperability as well as service
composition. In our approach we focus on the SCA concepts
(autonomy and composition) for achieving our objective to
create an SOA-based system, which responds more to the client
requirements and to well structure the business logic of its
functionalities. The SCDD methodology provides appropriate
principals and guidelines to specify, construct and customize
well defined services (fine grained functions) and business
processes (coarse grained functions) orchestrated from fine
grained services (service composition).

As shown in Figure 3, the SCDD-Methodology constitutes
four main phases: (i) Modeling phase: Modeling Business
Needs and Modeling Existing Applications, (ii) Service
Components Identification, (iii) Service Components
deployment, and finally, (iv) Service Identification and
Publication phase. In the following section, we detail
separately each phase:

14Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

Figure 3. Principal Phases of SCDD Methodology.

A. Modeling Phase:

The first phase of SCDD methodology consists of
analyzing and modeling the requirements of the new system.
This includes studying and modeling existing applications.
This phase contains two steps, the first one is Business Needs
Modeling for analyzing and modeling clients’ requirements,
and the second is Existing Applications Modeling for
analyzing and modeling applications of the enterprise legacy
system:

1) Business Needs Modeling: objectives are business goals

which custumors want to achieve, or target behaviors which

customers want to see in the system. It is important when

setting objectives to make sure they are in line with overall

business needs of the target information system, this is the

principal objective of our approach: the allignement of the

business services of the futur system to the client business

needs. To do so, we propose, in this first step, to analyze the

business goals of the future information system, and model

these goals in an Objective Tree Model.

Figure 4 represents an UML metamodel defines the structure

of an Objective Tree Model. This model represents a

hierarchical structure specification of all needs of the future

SOA-based system. Each node of the tree represents an

objective and its sub-nodes represent sub-objectives realizing

the overall objective. Constraints are functional conditions,

which must be supported by an objective to achieve an other

objective, these constraints are very important in the objective

tree model, to identify to the designer and, in the future, to the

developer any conditions might make echeiving the objective

more diffecult or even in some cases impossible.

Figure 4. UML Meta-model of Objective Tree Model

The tree model obtained, in this step, is crucial to the

alignment of the business process of the target SOA-based

system to the client and environment business needs. This

model will be used in the follwing phase for analyzing and

defining the components that permit to implement the adequate

functions that best respond to the company’s needs.

2) Existing Applications Modeling: In SOA-based

systems business processes are modelled in different

granularities, these processes incorporate functions (services)

supported by the existing enterprise legacy system, as well as

by new functions not supported by the existing system, which

must be developed. In this step, we identify adequat services

in the right granularity. To do so, our approach proposes the

use of Service Components Models, to specify existing legacy

systems. These models represent an hierarchical abstraction of

the sructure interne of all applications deployed within the

existing system.

The specification of the legacy system is based on the

granularity of applications, it is represented as a functional

tree. The root of the tree represents the main application

(function), the nodes represent the sub-functions that

implement the main function, the sub-nodes represent the sub-

functions that implement functions in higher level of

granularity, and the leaves of the tree represent the primitive

instructions that implement functions in higher hierarchical

level on the tree. Figure 5, represents an UML metamodel

defines the hierarchical structure of a Component-based

Function Tree Model. In this metamodel, we presents the

hierarchy of different functions constituting an application,

and the data flow (output and input data) between functions.

B. Service Components Identification

The target SOA-based system must align its business

processes with environement business goals, in order to

improve its ability to respond rapidly to marcket forces.

Figure 5. UML Meta-model of Component-based Function Tree Model

Service Component identification

(Mapping Models)

Modeling Business

Needs

Modeling Existing

Applications

Service Component

deployment

Service Identification

& publication

1 2

3

4

1..* identify 0

 0..* realize

1..* Realize 1

Objective

Main objective Sub-objective

Constraint

0..*

Support

1
..* 1

 0..* realize

Application

Sub-function

Data Flux

Output

Condition

Input

Pre-Condition

Post-Condition

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

The first question in an SOA-based system devlopment
project is how to identify business services, which responds to
cunstomers’ needs. This question incorporates, firstly, the
problem of extraction of the relevant services from existing
(legacy) system, secondly, the problem of definition of new
services, which respond dynamically to the environement
needs. SCDD approach for developing an SOA that we
propose is a code-based approach, since the business rules that
implement the core of the target enterprise system can be
analyzed from the enterprise application models. In this phase,
we identify the parts of condidat code that implement the
business logic of future Web services. This phase consists of
the Extraction of service components; here we extract the code
for future services according to business needs of the
enterprise, in order to aligning the code of existing legacy
applications to the business needs discussed in the previous
phases. We propose to determine which of those existing
features can be exposed as Web services, to apply a method of
mapping models. This method aims to associate the nodes of
the Component-based Functional Tree model of an application
components to the nodes of the model of a business process
model of basic objectives.

The activities of the phase detection code that implements
the web service based on the projection that we propose are
summarized as follows:

 The first task is the selection of an activity of a basic
business processes, which is afterwards associated to
the component that contains functions performing this
activity, by analyzing the final result specified for each
function.

 The second task is to check if an instruction affects the
final result returned by the activity of selected
processes. Beginning with primitive instructions of the
selected component, and rising to the nodes.

 If the selected component returns some variables
required to the activity, it is necessary to select the
node that is at a higher level in the model.

 else, if the variables returned are equivalent to the
selected activity, the function is defined as the future
public service that implements the activity of selected
elementary process.

 These activities are applied to each node model targets,
in order to best meet the business needs of the
company.

C. Service Components Deployment

This step attempts encapsulate parts of candidate web
services identified in the previous phase, in service
components, and to defining the required interfaces
(references) and interfaces provided (services) for the
execution of each component or each service.

D. Service Identification and Publication

The final step is the technical wrapping of the functions
defined and encapsulated in Service component in the
preceding phases. This comprises the definition of Web
Service Description Language interfaces (WSDL) that specify
the Service Components interfaces. We summarize the
different activities of this phase as follows:

 Identification of Service component interfaces provided
for them published in the form of web services, and data
requirements for their invocation.

 Definition the functionality of web services WSDL.
Each Web service exposes an interface that defines the
message types and patterns of trade. To do this we must first
specify a well-defined interface for each service detected.
Next, we turn to the definition of the functionality of web
services WSDL.

 Publication services. Finally, the resulting web services
must be registered in the UDDI, for use by other customers or
other service-oriented systems, integrating them into a
business process.

IV. CASE STUDY AND SOME IMPLEMENTATION ASPECTS

In order to evaluate the SCDD approach, we take as a case
study example the enterprise Production Machine Tools
(PMT). PMT is a commercial enterprise, which produces and
markets machine tools. For over 30 years, this enterprise uses
to manage its service a monolithic inflexible information
system implemented in Basic (Beginner's All-purpose
Symbolic Instruction Code) programming language. Year by
year enterprise’s activities grow and the number of its clients
increase, however the information system capacities remains
incapable to follow this evolution while the majority of its
activities are done using traditional methods through phone
calls, Excel files, etc. To overcome this problem the company
decides to promote its information system in order to support
the new requirements as well as standards and technologies. As
we know, the development of a new system costs and takes
more time; so, the business directors and information system
engineers decide to develop the new system on the top of the
existing legacy system.

We present in this section the application of the different
phases of SCDD methodology phases and some
implementation details.

A. Modeling phase

In this phase, we analyze and model clients’ business
needs and existing applications in order to identify the
structure of the future Service-based system. In our approach,
objective and functional tree models help us to see all this laid
out clearly. Our example reveals a treatment of a client order
as a main objective.

Figure 6 shows just the beginning of an Objective Tree
Model that illustrates the hierarchy of customer needs. The tree
model starts with the overall objective

Figure 6. Goals hierarchical Tree model of the case study.

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

“Poduction and Marketing of Machine Tools”. The branches
coming from this are sub-objectives, which are small abjectives
that we need to achieve the main objective as:
“Purchasing/supplying, Manufacturing, Sale and Distribution,
shipping, … etc.” which are necessary after to specify the
business logic of the company. In reality, this tree would have
many more branches and levels detailing all the sub-objectives
necessary for realizing the main objective, as well as for
covering all customer’s separate objectives.

B. Service components creation

After applying the first phase of SCDD methodology on the
case study, and the extraction of the component implementing
future services, we obtain finally a diagram of the hierarchy of
Service Components Composing the target SOA-based
application. In this section, we are describing how these
components can be implemented and deployed in a distributed
environment.

Figure 7 shows an example of a service component model
resulting after the mapping models phase, where the Order
Client Service Component represent a composite, which
contains six sub-component.

We are choosing the JAVA programming environment

‘Eclipse’ for implementing the functionalities of the resulting

component. We used the 3.5.1 version integrated already with

the platform FraSCAti specification, where we affect for each

component an interface; we give more detail on interface

implementation in the next section.

C. Interfaces definition and implementation

In order to define relations between service components,
different interfaces affected to each component must be
developed. In this phase we create ADL descrition file in
which we define the binding between different component
using interfaces defined. For each component we specify the
relationship with an other component it must be a relation
where the component require a service from an other
component as well as a relatio where the component profides
an service to an other service.

V. RELATED WORK

In this section, we present some related works, and compare

the SCDD methodology with these approaches in terms of

service identification strategies, SOA specification techniques

as well as service deployment and programming facility.

Figure 7. Order Client Service Component Schema.

Service identification strategies; Several approaches of SOA

development are available that use different strategies to

identify services, either Buttom-up ones: Chang and Kim [18],

Top-down ones: Emig and al. [17], and Erl [19], or Hybrid

ones: SOMA (Service Oriented Modeling and Architecture)

[20], SOAD (Service-Oriented Analysis and Design) [18],

CSOMA (Contextual Service Oriented Modelling and

Analysis) [21], also the projects of Papazoglou and Heuvel

[10]. Comparing these approaches with the SCDD approach

that we present in this paper, we use in our methodology a

model based strategy for identifying services from the point of

view of both the producers and requesters of service, so our

approach align more the business process of the target

application with the client and environement needs.

Specification techniques; The existing approaches that we

discussed in the second section propose to use existing

modeling techniques and present a set of models or meta-

models supports. For example, the approach of SOAD and

SOMA that use the business oriented models (BPM: Business

Process Modeling) and the object oriented models (OOAD:

Object Oriented Analysis and Design) for the development of

SOA, and the approach of Papazoglou and Heuvel [10], which

uses the development based component (CBD: Component

Based Development).

In the proposed approach, we use a business oriented

service component development models in order to highlight

the advantages its properties of composition and autonomy, to

identify services in the right level of granularity, also

reconfiguration property of component that permit to services

to project easly different changes on components implementing

them. The SCDD methodology view service as component

entities, which can romotly eccessed independently as possible

form the underlying implementation technologies.

Deployment and programming; The Service component-

oriented methodology facilitates the deployment and

realization of distributed service-oriented applications. The

SCDD methodology, compared with existing design and

development methodologies which achieve a complex

architecture and not deployable in different platforms, uses

service component-based models that define a well structured

service-oriented application independent from technologies.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we have presented the SCDD methodology
considering the enterprise’s requirements as well as the
existing legacy systems. SCA is a standard for distributed
SOA-based systems. We motivated and described how the
behavior that implements legacy system business can be
aligned to enterprise needs, and modeled as service
components to be used first to identify single relevant services
in right granularity, and second to develop and integrate easily
these services in business processes that implement the target
SOA-based system.

We focused mainly in this approach on the problem of the
definition of the concept service. Thus, we proposed in the
first stage of our approach to use objective tree to model the
hierarchical nature of the requirements, or business needs for
designing the system. The service components model to

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

implement and deploy the elements of the SOA considering its
characteristics of reuse, autonomy and distribution. The use of
this specification allows technology using service to benefit
from distribution, autonomy and composition properties of
service component.

Although SCDD is not the first approach that combines
software engineering approach and service component models,
its objective is very important, as it permits to treat the
problem of SOA development starting from the modeling
phase in order to describe how services constituting SOA
based-application are structured. Generally, the Enterprise
Service Bus (ESB) is used to implement an SOA-based system
[22]. Our future research has to establish links between
characteristics of SOA enterprise models based on service
components and their realization in the ESB. In other words,
although there exist works that permit to publicize service
component as web service [23], they are still technical
solutions. So, we must reveal how to realize an SOA based on
service component in the ESB. This comprises the problem of
monitoring and controlling, as well as the problem of
adaptability and security requirements specified in enterprise
models and realized in the SOA.

REFERENCES

[1] F. Tonic, M. Boulier, B. Paroissin, J. Clune, F. Bernnard, and M.
Gardette, “SOA : votre nouvelle architecture,” le magazine du
développement : Programmez !, N° 78, June 2006.

[2] J. Zhao, M. Tanniru, and L. Zhang, “Service Computing as the
Foundation of Enterprise Agility: Overview of Recent Advances and
Introduction of Special Issue,” Proc. Inf Syst. LNCS, Springer Press,
March 2007, vol. 9, pp. 1-8, doi : 10.1007/s10796-007-9023-x.

[3] P.M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service
Oriented Computing: a research roadmap,” International Journal of
Cooperative Information systems, vol. 17, June 2008, pp. 223-255, doi:
10.1142/S0218843008001816.

[4] L. Seinturier, Ph. Merle, R. Rouvoy, D. Romero, V. Schiavoni and J. B.
Stefani, “A component-based middleware platform for reconfigurable
service-oriented architectures,” International Journal Software Practice
& Experience, vol. 42, May 2012, pp. 559-583 , doi: 10.1002/spe.1077.

[5] tuscany.apache.org. visited: 08.04.2013.

[6] newton.codecauldron.org . visited: 14.04.2013.

[7] frascati.ow2.org. visited: 08.04.2013.

[8] Ch. Heubès, “Mise en œuvre d’une SOA : Les clés de succès,” Xebia
France, Février 2008, http://blog.xebia.fr/2007/08/16/mise-en-oeuvre-
dune-soa-les-cles-du-succes/, visited : 10.04.2013.

[9] O. Zimmermann, P. Krogdahl, and C. Gee, “Elements of Service-
Oriented Analysis and Design,”
ftp://ftp.software.ibm.com/software/webservices/SOADpaperdWv1.pdf.
visited: 15.04.2013.

[10] M. Papazoglou and P. W., Heuvel, “Service-oriented design and
development methodology,” International Journal of Web Engineering

and Technology (IJWET 06), vol. 2, July 2006, pp. 412-442, doi:
10.1504/IJWET.2006.010423.

[11] O. Zimmermann, N. Schlimm, G. Waller, and M. Pestel, “Analysis and
Design Techniques for Service-Oriented Development and Integration,”
http://ozimmer.de/download/INF05-ServiceModelingv11.pdf. visited:
15.4.2013.

[12] A. Kenzi, “Ingénierie des Systèmes Orientés Services Adaptables: Une
Approche Dirigée par les Modèles,’’ PhD thesis, Ecole Normale
supèrieure d’Informatique et d’Analyse de Systèmes, Université
Mohamed V, Rabat. Octobre 2010.

[13] L. Seinturier, Ph. Merle, D. Fournier and N. Dolet, “Reconfigurable
SCA Applications with FraSCAti Platform,” Proc. IEEE International
Conference on service Computing (SCC 09), IEEE Press, June 2009, pp.
268-275, doi: 10.1109/SCC.2009.27.

[14] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio,
and C. Pérez, “GCM: A grid extension to Fractal for autonomous
distributed components,” Annals of Telecommunications, vol. 64,
September 2009, pp. 5-24.

[15] A. Solange, A. Ludovic, B. Tomàs, C. Antonio, M. Eric, and S. Emil,
“Specifying Fractal and GCM Components With UML,” Proc. IEEE
International Conference of the Chilean Computer Science Society (CCS
07), IEEE Press, 2007, pp. 53-62, doi: 10.1109/SCCC.2007.17.

[16] L. Seinturier, “Le modèle de composants Fractal”,
http://www.lifl.fr/~seinturi/middleware /fractal.pdf, 2008.

[17] C. Emig and S. Abeck, “Development of SOA-Based Software System
and Evolutionary Programing Approach,” Proc. The Advanced
International Conference On Telecommunications and on International
Conference on Internet and Web Applications and Services (AICT/ICIW
06), 2006, pp. 182-187.

[18] S. H. Chang and S. D. Kim, “A Service-Oriented Analysis and Desing
Approach to Dveloping Adaptable Services,” Proc. IEEE International
Conference on Services Computing (SCC 07), IEEE Press, July 2007,
pp. 204-211, doi: 10.1109/SCC.2007.16.

[19] T. Erl, “ Service-Oriented Architecture (SOA): Concepts, Technology,
and Design,” Prentice Hall, 2005, ISBN: 0131858580.

[20] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Gariapathy, K.
Holley, “SOMA: Service-Oriented Modeling and Architecture: How to
identify, specify and realize services for your Service Oriented
Architecture (SOA),” IBM Systems Journal, vol. 47, July 2008, pp.
377-396, doi: 10.1147/sj.473.0377.

[21] K. Boukadi, “Coopération inter-entreprises à la demande : Une approche
flexible à base de services adaptables,” Thèse de doctorat de l’Ecole
supérieure des Mines de Seint-Etienne, Novembre 2009.

[22] H. Christophe, “Exposer ses composants Fractal en Web service dans
Petals ESB #2,” http://chamerling.org/2010/06/08/exposer-ses-
composants-fractal-en-webservice-dans-petals-esb-2/, visited :
11.04.2013.

[23] Z. El Hafiane, M. Ghaoui, S. Harmach, A. Maalej, and N.M.Tourè,
“Composants Fractal et Web Services,”
http://deptinfo.unice.fr/twiki/pub/Minfo05/DepotDesRapports/Rapport-
TER-9.pdf, visited: 15.04.2013.

18Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

http://blog.xebia.fr/author/cheubes/
http://dx.doi.org/10.1504/IJWET.2006.010423
http://dx.doi.org/10.1109/SCC.2009.27
http://dx.doi.org/10.1109/SCCC.2007.17
http://dx.doi.org/10.1109/SCC.2007.16
http://dx.doi.org/10.1147/sj.473.0377

