
Enhanced Deployment Process for QoS-aware Services

Alexander Wahl and Bernhard Hollunder
Department of Computer Science

Furtwangen University of Applied Science
Robert-Gerwing-Platz 1, D-78120 Furtwangen, Germany

alexander.wahl@hs-furtwangen.de, bernhard.hollunder@hs-furtwangen.de

Abstract—Service-oriented architectures (SOA) are a widely
used design paradigm for the creation and integration of
distributed enterprise applications. The predominant tech-
nology used for implementation are Web services. In the
business domain, Web Services must be equipped with quality
of service (QoS) attributes, like, e.g., security, performance,
etc. WS-Policy standard provides a generic framework to
formally describe QoS. Verification and enforcement of such
formally described QoS require corresponding QoS modules,
e.g., handlers, to be installed at the runtime environment. In
this work, we provide an approach that enhances the current
deployment process for Web services. The aim is to provide a
sophisticated process that not only deploys Web Services and
formal QoS descriptions, but to guarantee that the desired
QoS are verified and enforced in the runtime environment.
We therefore introduce additional steps for the analysis of
WS-Policy descriptions, the identification of corresponding
handlers, and their installation at the runtime environment.
As a result, a comprehensive, automated deployment process is
created, and the fulfillment of an overall WS-Policy description
is ensured.

Keywords-Service-oriented architecture; QoS-aware service;
Deployment.

I. INTRODUCTION

The usage of distributed systems is nowadays widespread.
With the increased availability of networks, especially the
internet, distributed systems find application in business do-
mains as well as in private environments. Typically, some de-
sired distant functionality is used following the client-server
model. The Service-oriented Architecture (SOA) paradigma
is a well-known paradigma to form such a system: business
functionality is implemented as a service and offered to
service consumers. The communication takes place over a,
possibly public, network.

Beside the offering of pure functionality, the fulfillment
of non-functional aspects that relate to Quality of Service
(QoS), is an important factor. For example, for e-payment
security and transactional behavior aspects are obviously
crucial. Beside these exemplary QoS several others exist,
that apply to the domain of distributed systems, respectively
SOA, such as response time, availability, cost, usage control,
roles and rights, etc.

In a technical environment, like a SOA infrastructure, it
is worthwhile that desired QoS are analyzed and enforced
in an automated manner by the infrastructure itself. In order

to achieve such an automatism these QoS first have to be
formally described. Next, the formal description is related
to the desired services, following the separation of con-
cerns (SoC) principle [1]. In other words, the functionality
implementation is separated from the QoS implementation.
The functionality is implemented using some programming
language, like Java, C++ or C#. For the QoS implementation
usually declarative languages, so-called policy languages,
are used. The resulting service is then called a QoS-aware
service.

A well-known and widely used language to formally
describe QoS is WS-Policy [2]. In the context of WS-Policy
a policy is a collection of policy alternatives. Each policy
alternative is a set of policy assertions. The policy assertions
are used to express QoS. It should be noted, that WS-Policy
does not provide concrete assertions, but is a more general
framework. Concrete assertions are introduced in related
specification, like, e.g., WS-SecurityPolicy [3]. With WS-
Policy, other domain-specific assertions can be defined.

Creating appropriate formal descriptions of a QoS is in the
repsonsibility of the service developer. This is no easy task,
and a deep knowledge on several different models, languages
and technologies is a must. This is especially true with QoS
for whom no standardized specifications, frameworks and
approaches are available.

The formal description of a QoS is just half the way. The
validation and enforcement of such a QoS description is in
the responsibility of the service runtime environment. How-
ever, it has to be ensured, that the specified QoS of a service
is understood and enforced by that runtime environment.
One can think of different approaches to achieve that. In
this work, we will enforce QoS by using specialized service
agents, so-called handlers. These handlers are installed,
configured and invoked at the runtime environment. It has
to be mentioned, that this approach does not apply to all
QoS, but to a significant set of of QoS. Again, a compre-
hensive knowledge on the infrastructure used, the service
provider and different used technologies, e.g. frameworks,
is necessary.

Figure 1 gives an overview on a typical process currently
used to create a QoS-aware service. The process used so
far attaches a QoS description (using, e.g., WS-Policy)
to a service implementation. The resulting artifact is then

33Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing



Figure 1. QoS-aware service development, deployment and installation
process.

transferred to the service provider. Todays process does
not check the availability of corresponding QoS modules at
the runtime environment, i.e., the service provider. It does
not include an analysis of the QoS description to identify,
install and configure the QoS modules, i.e., handlers, that
are necessary to enforce the QoS. The solution of this deficit
is enhance the current deployment process by an automated
module installation, which is based on the analysis of a QoS
description. By that means it can be guaranteed, that a QoS
description are verified and enforced during runtime.

In this work, we integrate additional steps to the deploy-
ment process for policy analysis, and QoS module identifi-
cation, installation and configuration. The aim is to provide a
comprehensive, streamlined and significantly eased deploy-
ment process for QoS-aware services. As benefit

1) the development process of QoS-aware WS is im-
proved by additional steps that identify and install
necessary QoS modules, and

2) the availability and usage of uniform (and thereby
more interoperable) QoS descriptions and correspond-
ing handlers is increased.

This paper is organized as following: In Section II the
problem is described in more detail, and a solution strategy
is introduced. Section III provides a general overview on our
approach, which is explained more precisely in Section IV.
Section V presents a prototypic implementation of our
solution. A discussion on related work is given in Section VI,
followed by a conclusion in Section VII.

II. PROBLEM DESCRIPTION AND SOLUTION STRATEGY

The development of QoS-aware services is a demanding
task. Beside the implementation of the service, the desired
QoS need to be formally described. Both, service and QoS
description need to be bound, and afterwards be deployed to
the runtime system. Except for a few QoS, that are supported
by current frameworks, enforcement modules for the desired
QoS also need to be implemented, and afterwards installed
at the runtime system. Overall, a developer needs to have
extensive knowledge of available languages and applicable
technologies in order to realize a QoS-aware service.

A more sophisticated approach is desirable. Such an
approach first enables to describe QoS, including non-
standardized ones, at a higher level of abstraction, and to

Figure 2. Enhanced service deployment overview.

generate appropriate formal representation in an automated
manner. Next, it applies the generated QoS representation to
the services under development, and identifies appropriate
QoS modules. Finally, it gathers and installs – if necessary
– the required QoS modules at the infrastructure.

This approach can be divided into two parts. The former
part is already covered by Al-Moayed, Hollunder and Wahl
[5], who provide a solution to specify QoS at an higher
level of abstraction and to generate corresponding WS-
Policies descriptions. In this work, we enhance this approach
by the latter steps described before: The generated QoS
description is analyzed, and corresponding QoS modules
are identified. Afterwards these QoS modules are retrieved
from a dedicated container component (i.e. the Software
Component Container), configured, and finally installed at
the service provider. Figure 2 visualizes this approach.

III. APPROACH

In this section, we describe the deployment process steps
in more detail: the analysis of a formal QoS description
with regard to QoS module identification, the QoS module
identification itself, and the QoS module installation (see
Figure 1).

The introduced approach is part of a more general ap-
proach described in Hollunder, Al-Moayed and Wahl [6]: A
Tool Chain for Constructing QoS-aware Web Services.

The formal description of a desired QoS, i.e., QoS de-
scription, is realized with WS-Policy. In Al-Moayed, Hol-
lunder and Wahl [5] a QoS is specified using a model-based
approach. On that QoS model model-to-model and model-
to-code transformations are performed that finally create a
formal QoS description based on WS-Policy.

In a first step, the generated WS-Policy description is
processed. The aim is to identify all occuring assertions.
Assertions are the basic building blocks of a WS-Policy.
These assertions reflect QoS. For each assertion a QoS
module must be available, and the QoS module verifies and
enforces the QoS. The identification of such a specific mod-
ule requires knowledge on which assertions a QoS module
is capable of. In our approach, we introduce the Software
Component Management Unit, whose responsibility is to i)

34Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing



store and manage all available QoS modules, and ii) to store
the information how assertions are implemented by each
QoS module.

For each identified assertion of the WS-Policy description,
a corresponding QoS module is searched within the Software
Component Management Module. Once the assertions are
related to a corresponding QoS module, the required QoS
modules to enforce the given WS-Policy are known. With
that information, the runtime environment can be equipped
with these QoS modules. This will ensure, that the complete
WS-Policy description is verified and enforced at the runtime
environment.

IV. ENHANCED DEPLOYMENT PROCESS

In this section we will describe the individual steps
and components of the approach presented in the previous
section.

A. Analysis of a formal QoS description

Consider a formal QoS description, e.g., based on WS-
Policy. Listing 1 shows an example, which was initially
described in [5]. Line 1 defines a policy description with
Id CalculatorConstraintPolicy. Line 2 specifies,
that the following are policy alternatives, which is equivalent
to OR. Line 3 introduces a set of policy assertion, which
equals AND. Lines 4 and 5 are assertions that specify a QoS
constraint – a range of numbers – with two QoS parame-
ter wscal:minInt and wscal:maxInt. The remaining
lines are closing tags for lines 1-3.

Upon closer examination, wscal:minInt and
wscal:maxInt in lines 3 and 4 concrete assertions. Both
have to be interpreted by an appropriate handler (e.g., http
handler or SOAP handler). Since these assertions do not
belong to any known WS-Policy related specification, the
handler have to be developed from scratch. Same is true
for any other custom assertion.

1 <w s p : P o l i c y w su : Id =” C a l c u l a t o r C o n s t r a i n t P o l i c y ”>
2 <wsp:Exac t lyOne>
3 <w s p : A l l>
4 <w s c a l : m i n I n t Number=”−32768”> </ w s c a l : m i n I n t>
5 <w s c a l : m a x I n t Number=” 32767 ”> </ w s c a l : m a x I n t>
6 </ w s p : A l l>
7 </ wsp :Exac t lyOne>
8 </ w s p : P o l i c y>

Listing 1. Calculator service WS-Policy description.

As described before, the initial step is to identify all
assertions within the WS Policy. In our example, these are
the two assertions wscal:minInt and wscal:maxInt
in line 4 and 5. Therefore, in our example the result of the
analysis step is a list of two elements.

B. Software Component Container

The Software Component Container is a central compo-
nent of the approach. Its main purpose is to contain all

Figure 3. Software Component Container.

available QoS modules. For each such QoS module there
is a relation to the WS-Policy assertions it implements. This
relation is also stored in the container.

There are three interfaces at the Software Component
Container (see Figure 3). The first interface provides a
means to add QoS modules to the container. This interface
requires information on the implemented assertions and the
QoS module. Via a second interface a list of corresponding
QoS modules for a given list of assertions can be retrieved.
Finally, QoS modules can be gained from the Software
Component by a third interface.

C. QoS module identification

QoS modules are well-defined software components that
enforce a desired QoS. In this work, we focus on handlers,
which are one category of QoS modules. The term QoS mod-
ule therefore is equivalent handler. However, this approach
is not limited to the handler approach.

This step identifies the QoS modules needed to verify and
enforce the formalized QoS described in the WS-Policy file.
Input for this step is the list of QoS assertions described
before. For each entry of that list the Software Component
Container is inquired. Remind that the Software Component
Container is aware of all assertions implemented by any
of its registered QoS modules. If an assertion is found at
the Software Component Container, a corresponding QoS
module is available, and the module is stored in a list of
necessary QoS modules. Otherwise, no appropriate QoS
module is available, and the assertion cannot be verified
and enforced. In that case the assertion is added to a list
of unresolved assertions. With unresolved assertions there
are different options, ranging from canceling the enhanced
deployment process up to inform the developer at the end
of the deployment process.

In summary, the QoS module identification step is able
to identify QoS modules, that are needed to enforce an
QoS, based on the assertions used within the WS-Policy.
It further enables to identify assertions, where do not exist
corresponding QoS modules. With that, the developer of
a QoS-aware service is able to recognize in a proactive
manner, which assertions can or cannot be handled by the

35Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing



runtime environment, reflected by i) a list of QoS modules
to be installed, and ii) a list of unresolved assertions.

D. QoS module installation

Once the QoS modules are identified, the WS runtime
environment is checked, if these modules are already in-
stalled. If there are modules missing, they are collected from
the Software Component Management Unit, configured and
installed. Using WS technology, the runtime environment is
typically an application server. Such an application server
usually provides a management API, that can be accessed
to install additional modules, like the QoS modules. Once
all QoS modules are installed, it is assured that the overall
WS-Policy description given can be fulfilled.

E. Automation

Up to today the deployment process of a QoS-aware
service mainly includes steps for buidling, packaging and
installing in some container, as described elsewhere, e.g.,
for WSIT [7]. As visualized in Figure 1, identification,
configuration and installation of necessary QoS modules is
not included in the deployment process. In the preceding
paragraphs we identified the steps that are to be performed
in order to be sure that a given WS-Policy can be completely
handled. We state that each of these steps can be automated.
There is no need for user interaction at each of these steps
– even with unresolved assertions. We therefore argue to
enhance the current deployment process with the described
steps.

V. PROOF OF CONCEPT

For a proof of concept, we focused on SOA using Java-
based infrastructure and technologies. In detail:

• NetBeans IDE [8]
• Java API for XML Web Services (JAX-WS) [9]
• Glassfish application server [10]
• Eclipse IDE [11]
• Apache Ant [12]
• Apache Neethi [13]
• Apache Subversion [14]
• MySQL Community Edition [15]
NetBeans IDE is used to create Web Services based on

JAX-WS technology. We further use the Glassfish applica-
tion server. It can be registered to the NetBeans IDE as
deployment destination. NetBeans IDE uses Apache Ant
to implement the deployment process, as described in the
WSIT Tutorial [7]. The corresponding Apache Ant build
files, for building the Web Archive (WAR) and for deploy-
ment, are generated by NetBeans.

Eclipse IDE is used to create a formal QoS description
based on WS-Policy. We use Eclipse IDE due to the fact,
that the prototypic tool of Al-Moayeds approach is a Eclipse
plugin.

The description of the WS interface is realized using the
Web Service Description Language (WSDL). WSDL may
refer to a WS-Policy description. When a WS is invoked,
the WS runtime environment recognizes the existence of a
policy and delegates the request to the installed handlers. A
handler then processes the request according to the policy
assertions it is responsible for.

1< t a r g e t d e s c r i p t i o n =” B u i l d Web Arch ive (WAR) . ”
2 name=” d i s t ”>
3 < j a r j a r f i l e =” d i s t / C a l c u l a t o r S e r v i c e . war ”>
4 < f i l e s e t d i r =”web” />
5 </ j a r>
6</ t a r g e t>

Listing 2. Building a Web Archive (WAR) using Apache Ant.

Apache Ant is used to automate the creation of the WAR
and the deployment. Listing 2 displays the corresponding
target dist, which uses the task jar to create a WAR
named CalculatorService.war in folder dist.

1< t a r g e t d e s c r i p t i o n =” Deploy Web Arch ive (WAR) . ”
2 name=” d ep lo y ”>
3 <g e t s r c =” h t t p : / / l o c a l h o s t : 4 8 4 8 / asadmin / d ep lo y ?
4 p a t h = d i s t / C a l c u l a t o r S e r v i c e . war ” />
5</ t a r g e t>

Listing 3. Deployment of a Web Archive (WAR) using Apache Ant.

Listing 3 shows the Ant target deploy to deploy the
WAR file to a Glassfish application servers. It uses the Ad-
ministration Console running on localhost:4848, and
invokes the asadmin command with parameter deploy.
Afterwards the CalculatorService.war is available.

1< t a r g e t name=” i d e n t i f y −h a n d l e r ”>
2 <j a v a j a r =” qos−module−i d e n t i f i c a t i o n . j a r ”>
3 <a r g v a l u e =” i n = p o l i c y . xml ” />
4 <a r g v a l u e =” o u t = h a n d l e r . xml ” />
5 <a r g v a l u e =” o u t = u n r e s o l v e d−a s s e r t i o n s . xml ” />
6 </ j a v a>
7</ t a r g e t>
8
9< t a r g e t name=” i n s t a l l −h a n d l e r ”>

10 <j a v a j a r =” qos−module−i n s t a l l a t i o n . j a r ” />
11 <a r g v a l u e =” i n = h a n d l e r . xml ” />
12 </ j a v a>
13</ t a r g e t>

Listing 4. Steps introduced in Enhanced Deployment Process.

Between these two steps, dist and deploy, we
introduce further steps that enhance the deployment
process by the step for WS-Policy analysis, han-
dler identification and installation, as described in Sec-
tion IV. In Listing 4 the two introduced targets are
shown. The first target, identify-handler, invokes
qos-module-identification.jar, which imple-
ments the WS-Policy analysis and handler identifica-
tion steps; qos-module-installation.jar imple-
ments the handler installation, which is invoked by
install-handler.

36Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing



Within qos-module-identification.jar
Apache Neethi, an open-source implementation of WS-
Policy, is used to parse a WS-Policy description and to
identify its assertion. Afterwards, the Software Component
Container (described later) is invoked for each assertion to
identify the implementing QoS module. To compare the
assertions the policy intersection algorithm of WS-Policy is
used. If a match of assertions is found, the corresponding
QoS module is stored. Otherwise the assertion is added to
the list of unresolved assertions.

The Software Component Container responsibility is to
administer the individual QoS modules, and to track the
assertions implemented by a QoS module. We use a software
versioning and revision control system, Apache Subversion,
to version each QoS module. For each QoS module metadata
is stored. Beside others, this metadata mainly consists infor-
mation on the assertions implemented with a QoS module,
author, version, etc. These data are saved using a MySQL
database. Both, Apache Subversion and MySQL come with
APIs for Java, which enables to implement a dedicated
component for QoS module identification.

A further Java-based component, implemented within
qos-module-installation.jar, is used to gather
and install the identified handler within the Glassfish appli-
cation server. This component checks out the handler from
the repository using the Subversion API. Afterwards, the
QOS modules are installed. We use the Applicationserver
Management eXtensions (AMX) and Java Management Ex-
tensions (JMX) to perform this step.

The proof of concept showed that an automated iden-
tification of handler based on assertions in a WS-Policy
description, and an installation of these handler is feasible.
The approach ensures that an overall WS-Policy description
given can be fulfilled. But it showed that the execution of
the Enhanced Deployment Process requires administrative
access to the application server.

VI. RELATED WORK

There are books and papers that describe QoS-aware WS,
the deployment process, and the use of QoS components,
i.e., handlers. However, the identification and installation of
QoS modules is so far a manual step.

In Erl’s book [4] service deployment is a phase of the
SOA delivery lifecycle. In this stage distributed components,
service components, service interfaces, and any associated
middleware products are installed and configured on the
production server. In another book [16], he describes how
to add WS-Policy descriptions to a WSDL.

WS-Policy is widely used to formalize QoS. Hollunder
[17] discusses the introduction of an operator in WS-Policy
for conditional assertions. He further describes the imple-
mentation of a corresponding policy handler based on the
Apache Axis framework. Mezni, Chainbi and Ghedira [18]
extend WS-Policy to specify services related data in order

to enable for policy-based self-management and to describe
autonomic Web services. Mathes, Heinzl and Freisleben
[19] extend WS-Policy to introduce time-dependant policy
descriptions, which allows to specify time constraints on the
validity of a policy description.

In this work assertions are matched using the policy inter-
section algorithm. Hollunder [20] presents a new approach
to determine the compatibility of policies that operates not
only syntactically but also takes into account the semantics
of assertions and policies. Brahim, Chaari, Jemaa and Jmaiel
[21] present a sematic approach to match WS-SecurityPolicy
assertions.

Al-Moayed, Hollunder and Wahl [5] introduce a model-
based approach to create a policy description based on WS-
Policy. They use a meta-model introduced by Malfatti [22].

A description of the deployment process using Apache
Ant is provided in the WSIT Tutorial [7]. Another frame-
work, Apache CXF [23], also uses Apache Ant to implement
the deployment process.

VII. CONCLUSION

Designing and implementing QoS for a SOA is a demand-
ing task. Up to now just a few QoS are supported by IDEs,
tools and frameworks. But there are several QoS that are still
implemented in a proprietary manner. Also, for the verifica-
tion and enforcement corresponding QoS modules need to be
developed. As a result numerous different implementations
for each QoS exists, which are usually not interoperable.

Automated deployment processes for Web Service that
use WS-Policy to describe QoS are established and widely-
used. However, identification, configuration and installation
of QoS modules, e.g., handlers, at the runtime environment
is still performed manually.

In this work, we proposed a way to identify the QoS
modules needed to enforce a WS-Policy description. We
further introduced a component i) to manage available
QoS modules including different versions, ii) to store the
implemented constraints of each QoS module, and to iii)
identify the QoS modules necessary to verify and enforce
an overall WS-Policy. We further introduced a component
that is able to gather the desired QoS modules and to install
them at the runtime environment.

Finally, we showed that the deployment process can be
enhanced to identify and install missing QoS modules auto-
matically, to identify assertions that cannot be implemented
at all due to unavailable QoS modules.

Further, by using a central, dedicated Software Compo-
nent Management we expect to improve the availability of
QoS modules and corresponding QoS descriptions over time
by publicly offering such a unit.

The benefit of this work is the consolidation of two
separate processes that are both necessary to successfully
implement QoS-aware Web Services. One is the deployment
process of Web Services and WS-Policy descriptions. The

37Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing



other is the installation of handler at the infrastructure,
which also has been automated. The introduction of a
dedicated unit that manages QoS modules, relates them to
the implemented assertions is a valuable progress.

But there are still challenges. We plan to investigate
further QoS with regard to implementation strategies, and
on new technologies to support this implementation. Further,
we want to improve the availability of QoS. Finally the
comprehensive tool chain for QoS-aware Web Services is
further improved.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
giving us helpful comments.

This work has been partly supported by the German
Ministry of Education and Research (BMBF) under research
contract 17N0709.

REFERENCES

[1] S. Robertson and J. Robertson, Mastering the requirements
process, 3rd ed., P. Education, Ed. Addison-Wesley, 2012.

[2] A. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yendluri,
T. Boubez, and U. Yalcinalp, “Web services policy 1.5
- framework,” World Wide Web Consortium, Tech. Rep.,
2007, last access: 15. Jan. 2013. [Online]. Available:
http://www.w3.org/TR/ws-policy/

[3] K. Lawrence and C. Kaler, “WS-SecurityPolicy 1.2,”
OASIS, Tech. Rep., Feb. 2009, last access: 15. Jan.
2013. [Online]. Available: http://docs.oasis-open.org/ws-sx/
ws-securitypolicy/v1.3/ws-securitypolicy.html

[4] T. Erl, Service-oriented architecture, 9th ed. Upper Saddle
River, NJ [u.a.]: Prentice-Hall, 2005.

[5] A. Al-Moayed, B. Hollunder, A. Wahl, and V.Sud,
“Quality attributes for web services: A model-based
approach for policy creation,” International Journal on
Advances in Software, vol. 5, no. 3&4, pp. 166–178, Dec.
2012. [Online]. Available: http://www.thinkmind.org/index.
php?view=article&articleid=soft v5 n34 2012 2

[6] B. Hollunder, A. Al-Moayed, and A. Wahl, “A tool chain for
constructing QoS-aware web services,” in Performance and
Dependability in Service Computing: Concepts, Techniques
and Research Directions. IGI Global, 2012, pp. 189–211.
[Online]. Available: http://services.igi-global.com/resolvedoi/
resolve.aspx?doi=10.4018/978-1-60960-794-4.ch009

[7] Oracle, “The WSIT tutorial,” last ac-
cess: 15. Jan. 2013. [Online]. Avail-
able: http://docs.oracle.com/cd/E17802 01/webservices/
webservices/reference/tutorials/wsit/doc/index.html

[8] ——, “Netbeans IDE.” [Online]. Available: http://netbeans.
org/

[9] java.net, “JAX-WS,” last access: 15. Jan. 2013. [Online].
Available: http://jax-ws.java.net/

[10] ——, “Glassfish,” last access: 15. Jan. 2013. [Online].
Available: http://glassfish.java.net/de/

[11] The Eclipse Foundation, “Eclipse IDE,” last access: 15. Jan.
2013. [Online]. Available: http://www.eclipse.org/downloads/
moreinfo/jee.php

[12] The Apache Software Foundation, “The apache ant project,”
last access: 15. Jan. 2013. [Online]. Available: http:
//ant.apache.org/

[13] ——, “The apache neethi project,” last access: 15. Jan. 2013.
[Online]. Available: http://ws.apache.org/neethi/

[14] ——, “The apache subversion project,” last access: 15. Jan.
2013. [Online]. Available: http://subversion.apache.org/

[15] Oracle, “Mysql community edition.” [Online]. Available:
http://www.mysql.com/

[16] T. Erl, Ed., Web service contract design and versioning for
SOA, ser. The @Prentice Hall service-oriented computing
series from Thomas Erl. Upper Saddle River, NJ [u.a.]:
Prentice Hall, 2009.

[17] B. Hollunder, “Ws-policy: On conditional and custom asser-
tions,” in Web Services, 2009. ICWS 2009. IEEE International
Conference on, july 2009, pp. 936 –943.

[18] H. Mezni, W. Chainbi, and K. Ghedira, “Aws-policy:
An extension for autonomic web service description,”
Procedia Computer Science, vol. 10, no. 0, pp. 915 –
920, 2012, ¡ce:title¿ANT 2012 and MobiWIS 2012¡/ce:title¿.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1877050912004796

[19] M. Mathes, S. Heinzl, and B. Freisleben, “Ws-temporalpolicy:
A ws-policy extension for describing service properties with
time constraints,” in Computer Software and Applications,
2008. COMPSAC ’08. 32nd Annual IEEE International, 28
2008-aug. 1 2008, pp. 1180 –1186.

[20] B. Hollunder, “Domain-specific processing of policies or: Ws-
policy intersection revisited,” in Web Services, 2009. ICWS
2009. IEEE International Conference on, July, pp. 246–253.

[21] M. B. Brahim, T. Chaari, M. B. Jemaa, and M. Jmaiel,
“Semantic matching of ws-securitypolicy assertions,” in
Service-Oriented Computing - ICSOC 2011 Workshops.
Springer Berlin Heidelberg, 2012, pp. 114–130. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-31875-7 13

[22] D. Malfatti, “A Meta-Model for QoS-Aware Service Compo-
sitions,” Master’s thesis, University of Trento, Italy, 2007.

[23] The Apache Software Foundation, “Apache CXF,” last access:
15. Jan. 2013. [Online]. Available: http://cxf.apache.org/

38Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing


