
Towards Semantic-Supported SmartLife System Architectures

for Big Data Services in the Cloud

Eman El-Sheikh

University of West Florida

Department of Computer Science

Pensacola, FL USA
eelsheikh@uwf.edu

Sikha Bagui

University of West Florida

Department of Computer Science

Pensacola, FL USA
bagui@uwf.edu

Donald G. Firesmith

Carnegie Mellon University

Software Engineering Institute

Pittsburgh, PA USA
dgf@sei.cmu.edu

Ilia Petrov

Reutlingen University

Data Management Lab

Reutlingen, Germany
ilia.petrov@reutlingen-university.de

Norman Wilde

University of West Florida

Department of Computer Science

Pensacola, FL USA
nwilde@uwf.edu

Alfred Zimmermann

Reutlingen University

Architecture Reference Lab

Reutlingen, Germany
alfred.zimmermann@reutlingen-university.de

Abstract – SmartLife applications are emerging as intelligent

user-centered systems that will shape future trends in

technology and communication. The development of such

applications integrates web services, cloud computing, and big

data management, among other frameworks and methods. Our

paper reports on new perspectives of services and cloud

computing architectures for the challenging domain of

SmartLife applications. In this research, we explore SmartLife

applications in the context of semantic-supported systems

architectures and big data in cloud settings. Using a SmartLife

application scenario, we investigate graph data management,

fast big data, and semantic support through ontological

modeling. The ontological model and architecture reference

model can be used to support semantic analysis and program

comprehension of SmartLife applications.

Keywords – SmartLife applications; Semantics and Ontology;

Big Data Management; Enterprise Systems Architecture;

Services–Oriented Architectures; Cloud Computing.

I. INTRODUCTION

Information and data are central components of our

everyday activities. Social networks, smart portable devices,

and intelligent cars, represent a few instances of a pervasive,

information-driven vision we call SmartLife. Imagine

speeding on the motorway, and receiving a text message on

your mobile device from a friend asking to meet you. Since

the number is on your personal contact list, the message is

then transferred to your car’s personal information system

and read as well as displayed as soon as the traffic

conditions allow that. You accept the invitation and the

system checks recent social postings of your friend to

recommend possible locations. Your friend has ‘liked’

multiple Espresso postings lately so the system infers that

he/she might enjoy having one and executes a query for

excellent Espresso places nearby and for times convenient

for both your schedules. The SmartLife system would use

your social profiles to recommend places. It would verify

which of your close friends you have not met for a while are

available and what they might have recommended, compile

a simple list and display it on your car’s head-up display. If

you agree it will schedule an appointment in all personal

calendars, distribute routes and queue them in the navigation

systems, possibly recommending parking places. Your

status messages will be automatically updated. Of course,

you get to pick the best coffee blend and roast yourself!

The above is an example of a service-based semantically

rich application scenario. Social graph analysis and

management, big data, and cloud data management are

essential to the above scenario. Ontological analysis, smart

devices, personal information systems, hard non-functional

requirements, such as location-independent response times

and privacy, are some of the basic concepts in building such

a SmartLife scenario.

Additional application domains of the SmartLife vision

include: (i) intelligent mobility systems and services; (ii)

intelligent energy support systems; (iii) smart personal

health-care systems and services; (iv) intelligent

transportation and logistics services; (v) smart

environmental systems and services; (vi) intelligent systems

and software engineering; (vii) intelligent engineering and

manufacturing.

A. Research Questions

This paper describes work in progress that will address

the following research questions:

1. How can service-oriented architectures (SOA) and

enterprise systems architectures support SmartLife

applications?

2. Is an ontological modeling approach useful to

support semantic SmartLife applications?

3. How can semantic modeling approaches be

effectively combined with system application

59Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

engineering, big data and services computing in the

cloud?

4. How are semantic and social data in the SmartLife

scenario efficiently managed as big data? How can

real-time analysis and updates be efficiently

performed on big graph data in cloud settings?

5. What are suitable approaches to enterprise IT-

architectures for services and cloud computing,

guiding the management and control of SmartLife

scenarios?

6. How should existing software engineering methods

evolve to cover SmartLife services?

B. Impact

The technological and business impact of the SmartLife

vision has multiple aspects. While the business side targets

intelligent approaches and structural business, the

technological side is more diverse. Expected fields of

innovation include:

 Software engineering methods for cloud applications

 Influence of dynamic configuration components for

products, processes and systems

 Graph databases for fast big data and new hardware

technologies

 Advanced architectural approaches for reconfigurable

pervasive and mobile scenarios based on service-

oriented and cloud computing architectures

 Common sematic approaches as a basis for modeling

smart application scenarios for user-centered systems.

The rest of the paper describes the framework and

methodology for the proposed research. Section II describes

a minimalistic configuration scenario for SmartLife. Section

III describes the implications and research issues resulting

from SmartLife data management focusing on Big Graph

Data Management. Section IV targets semantic

representations and mechanisms for intelligent SmartLife

support. Section V integrates both business and computer

science aspects of a consistent configuration of enterprise

systems architecture, and section VI concludes the paper.

II. SMARTLIFE APPLICATION SCENARIOS

SmartLife applications span a broad range of domains

including intelligent configuration services, intelligent

transportation and logistics services, personal health care

systems and services, smart environmental systems, and

intelligent engineering and manufacturing systems. Below

we describe a simple starting scenario for SmartLife.

WebAutoParts is a hypothetical online automobile parts

dealer intended to model an Internet start-up company that

is using SOA for rapid development [1]. Its software uses

BPEL for orchestration of commercially available external

services from well-known vendors. As shown in Figure 1,

the Order Processing workflow for WebAutoParts has two

stubbed in-house BPEL services (OrderProcessing and

InventoryRepository) and four commercially-available

Figure 1. WebAutoParts: Services in the Order Processing Workflow

external services: Amazon Web Services - SimpleDB (data

base) and SimpleQueueService (message queuing);

StrikeIron.com - TaxDataBasic (sales tax rates); Ecocoma -

USPS (shipping costs).

WebAutoParts is much smaller than most real SOA

applications. However, it is useful for ontological

exploration since it consists of syntactically correct BPEL

code and contains XSD and WSDL documents typical of

current industrial practice. We will also explore the use of

other SOA systems for SmartLife domains, such as

intelligent transportation services and intelligent engineering

and manufacturing systems in future research work.

III. GRAPH DATA MANAGEMENT

In terms of data management, SmartLife systems manage

and analyze big data. Major components are social,

enterprise, semantic, and sensor data [2]. We actively

investigate the following research aspects:

 Heterogeneity. Data from multiple possibly

heterogeneous data sources have to be federated. New

approaches to data fusion and cleaning are needed.

 High Volume. Data is being produced at high rates on

the scale of Petabytes or Exabytes from many users and

data sources. In contrast to traditional data management

it is not reasonable to assume upper bounds. It is mostly

distributed.

 High Update Rates. Data and content are being

produced at high rates for new activity (tweets, social

graph updates and social content, sensor and mobile

data). Hence a paradigm shift is required in big data

management and high update rates.

 Near/Real-time Analytics. Near-time analytics and

discovery are a prerequisite for successful SmartLife

systems. In addition to traditional analytics, data mining

and information retrieval, SmartLife systems are

expected to offer user recommendations. The near-time

character of data-analysis requires new approaches.

A research area that gains significant attention and

offers a common way of data processing and analysis is

graph data management. Existing approaches, algorithms

60Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

and systems need to be reevaluated in the above context [3].

The use of novel hardware such as many-core CPUs,

FPGAs, new storage technologies, like Non-Violate and

Flash memories, are critical to handle the high update rates

and near-time analytics.

One research goal is to investigate graph database

systems [4] in a cloud setting that handle huge data volumes

and high update rates and at the same time offer near-time

analytics, recommender functionality and crowdsourcing.

The efficient use of new hardware technologies is another

key research goal.

Social big data imply processing of very large graphs that

are typically maintained at multiple sites (cloud settings)

with high update rates [5]. Traditionally high volume graph

data is being handled by disc-based graph databases, which

are too slow to handle the complexity of the typical

inference and analytics graph queries. Low response times

represent a key non-functional requirement. Additional

performance related research issues arise from the need to

handle mixed loads – complex graph analytics as well as

high update rates. The efficient use of new hardware is a

key requirement to meet these performance challenges,

which translates into a number of research issues: (i)

optimal use of flash and non-volatile memories since many

of the current algorithms are not suitable; (ii) efficient use of

multi-core CPUs and FPGAs for graph data analysis; and

(iii) distribution and synchronization problems in Cloud

settings.

IV. SEMANTIC SUPPORT THROUGH ONTOLOGIES

A. Development of an Ontological Model

The Open Group developed and released the SOA

Ontology 2.0 [6]. This ontology has two main purposes:

1. It defines the concepts, terminology and semantics of

SOA in both business and technical terms.

2. It contributes to model-driven SOA implementation.

The Open Group’s SOA Ontology [6] is represented in

the Web Ontology Language. The Open Group ontology

contains classes and properties corresponding to the core

concepts of SOA. The formal OWL definitions are

represented (i) in the OWL syntax; (ii) as UML models of

the concepts and their relationships; and (iii) all models are

supplemented by natural language descriptions.

B. Ontological Model for SmartLife Applications

The phase after development of the ontological model

will focus on exploring how the model can be used to

support program comprehension for SOA-based SmartLife

systems. Several specific SOA comprehension tasks will be

identified, including (but not limited to):

 Impact analysis (If X is changed, what additional

changes may be needed?)

 Concept location (Where is concept Y implemented in

this system?)

We will explore visualization of the ontological model

developed to support: (i) system comprehension and (ii)

information and data management. Additional research

questions include: Is the ontological reference model

sufficient to model a SOA SmartLife system? Are there

gaps? Would the reference model need to be extended?

C. Comparing the Ontological Approach to Other

Knowledge Modeling Approaches

1) Concept Maps

Concept maps are an established framework for

organizing and representing knowledge [7]. A concept map

is a diagram that shows the relationships among concepts.

Concepts, usually represented as boxes or circles, are

connected with labeled arrows in a downward-branching

hierarchical structure. The relationship between concepts

can be expressed in linking phrases such as "is" or

"includes." Concept maps are particularly useful for

analyzing and organizing large and complex domains.

Concept maps can be structured hierarchically, linked

together, and augmented with other resources such as text,

graphics, videos, etc., to create a knowledge model [8].

2) Entity Relationship Model

The Entity Relationship (ER) model is an established data

modeling technique, well accepted in the database world

[9]. The ER model is used to visually represent data in

databases in terms of entities, their attributes and

relationships. Entities describe a complex structured concept

like a person, place, thing or event of interest. Attributes are

used to describe entities. Attributes can be either single

value or multi-valued. And, relationships describe

associations among entities. Relationships are explained in

terms of their connectivity (or cardinality), and their

connectivity can be indicated by one-to-one (1:1), one-to-

many (1:M) and many-to-many (M:N) relationships.

Cardinality is related to upper and lower bounds.

Participation in this connectivity by member entities may be

optional (partial) or mandatory (full).

3) Unified Modeling Language Model

Unified Modeling Language (UML) is a standardized

general-purpose modeling language used in object-oriented

software engineering. The standard is managed, and was

created, by the Object Management Group.

UML is used to specify and visualize the artifacts of an

object-oriented software-intensive system under

development. UML offers a standard way to visualize a

system's architectural blueprints, including elements such

as: activities, actors, business processes, database schemas,

and (logical) components, programming language

statements, reusable software components. UML combines

techniques from data modeling (ER modeling), business

modeling (work flows), object modeling, and component

modeling. It can be used with all processes, throughout the

61Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

http://en.wikipedia.org/wiki/Activity_(UML)

software development life cycle, and across different

implementation technologies.

4) Tree Abstractions

The tree representation is a hierarchical representation of

the data, mainly used in the XML data format [10]. This

structure allows representing information using parent/child

relationships: each parent can have many children, but each

child has only one parent (also known as a 1-to-many

relationship). All attributes of a specific record are listed

under an entity type.

We are exploring the use of concept maps and other

knowledge models for semantic analysis of SmartLife

applications. The ontological model developed for the target

applications can be compared to a knowledge model of the

application to identify similarities and differences between

the two program comprehension approaches, as well as

strengths and weaknesses of each approach.

V. ENTERPRISE SYSTEMS ARCHITECTURE

In areas where flexibility or agility in business is
important, services computing is the approach of choice to
organize and utilize distributed capabilities. Innovation
oriented companies have introduced in recent years service-
oriented architectures to assist in closing the business - IT
gap and making it cloud-ready. The benefits of SOA are
recognized for systems on the way to cloud computing and
being ready for extended service models. They comprise
flexibility, process orientation, time-to-market, and
innovation.

A. Reference Architectures for Services & Cloud

Computing

The OASIS Reference Model for Service Oriented
Architecture [11] is an abstract framework, which guides
reference architectures [12]. The ESARC – Enterprise
Services Architecture Reference Cube [13] (Figure 2) is
more specific and completes these architectural standards in
the context of EAM – Enterprise Architecture Management,
and extends these architecture standards for services and
cloud computing.

Figure 2. ESARC - Enterprise Software Architecture Reference Cube

ESARC provides an abstract model for application

architectures and implementation of service-based enterprise

systems. ESARC is an original architecture reference model,

which provides an integral view for main interweaved

architecture types. ESARC abstracts from a concrete

business scenario or technologies. The Open Group

Architecture Framework provides the basic blueprint and

structure for our extended service-oriented enterprise

software architecture domains like: Architecture

Governance, Architecture Management, Business and

Information Architecture, Information Systems

Architecture, Technology Architecture, Operation

Architecture, and Cloud Services Architecture. ESARC

provides a coherent aid for examination, comparison,

classification, quality evaluation and optimization of

architectures.
The Business and Information Reference Architecture -

BIRA (Figure 2) provides, for instance, a single source and
comprehensive repository of knowledge from which
concrete corporate initiatives will evolve and link. This
knowledge is model-based and defines an integrated
enterprise business model, which includes organization
models and business processes. The BIRA opens a
connection to IT infrastructures, IT systems, and software as
well as security architectures. The BIRA confers the basis for
business-IT alignment and therefore models the business and
information strategy, the organization, and main business
demands as well as requirements for information systems,
such as key business processes, business rules, business
products, services, and related business control information.

The ESARC Information Systems Reference Architecture
–ISRA (Figure 2) is the application reference architecture
and contains the main application-specific service types,
defining their relationship by a layer model of building
services. The core functionality of domain services is linked
with the application interaction capabilities and with the
business processes of the customer organization. In our
research we are integrating the reference models for services
computing [13].

Cloud architectures are still in development and have not
yet reached their full potential of integrating EAM with
Services Computing and Cloud Computing. Integrating and
exploring these three architectural dimensions into consistent
reference architectures is a basic part of our current research.
The ESARC – Cloud Services Architecture (Figure 2)
provides a reference-model-based synthesis of current
standards and reference architectures, like [14].

B. Architecture Metamodel and Ontology

Metamodels are used to define architecture model
elements and their relationships within ESARC. We use
metamodels as an abstraction for architectural elements and
relate them to architecture ontologies [15]. The OASIS
Reference Model for SOA [11] is an abstract framework,
which defines generic elements and their relationships for
service-oriented architectures. This reference model is not a
standard, but provides a common semantic model for
different specialized implementations.

62Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

Reference architectures [12] are derived from a reference
model. It is a composition of related architectural elements,
which are built from typed building blocks as the result of a
pattern-based mapping of reference models to software
elements. Architecture patterns, as in [17], [18] are human
readable abstractions for known architecture quality
attributes, and represent standardized solutions, considering
architectural constraints for certain recurring problems.

Architecture ontologies represent a common vocabulary
for enterprise architects who need to share their information
based on explicitly defined concepts. Ontologies include the
ability to automatically infer transitive knowledge. The
technical standard of service-oriented architecture ontology
from [6] defines core concepts, terminology, and semantics
of a service-oriented architecture in order to improve the
alignment between the business and IT communities. The
following stakeholders are potential users of the SOA
ontology, related architecture metamodels, as well as
concrete architectural building blocks: business people and
business architects, information systems and software
architects, architects for the technological infrastructure,
cloud services architects and security architects. The
metamodel of BIRA consists of ESARC-specific concepts,
which are derived as specializations from generic concepts
such as Element and Composition from the Open Group’s
SOA Ontology [6].

Using the ESARC ontology, we can navigate in the
multidimensional space of enterprise architecture
management structures and enable in a future research effort
of semantic-supported navigation for architects as well as
intelligent inferences. Additionally we want to add
visualizations for these ontology concepts, as part of a
sematic-supported architecture management cockpit.

C. Methodology Framework for System Architectures

As its name implies, the Method Framework for

Engineering System Architectures (MFESA) [16] is a

framework for using situational method engineering to

create appropriate methods for engineering system

architectures. MFESA consists of:

 An ontology that defines the concepts underlying

system architecture engineering

 A metamodel that defines the foundation classes of the

method components

 A repository of reusable method components derived

from the foundation classes of the metamodel

 A metamethod for constructing system architecture

engineering methods by selecting, tailoring, and

integrating method components from the MFESA

repository.

The Quality Assessment of System Architectures and

their Requirements (QUASAR) is a method for assessing

the quality of system architectures and architecturally-

significant quality requirements. QUASAR is based on the

concept of requirements- and architecture-level quality

cases consisting of:

 Claims – developers’ assertions that the (a)

architecturally-significant quality requirements are

sufficiently complete, correct, consistent, etc. and (b)

architecture is sufficiently complete and meets the

architecturally-significant requirements

 Arguments – clear, compelling, and relevant developer

arguments that sufficiently justify the assessor’s belief

in the developers’ claims (e.g., architectural decisions,

inventions, engineering trade-offs, assumptions, and

associated rationales)

 Evidence – adequate, credible, and official

substantiation supporting the developers’ arguments

(e.g., architectural diagrams, models, and documents).

D. Patterns and Repository for Architecture Diagnostics

and Optimization

Our pattern language for architecture assessments of
service-oriented enterprise systems [17] provides a
procedural method framework for architecture assessment
processes and questionnaire design. We organize and
represent our architecture assessment patterns according to
the structures of the architecture maturity framework
SOAMMI [13], [18]: Architecture Domains, Architecture
Areas, Problem Descriptions - associated with Specific
Goals, Solution Elements that are connected to Specific
Practices and Related Patterns, which are subsequent
connections of applicable patterns within the pattern
language.

Linking elements to specific practices of the SOAMMI
framework indicate solutions for architecture assessments
and improvements of service-oriented enterprise systems.
This assessment and improvement knowledge is both
verification and design knowledge, which is a procedural
knowledge based on standards, best practices, and
assessment experience for architecture assessments of
service-oriented enterprise systems. It is therefore both
concrete and specific for setting the status of service-oriented
enterprise architectures, and helps to establish an
improvement path for change.

We have identified and distinguished a set of 43 patterns
as parts of a newly designed pattern language in the context
of 7 Architecture Domains and 22 Architecture Areas. Even
though our architecture quality patterns accord to the
Specific as well as the Generic Goals and Practices of the
SOAMMI framework, they extend these structures by
navigable patterns [18], as part of an architecture assessment
language. This pattern structure enables architecture quality
assessors to navigate bi-directionally, to support both
diagnostics and optimization processes, as well as to provide
a clear link to questionnaires.

E. Enterprise Architecture Governanace and Management

Architecture Governance defines and maintains the
Architecture Governance cycle [13]. It sets the abstract
governance frame for concrete architecture activities within
the enterprise or a product line development and specifies the
following management activities: plan, define, enable,

63Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

measure, and control. The second aim of Architecture
Governance is to set rules for architecture compliance to
internal and external standards. Enterprise and software
architects are acting on a sophisticated connection path
emanating from business and IT strategy to the architecture
landscape realization for interrelated business domains,
applications and technologies. Architecture Governance has
to set rules for the empowerment of people, defining the
structures and procedures of an Architecture Governance
Board, and setting rules for communication. We specify
architecture governance models for concepts such as: service
strategy and life cycle management of software and system
architecture artifact’s state, service security, service testing
and monitoring, service contracts, registries, service reuse,
service ownership, definition and versioning.

VI. CONCLUSION

 SmartLife applications are emerging as intelligent user-

centered systems that will shape future trends in technology

and communication. The development of such applications

integrates web services, cloud computing, and big data

management, among other frameworks and methods. The

basic approaches within each field are already well known

and used. However, such methods are not directly applicable

and properly integrated for SmartLife applications. Existing

approaches can be extended to exploit synergistic effects

resulting from the SmartLife context. Technological

evolution is also expected forming a feedback cycle from

SmartLife scenarios to new technologies.

We have set up a transatlantic, multi-institutional

research cooperation starting with this project, which would

be extended to related areas as well as to student and

academic exchanges and common publication efforts in

conferences and journals. This paper described the

framework and methodology for the research in progress.

We explore SmartLife applications in the context of

semantic-supported systems architectures and big data in

cloud settings. Using a SmartLife application scenario, we

investigate graph data management, fast big data, and

semantic support through ontological modeling.

We have developed a prototype SmartLife application,

WebAutoParts, to use as a test bed for our research project.

We are exploring how the semantic and social data in the

SmartLife scenario can be efficiently managed as big data,

and how real-time analysis and updates can be efficiently

performed on big graph data in cloud settings.

In addition, we have defined the ontological and

architectural reference frameworks for our target SmartLife

application, and are currently working on developing the

ontological model for this application. Future work includes

analyzing how the ontological and architecture models

developed can be used to support semantic analysis and

program comprehension of SmartLife applications. The

models can be compared to and combined with other

semantic modeling approaches to support development and

maintenance of SmartLife applications.

ACKNOWLEDGMENTS

Work described in this paper was partially supported by

the University of West Florida Foundation under the Nystul

Eminent Scholar Endowment, and the SOA Innovation Lab

Germany.

REFERENCES

[1] T. Reichherzer, E. El-Sheikh, N. Wilde, L. White, J. Coffey,
and S. Simmons, “Towards intelligent search support for web
services evolution: identifying the right abstractions”,
Proceedings of 2011 13th IEEE International Symposium on
Web Systems Evolution (WSE), 30 Sept. 2011, pp. 53-58.

[2] J. Gray, A. Szalay, “Science In An Exponential World”.
Nature, , 23 March 2006, V. 440.23.

[3] Cheng, J., Ke, Y., and Ng, W.: Efficient query processing on
graph databases. ACM Trans. Database Syst. 34, 1, Article 2,
April 2009.

[4] Frischbier, S., Petrov, I.: Aspects of Data-Intensive Cloud
Computing. From Active Data Management to Event-Based
Systems and More, 2010, pp. 57-77.

[5] R. Sears, R. Ramakrishnan, “bLSM: a general purpose log
structured merge tree”, In Proc. of SIGMOD 2012.

[6] Open Group, “Service-Oriented Architecture Ontology”,
Technical Standard, The Open Group, 2010.

[7] J. Novak, and D. Gowin, “Learning How to Learn”,
Cambridge. University Press, New York, NY, 1984.

[8] J. W. Coffey and T. Eskridge, “Case Studies of Knowledge
Modeling for Knowledge Preservation and Sharing in the U.S.
Nuclear Power Industry”, Journal of Information and
Knowledge Management. 7(3), 2008, pp. 173-18.

[9] S. Bagui and R. Earp, (2012). “Database Design Using ER
Diagrams”, 2nd edition, Taylor and Francis, 2012.

[10] S. Bagui, “Mapping XML Schema to Entity Relationship and
Extended Entity Relationship Models”, International Journal
of Intelligent Information and Database Systems, 3(4), 2007,
pp. 325-345.

[11] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and
R. Metz, OASIS “Reference Model for Service Oriented
Architecture” 1.0, OASIS Standard, 12 October, 2006.

[12] Open Group “SOA Reference Architecture”, The Open
Group, 2011.

[13] A. Zimmermann, H. Buckow, H.-J. Groß, O.F. Nandico, G.
Piller, and K. Prott, “Capability Diagnostics of Enterprise
Service Architectures using a dedicated Software Architecture
Reference Model”, IEEE-SCC2011: Washington DC – July 5-
10, 2011, pp. 592-599.

[14] M. Behrendt, B. Glaser, P. Kopp, R. Diekmann, G. Breiter, S.
Pappe, H. Kreger, and A. Arsanjani, “Introduction and
Architecture Overview – IBM Cloud Computing Reference
Architecture 2.0”, IBM, 2011.

[15] A. Zimmermann, and G. Zimmermann, “Enterprise
Architecture Ontology for Services Computing”, SERVICE
COMPUTATION 2012: Nice – France – July 22-27, 2012,
ISBN 978-1-61208-215-8, pp. 64-69.

[16] D. G. Firesmith with P. Capell, D. Falkenthal, C. B.
Hammons, D. Latimer, and T. Merendino, “The Method
Framework for Engineering System Architectures”, CRC
Presstaylor & Francis Group, 2009.

[17] T. Erl, “SOA Design Patterns”, Prentice Hall. 2009.

[18] A. Zimmermann, F. Laux, and R. Reiners, “A Pattern
Language for Architecture Assessments of Service-oriented
Enterprise Systems”, PATTERNS 2012: Nice – France – July
22-27, 2012, ISBN 978-1-61208-158-8, 2011, pp. 7-12.

64Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

