
Versioning and Historiography in Automated
Generic Electronic Flight Log Book Transfer

Arne Koschel, Carsten Kleiner
Univ. of Applied Sciences and Arts,

Faculty IV (Dept. of Computer Science)
Hannover, Germany

akoschel@acm.org, ckleiner@acm.org

Björn Koschel
edatasystems GmbH

Gelsenkirchen, Germany
bjoern.koschel@edatasystems.de

Abstract—The automated transfer of flight logbook informa-
tion from aircrafts into aircraft maintenance systems leads to
reduced ground and maintenance time and is thus desirable
from an economical point of view. Until recently, flight logbooks
have not been managed electronically in aircrafts or at least
data transfer from aircraft to ground maintenance system has
been executed manually, since only latest aircraft types (e.g.,
Airbus A380, Boeing 777) support electronic logbooks. This
paper introduces a top level distributed system architecture of a
generic system for automated flight logbook data transfer. The
system includes a generic mapping component that facilitates
flexible mappings between aircraft logbook systems as input
and aircraft maintenance systems in the backend. As its main
contribution this paper details versioning and historiography
concepts for our system. The former makes it possible to deal with
different versions of input and output systems in a single mapping
component. The latter explains the practically important aspect
of historizing data in order to comply with legal regulations. Due
to its flexible design the mapping component could also be used
for other domains with similar requirements.

Keywords-System integration; versioning; historiography;
aerospace domain; generic interface; flexible data mapping

I. INTRODUCTION

Ground and maintenance time is very costly for airline
operators. They try to minimize them for economical reasons.
Today’s mostly manual transfer of flight logbook data from
an aircraft into the operator’s maintenance systems should
be automated to get closer to this goal. This should reduce
information transfer time and is likely to be less error prone
as well. Thus, in total it should result in reduced ground
maintenance time and cost.

A generic automated flight log data transfer system needs
to support differently structured flight log information from
different aircraft types and manufacturers on one side. On
the other side different aircraft maintenance systems used
by different operators have to be supported. Technically, all
these systems are likely distributed, even though typically in a
common network within a single organization. Moreover, fault
tolerance and (transactional) persistence to prevent data loss
are required. Not very critical are performance demands due
to a limited amount of log data per flight in practise.

To support those requirements, a generic transfer system for
flight logbooks into maintenance systems needs to be designed
and implemented. In a joint industry and research cooper-

ation (Verbundprojekt) the eLog system has been designed
and prototypically implemented by the University of Applied
Sciences Hannover in cooperation with Lufthansa Technik AG
and edatasystems GmbH. Technically this system supports dif-
ferent – currently Extensible Markup Language (XML)-based,
but with heterogeneous XML schemata – versions of different
aircraft flight log systems on the input side. On the output
side different airline systems are supported, which may have
different data models. As an example a Relational DataBase
Management System (RDBMS/DBMS) with tables is used,
that map (almost) 1:1 to the data structures of the output
system, which is Lufthansa’s core aircraft maintenance system.
Note that the number of potential input and output systems in
a real world scenario will be rather small (e.g. a one-digit
number), thus limiting the number of potential combinations
of input and output systems and the mappings required.

The resulting eLog system offers a generic distributed sys-
tem architecture for integration and mapping of the different
XML-based flight log input data formats to different output
aircraft maintenance systems. The mapping is configurable and
flexible, including mapping of arbitrary entities.

Mapping of input objects to output objects is specified by an
XML mapping document (conforming to a specific mapping
schema) which is dynamically loaded into the mapping com-
ponent (cf. sec. IV). Information in the mapping document is
handled dynamically making the component extremely agile
once in operation. In total all these features contribute towards
our goal of a generic flight logbook tool. In [13], a high
level overview on eLog has been given and [14] discusses the
mapping component in detail. This paper’s main contribution
are details on the versioning and historiography concept for
eLog. The versioning concept is important in order to deal
with different versions of input and output systems with a
minimal operational overhead. Thus, a single (or at least small
number) of mapping system instances should be able to take
care of several versions of input and output systems with
each combination requiring individual mapping specifications.
Historiography is important both from an operational point
of view (e.g., to limit the amount of data to be held in the
operational mapping systems) as well as from a legal perspec-
tive as certain accountability requirements for all Information
Technology (IT) systems related to aircraft are in place.

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

Initial tests of the prototypical implementation already vali-
dated the practical usefulness of the concept. Very few logbook
data transfer systems exist. Those that do are flight operator
internal and/or aircraft type and maintenance system specific.

Although concepts and approaches for application/data inte-
gration in general of course do exist (important ones are briefly
discussed in section II) applying them to flight logbook data
is a novelty. To the best of our knowledge a generic flight
logbook data transfer system has not been implemented yet
and is thus the key contribution of our overall work.

The remainder of this article discusses some related work
in section II before giving a high level system overview of
the eLog system in section III that has been the result of an
extensive comparison of options (cf. [13]). Section IV briefly
introduces the generic mapping specification before section V
discusses as the main contribution the eLog versioning and
historiography approach. The article ends with a conclusion
and some outlook to future work in section VI.

II. RELATED WORK

Related work originates from different areas. Conceptually
different enterprise application integration approaches [2],
[4], [12] provide a potential foundation for the technical
system architecture. The most important ones include: mes-
saging based enterprise integration patterns [7], transactional
DBMS based approaches [5], [3], using an Enterprise Service
Bus (ESB)/Service-Oriented Architecture (SOA) as foundation
[11], and finally an Extract Transform Load (ETL)-like data
warehouse concept [8].

All of them potentially deliver feasible architectures for a
system like eLog and have been evaluated (cf. [13]). Even-
tually a transactional DBMS based architecture was chosen
similar to an ETL approach. We omit a detailed discussion
about the architecture selection at this point. The selection
has been undertaken and is described in project internal
documentation. It might be published by us in a future article.
In this paper we will rather focus on the achieved results.

From an application point of view many systems exist,
which transfer and map data from multiple input sources to
different output sinks. For example, Deutsche Post uses an
ESB for XML-based data transfer within a SOA [6].

A generic XML mapping architecture is discussed in [9].
Similarly [19] presents an algorithm for mapping of XML
Schemas which we did not use to potentially missing XML
schemats on output side. Graph based mapping to transform
structured documents is explored in [16]. A tool for semantic-
driven creation of complex XML mappings is presented in
[17] whereas [20] presents a similar mapping approach to ours
but employs XSLT for the mapping step. Moreover (semi-
)automated mapping of XML schemas has been discussed in
many research papers, a pretty comprehensive survey is given
in [15]. However, for the limited complexity of the XML
schemas used in flight logbooks the project has decided that
the overhead of employing a complex automated mapper, let
alone choosing the most suitable one, is too big. Nevertheless
the output of an automated mapper could be used as a base

to define the mapping documents (cf. section IV) if our
approach is applied to more complex domain schemas. Also
[18] describes the design of a histoy database but is restricted
to a completely different domain.

Looking at recent aircraft models in particular shows that
only the latest models support electronic log books. In addition
standardization of the data format is still in its early stages.
Recently initial standardization has been designed in the ATA
specification [1]. This specification is quite helpful for the
flight log input data within our work – although it is still
significantly in flux. One e-logbook tool for the aerospace
industry is presented in [10]. But no generic flight logbook
data transfer system has been documented yet.

III. ELOG: SYSTEM OVERVIEW

The designed generic flight log data transfer system is
based on ideas frequently found in ETL processes in data
warehouse systems. Note though that the implementation itself
is not based on data warehouses but rather uses a transactional
DBMS-based approach as stated in the previous section. In
order to provide a brief eLog system overview we explain the
data flow within eLog in the sequel.

A. Data flow within eLog

Data flow within eLog follows a sequence of steps to map
the XML input data to arbitrary aircraft maintenance systems.
Figure 1 shows the high level input data flow from the flight
logbook system until procured to the maintenance system.

An input reader component – where different implementa-
tions for different source data formats may exist – uses polling
(step 1) to check whether new XML files have been delivered
by aircrafts. Polling is implemented by frequently checking
a predefined directory on a dedicated server for newly added
files. The data is validated against the XML schema (step 2)
of the particular aircraft’s electronic logbook format, e.g.,
against those defined in [1]. If the data is formally valid,
it is transferred into a buffer database (step 3), where it is
stored in its original format in an XML-type attribute. Else an
error handling takes place. As long as the covered aircrafts

Fig. 1. Generic eLog data flow

76Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

Fig. 2. XML based mapping process

provide source data in XML format a single database schema
is sufficient for the buffer database.

Again using polling a mapping component checks for newly
arrived source data (step 4) in the buffer database. It utilizes a
flexibly configurable sequence of conversion functions to map
the input data to a specific output target system (step 5); this
step is explained in detail in section IV. The output data is
stored in a database again (step 6). It closely resembles the
data structure of the airline’s maintenance system.

Consequently for each different maintenance system there
will be an individual schema in the output database. Options
in the mapping configuration include checks for dependent
source information, flexible mapping and features to update
existing entities in the output system; cf. details section IV.

Eventually another upload component transfers data from
the output database (step 7) into the airline maintenance
system (step 8) whenever an entity of the maintenance system
has been completely assembled. As one option the airline
maintenance system used provided a Web services interface
for programmatic access.

IV. MAPPING RULES

The mapping of domain specific information between input
and output systems is expressed by XML mapping files con-
forming to a specific mapping schema. There is an individual
mapping file for each entity of any input system that is
triggering the creation of an entity in the output system
(cf. fig. 2). Mapping files can take care of any type of
mapping between input and output on entity, attribute and
attribute value level. Mappings on entity level use an individual
mapping specification for each of the input entity types. Within
these entities nested elements specify the attribute mappings
by individual converters whereas transformations on attribute
values are defined on the innermost level within the target
attribute specification.

For eLog it is important to note that there is an individual
mapping configuration for each combination of input and out-
put system where a mapping has to take place. This includes
different versions of a system on each side, i.e., mapping from
a different version of the same input system leads to a new
mapping configuration file to be used. This has the advantage
from an operational point of view that each combination and

version of input and output system can be configured and
operated independently of other potential mappings.

In the case study an implementation of the whole mapping
process in Java has been performed. Technically the system is
designed according to the ETL paradigm and it is implemented
with different Java processes which together provide the tasks
from figure 1. They are combined with a relational DBMS,
that also allows for XML data storage (Oracle). Throughout
the conversion steps DB transactions are utilized to ensure data
consistency. In combination with operating system based fault
tolerance (automated process restarts), a high degree of fault
tolerance of the overall system is thus achieved.

The Java mapping application dynamically reads the map-
ping specification documents and checks for syntactical cor-
rectness. Thus, changes in the mapping specification simply
require a restart of the mapping process without any changes
to the source code. After starting, the transformation process
polls the input folder (or database) for newly arrived XML
input. Whenever the first input entity of a given type arrives,
the mapping specification document is used to instantiate the
required converters and functions as Java objects. The names
of the converter XML elements are used to instantiate a
corresponding Java class using reflection. This enables dy-
namic provisioning of converter classes and facilitates complex
converters as the full power of the Java language can be used
for implementation. Arguments of the converters and functions
are provided to the Java classes based on the specific objects
to be processed. Thus, additional converters and functions can
be easily implemented and added to mapping processing by
observing given interfaces without any changes to the mapping
process source code. After successful mapping of an input
entity the result is procured to the output system (a relational
database in our case) with standard JDBC operations. Note that
while the first step and the instantiation of mapping objects in
the Java application are executed only once, the other steps are
executed for each input entity with the number of executions
depending on the particular mapping specification.

V. VERSIONING AND HISTORIOGRAPHY

While the previous sections provided a brief general
overview about eLog summarized from [13], [14], this section
newly contributes approaches for two additional requirements,
namely versioning and historiography within eLog.

Versioning within the eLog context in particular means
to have independent version changes for the attached input
systems such as ATA conformant systems as well as for
the attached output airline maintenance systems. In principal
arbitrary combinations of input and output system versions
should be possible for eLog.

Historiography in the eLog context means what happens to
the different input and output data within eLog’s databases.
Since this is mostly future work for eLog we only briefly
sketch pragmatic ideas, which nevertheless might well form
the basis for a pragmatic solution in this space.

This section will first examine the different resources within
the eLog system architecture, which are affected by versioning.

77Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

It is followed by a look at some additional assumptions
regarding foreseeable eLog usage. A discussion of several
options to enable versioning for eLog based on the resources
and the additional assumptions is performed. The section
concludes with a look at eLog’s historiography concept.

A. Versioning within eLog

1) Common resources in eLog affected by versioning: Tak-
ing a closer look at the eLog system architecture as sketched
in figure 1 shows several resources, which are commonly used
within eLog. Table I describes them in more detail.

2) Additional assumptions for versioning in eLog: Discus-
sion with potential future users of eLog directed us to a few
additional assumptions:

• There will be different versions of input data systems.
• There will be different versions of output data systems.
• Due to typical time and release schedules, the actual

number of different versions on both sides – input and
output – will be less then 10 per system.

• Individual administration is of importance on a ’per
version’ basis. Especially important is a very low impact
of one system version (such as one particular Airman
version on input side) to other system versions.

• A ’pragmatic’ solution for version control with base tech-
nologies such as RDBMS and comparatively simple data
structures is prefered by the proeject partners compared to
an ’over-engineered’ approach. For example, ontologies
or version control systems are not required here.

3) Discussing input/output system versions for eLog: While
the versioning discussion in principal is required for all of
the mentioned system environments and common resources
from table I, we will – due to space limitations – focus here
on the versioning of the eLog database(s). Please note, that
this nevertheless forms a baseline for a similar discussion of
all those resources. For example, one could use a particular
version of the eLog program ’tied to’ a certain version of the
eLog database or its users and schemas.

The discussion of versioning for the eLog database(s) is of
particular importance, since it affects pretty much all other
resources. We also do take into account for the discussion the
’additional assumptions’ from above however. Based on an
example we examine different approaches for versioning of
the eLog database(s) below.

TABLE I
ELOG RESOURCES

System Environment Key Common Resources

Physical or virtual machines DB schema (user data,
to run the operating system flight log entities, etc.)

Databases management systems eLog program versions (and their
such as Oracle 11 respective run time process

incarnations)

A certain runtime environment. For eLog data directories
eLog Java virtual machines. within the file system

eLog configuration information

Typically a (relational) database installation will have a few
database instances, which will have some schemas that will
consist of some tables. For the following approaches let there
be 2 input systems E,F with 3 version 0,1,2 as well as 2 output
systems R,S also with 3 versions 0,1,2. From this example –
which adheres to the ’additional assumptions’ from above and
would also be reasonably typical in practise for our project
partner – the following versioning concepts arise:

• D1 – 1 DB instance per input/output system
One full database instance per input/output system com-
bination would allow for the best decoupling between
different input/output system combinations. However, the
price for many full DB instances is of course a relatively
high overhead.
Our example would result in 12 DB instances, one for
each of the three versions of each of the four systems.

• D2 – 1 schema per input/output system and version
In this concept only 1 database instance would be used.
The separation between input/output system and resp.
versions would be performed based on different DB users
with their individual DB schemas.
For the example this concept results in
{E0, E1, E2, F0, F1, F2, R0, R1, R2, S0, S1,
S2} thus 12 DB schemas within a single DB instance,
one schema per input and output system and version.

• D3 – 1 DB schema per input/output system combination
for all versions
The number of different schemas could be reduced by
using the same schema for all versions of a single input
or output system. In this option all tables for a single
system would be multiple for each version.
For the example this gives {E0,1,2, F0,1,2, R0,1,2, S0,1,2}
thus 4 DB schemas with three times the tables each
compared to D2. While the number of schemas is reduced
significantly, the decoupling of input/output system com-
binations is much lower compared to D1 or D2 leading
to increased dependencies during operation.

• D4 – 1 DB schema for all input systems and 1 DB schema
for all output systems
The lowest meaningful number of schemas would be just
one for the data from all input systems and another one
for all output systems.
Here {(E,F), (R,S)} would be the result for our ex-
ample. This gives only two schemas, thus relatively low
overhead but only minimal decoupling as the price.

A solution for a good relation between system / DB main-
tenance effort versus decoupling of systems may be found by
looking at table II.

Option D2, which consists of 1 DB instance and 1 DB
schema per input/output system and version provides a prag-
matic solution with a suitable flexibility combined with a rea-
sonable DB administration effort. It does require a substantial
number of DB users – the sum of number of input systems
and their versions plus number of output systems and their
versions. However, the systems are decoupled. They can be

78Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

TABLE II
DB VERSIONING CONCEPT: EVALUATION

System Evaluation Comment

D1 – Max. decoupling of versions, quite high overhead
D2 + Maintenance effort vs. decoupling

in a reasonable relation
D3 +- Decoupling lesser, maintenance effort higher
D4 – only 2 DB users required, but no decoupling

for maintenance tasks given

Fig. 3. Garbage Collection

maintained individually on a per version base, e.g., allowing
for individual system starts and stops, backups or updates.

In total option D2 is thus the authors recommendation for
eLog. However, individual airline IT environments, mainte-
nance procedures or accounting strategies may have to lead
to other options, e.g., to option D3. This would provide fewer
flexibility, but it would limit the number of required DB users
and thus reduce the DB administration effort to some degree.

Beside maintenance aspects the single point of failure aspect
also has to be considered, at least, whenever system resources
are shared. For this reason it is recommended for system
resources, to have them separated whenever possible. For
example, a shared DBMS as in option D2 might be used,
but within a highly available environment. For separate eLog
instances individual virtual or even physical machines shall be
used. The number of parallel installations seems reasonable,
while the advantages of independent administration, mainte-
nance, and fault tolerance should be significant.

B. Historiography and ’Garbage Collection’ for eLog

Persistent data within the eLog context resides in the buffer
and in the output data base (cf. section III). Over time, the
data stored there becomes outdated and thus – at least if in
the future many aircrafts deliver input data for the system – the
stored data wastes database memory in the eLog production
databases. Still however, for control and accounting purposes
outdated data should remain accessible in some form. For this
reason some kind of data historiography and ’garbage collec-
tion’ is a required feature for eLog. The base requirements for
data historiography and garbage collection in eLog are thus:

• R1: Archive database
Historiography and garbage collection in the eLog con-
text means to archive data from the production databases
into some other long term archive database according to
certain rules (see below). When those rules apply the

associated data must be moved from eLog’s production
database to an eLog archive database. Figure 3 sketches
this process.

• R2: Rules for data historiography
It shall be possible to declare certain (simple) time bound
rules, which specify when and which data is moved to
the archive database from R1 (and deleted afterwards).

• R3: Rules for data deletion
Certain data items within eLog only serve for internal
purposes, for example internal key and reference informa-
tion for data mappings in eLog’s output database. Once
this information is outdated, it might safely be deleted
(’garbage collected’) with no need for further archiving.
As in R2 it shall be possible to declare certain (simple)
time bound rules, which specify when and which data
might safely be deleted from eLog’s production database.

Looking at those core requirements and the requirement of a
pragmatic, established approach, the following solution seems
sufficient: Conceptually each attribute gets two constraints (or
markers). One specifies when it must be moved from the
production database to the history database at the earliest (and
deleted afterwards). The second specifies when the data item
may be deleted from either production or history (whereever
it resides) at the earliest. Please note, that from a regulatory
persepctive may be a real deletion in the history table could
even be ’never’ or only in a very long time frame. At the
moment, out project partners do not see this demand.

In table III fictive examples (although practically reasonable
acc. to our project partners) are given for archiving and
deleting certain flight log and maintenance data after a certain
time period.

Technically again a pragmatic, proven solution is eLog’s
approach of choice. Periodic database jobs, which use triggers
and stored procedures are a sufficient implemenation for eLog.
External database programs, which run periodically, would be
an alternative.

VI. CONCLUSION AND OUTLOOK

A. Conclusion

So far the concept and prototypical implementation of eLog
have proven to be very promising. The implementation already
covers a single exemplary input and also output system. It in-
cludes entities that require almost all possible mapping options
between the systems. The mapping configuration as described
above is defined in an XML file based on a proprietary schema.

TABLE III
TYPICAL ENTRIES: HISTORIOGRAPHY AND GARBAGE COLLECTION

Database Entity toHistory after toDelete after

Buffer DB MaintLog 1 week 3 weeks
MaintAction 1 week 3 weeks
MaintRelease no 3 weeks

Out DB mapping of MaintLog no 3 weeks
mapping of MaintAction no 3 weeks
mapping of MaintRelease no 6 weeks

79Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

Different versions of input and output systems are an inte-
gral part of eLog’s architectural concept (cf. section V). The
mentioned XML schema may easily be adjusted to different
input and output formats (for different versions of the same
or other logbooks and maintenance systems). The mapping
specification is read dynamically by the mapping component
which makes easy and fast adjustments to different versions
or products possible without any software development, just
by configuration. The current output DB resembles the simple
relational structure of most airline maintenance systems but
may also be adjusted for a different maintenance system. Both
mapping configuration as well as input and output data formats
are sufficiently generic in order for the system to be easily
adjusted to specific data formats. They might well be usable
in other domains as well.

The overall modular design of the system by decoupling
input and output system leads to a highly scalable overall ar-
chitecture. Dealing with different versions and output systems
will be a major issue as, e.g., logbook data will be procured
to different output systems dealing with specific aspects of
aircraft management. Since the actual number of different
versions in an installation in a typical time period will in
practise likely be small enough (in total likely less than 20),
the scalability of the overall architecture will hold true.

Consequently, eLog’s solution for versioning – as discussed
in section V – is of highly practical importance for a working
interface component. Moreover, the general discussion of
versioning aspects could well be of practical importance for
other systems as well.

Elog’s pragmatic concept for data historiography based on
history tables and (simple) rules could also be a solution for
other systems with similar (relatively small) requirements.

B. Outlook

After a brief successful evaluation of the first eLog proto-
type we have finished the conceptual and detailed specification
phase of eLog’s 2nd project stage and are about to finish this
phase’s implementation.

There the genericity of the mapping specification already
proved to be quite useful as a different logbook provider was
used than in the first stage. Also, the schema of the output
system has changed from a relational schema towards a more
XML-oriented schema using domain-specific objects from the
aircraft maintenance domain. Moreover as of late two slightly
different output systems will have to be procured positively
testing the feasibility of our generic mapping approach as well
as the versioning.

The next steps include evaluation of eLog in a production
environment. All this will provide additional proof for the scal-
ability and reliability aspects. Within the mapping specification
we might also consider as future work some examination of
ontology based approaches. Also, we will have to generalize
the format of the mapping specification to an an XML schema
in order to do development/compile time correctness checking
of specifications in the future.

In summary, automated integration of flight logbooks shows
the potential for reduced transfer times of maintenance in-
formation coupled with increased correctness when compared
to the current manual process. This will eventually lead to
reduced maintenance times for aircrafts and thus increase
profitability of the airline. The presented real world eLog
project is a very promising step into this direction.

ACKNOWLEDGMENT

The authors thank our cooperation partner Lufthansa Tech-
nik AG and our master students A. Hödicke and S. Nitz.
The overall project is part of the Aviation Cluster Hamburg
Metropolitan Region’s Leading-Edge Cluster Strategy and is
sponsored by the German Ministry of Education and Research.

REFERENCES

[1] Air Transport Association of America, Inc. (ATA), ”Industry Standard
XML Schema for the Exchange of Electronic Logbook Data,” 1.2
edition, May 2008.

[2] S. Conrad, W. Hasselbring, A. Koschel, and R. Tritsch, ”Enterprise
Application Integration,” Spektrum, Germany, 2005.

[3] C.J. Date. ”An Introduction to Database Systems, 7th edt.,” Addison-
Wesley, U.S.A., 2003.

[4] J. Dunkel, A. Eberhart, S. Fischer, C. Kleiner, and A. Koschel,
”Systemarchitekturen f. Verteilte Anwendungen,” Hanser, Germany,
2008.

[5] R. Elmasri and S. Navathe, ”Fundamentals of Database Systems, 5th
Edt.,” Add.-Wes., U.S.A, 2006.

[6] M. Herr, U. Bath, and A. Koschel, ”Implementation of a Service
Oriented Architecture at Deutsche Post MAIL,” In ECOWS, LNCS
vol. 3250 Springer, 2004, pp. 227–238.

[7] G. Hohpe and B. Woolf, ”Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions,” Addison-Wes., USA,
2003.

[8] W. H. Inmon, ”Building the Data Warehouse,” Wiley, U.S.A, 2005.
[9] W. Jiyi, ”An Extensible XML Mapping Architecture,” Chinese Control

Conference (CCC2007), July 2007, pp. 291–293.
[10] A. T. Kavelaars, E. Bloom, R. Claus, et al, ”An Extensible XML

Mapping Architecture,” In IEEE Transactions On Aerospace And
Electronic Systems, 45(1), U.S.A, 2009.

[11] D. Krafzig, K. Banke, and D. Slama, ”Enterprise SOA: Service Oriented
Architecture Best Practices,” Prentice Hall, U.S.A, 2005.

[12] D. S. Linthicum, ”Enterprise Application Integration,” Addison-Wesley,
U.S.A, 1999.

[13] O. Hunte, C. Kleiner, U. Koch, A. Koschel, B. Koschel, and S. Nitz,
”Automated generic integration of flight logbook data into aircraft
maintenance systems,” 17th GI/ITG KiVS, OASIcs, Dagstuhl, Germany,
2011, pp. 201–204.

[14] C. Kleiner and A. Koschel, ”Towards Automated Generic Electronic
Flight Log Book Transfer,” 15th IC on Business Information Systems
(BIS 2012), Springer, Germany, LNBIP 117, 2012, pp. 177–188.

[15] E. Rahm and P. A. Bernstein, ”A survey of approaches to automatic
schema matching,” The VLDB Journal, Springer, U.S.A, vol. 10(4),
Dec. 2001, pp. 334–350.

[16] A. Boukottaya and C. Vanoirbeek, ”Schema matching for transforming
structured documents,” Proc. 2005 ACM symposium on Document
engineering. ACM, U.S.A, pp. 101–110.

[17] A. Morishima, T. Okawara, J. Tanaka, and K. Ishikawa, ”SMART: A tool
for semantic-driven creation of complex XML mappings,” Proc. SIG-
MOD 2005. ACM, New York, NY, U.S.A., pp. 909–911.

[18] Z. Youzhi, P. Peng, and Z. Geng, ”Design of History Database for
Networked Control Systems,” CCC2007, 2007, pp. 292–296.

[19] L. Checiu and D. Ionescu, ”A new algorithm for mapping XML Schema
to XML Schema,” International Joint Conference on Computational
Cybernetics and Technical Informatics (ICCC-CONTI), May 2010,
pp. 625–630.

[20] M. Roth, M. Hernandez, P. Coulthard, et. al., ”XML mapping tech-
nology: Making connections in an XML-centric world,” IBM Systems
Journal, vol.45, no.2, 2006, pp. 389–409.

80Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

