
A Decomposition-based Method for QoS-aware Web Service Composition with
Large-scale Composition Structure

Lianyong Qi1,2, Xiaona Xia1, Jiancheng Ni1,Chunmei Ma1, Yanxue Luo1

1 Computer Science College
Qufu Normal University, P.R. China

2 State Key Lab. for Novel Software Technology
Nanjing University, P.R. China
Email: lianyongqi@gmail.com

Abstract—Web service composition (WSC), has been
considered as a promising way for integrating various
distributed computing resources for complex application
requirements. However, for a QoS-aware WSC problem
with large composition structure, much computation time is
necessary to determine the QoS-optimal composite solution,
which challenges the service composition applications in
large-scale collaboration environment. In view of this
challenge, a Decomposition-based service Composition
Method, named DCM, is introduced in this paper. Firstly,
the proposed DCM method decomposes the large-scale
composition structure into many small-scale composition
segments, through mixed integer programming. Then for
each small-scale composition segment, find a QoS-optimal
composite solution with less time cost. Through experiments,
we demonstrate that the execution efficiency of DCM
outperforms the present service composition methods,
especially for the WSC problems with large-scale
composition structure.

Keywords-web service composition; QoS; Decomposition;
mixed integer programming

I. INTRODUCTION
In recent years, the web service technology has gained

more and more attention and is becoming the de facto
standard for integrating various distributed computing
resources for complex application requirements [1-3].
Through functional encapsulation, a web service could be
advertised by the service provider, and invoked by an end
user via the pre-provided accessible interfaces. The easy-
to-use property of web service brings more convenience
for both service providers and end users, and greatly
benefits the flexible integration of cross-domain
applications.

However, the function that a single web service could
provide is usually limited, compared to the complex
computing requirements from end users. Therefore, to
compose various component services into a more powerful
composite service (WSC) has been considered as a
promising way to satisfy the end users’ complex
requirements. For example, more and more WSC instances
are deployed in the popular areas, e.g., Scientific
Workflow, Electronic Commerce and Multimedia
Delivery applications [4]. However, as there are many web
services that share similar functionality, the candidate

composite solutions for a WSC problem are multiple, not
unique. In this situation, quality of service (QoS) could be
recruited as an important discriminating factor, because a
WSC process is usually accompanied with various QoS
constraints from end users. For example, a smart-phone
end user may expect that the total latency time of the
composite multimedia service not exceed 2 seconds.
Therefore, for a WSC problem, the next question is to find
a QoS-optimal composite solution from the huge amount
of candidates, while considering the various global QoS
constraints from end users (QoS-aware web service
composition).

 Many researchers concentrate on this hot research
topic and put forward some valuable methods for the QoS-
aware WSC problems [4-9]. However, these proposed
methods cannot work very well because of inefficiency.
This is due to the fact that QoS-aware WSC is inherently a
NP-hard problem [6], so it is usually time-consuming to
find the QoS-optimal composite solution. Especially for
the WSC problem with large-scale composition structure
(i.e., the WSC process consists of many component tasks.
For example, an e-Science composite process with dozens
of tasks), the traditional service composition methods may
fail in delivering satisfactory results within limited time
period. Hence, it is of great challenge to study more
efficient composition method. In view of this challenge, a
novel Decomposition-based service composition method,
named DCM, is proposed. DCM is based on mixed integer
programming, which is an optimization approach that has
a set of goal function that should be maximized or
minimized and a set of constraint conditions that should be
satisfied.

The remainder of the paper is organized as follows. In
Section II, we put forward our motivation via a large-scale
service composition example, and introduce the necessary
preliminary knowledge. A Decomposition-based service
composition method, named DCM, is proposed in Section
Ⅲ. Through the experiments in Section Ⅳ, we demonstrate
the feasibility and efficiency of DCM in solving the WSC
problems with large-scale composition structure. In
SectionⅤ, the proposed DCM method is evaluated, and
finally we summarize the paper and point out our future
research directions in SectionⅥ.

81Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

II. PRELIMINARY KNOWLEDGE AND MOTIVATION
In order to facilitate the further discussion, some

preliminary knowledge of QoS-aware WSC problem, is
introduced here. Concretely, some basic concepts are
listed as below.

1. TK={tk1, …, tki, …, tkn}. tki (1≤i≤n) denotes a
composition task consisted in the service composition
structure.

2. CR={cr1, …, crj, …, crm}. crj (1≤j≤m) is a QoS
criterion of web service and m is the number of QoS
constraints requested by an end user. Commonly, for a
web service ws, its quality value over QoS criterion crj
could be denoted by ws.crj.

3. CSTglobal={cst1, …, cstj, …, cstm}. cstj
 (1≤j≤m) is a

global QoS constraint over criterion crj∈CR by an end-
user and m is the number of QoS constraints.

4. Pooli={ 1
iws , …, k

iws , …, l
iws } is a service pool

corresponding to composition task tki∈TK. Namely, each
service k

iws ∈Pooli (1≤k≤l) could execute task tki(1≤i≤n),
and l is number of functional qualified candidate services
for task tki.

5. WGT = {wgt1, …, wgtj, …, wgtm} is the weight
value set for different QoS criteria. wgtj ∈WGT (1≤j≤m)
is the weight value for QoS criterion crj. Generally, set
WGT could be available from the end-user’s preferences
for different QoS criteria.

6. CompS = { 1
1
kws , …, ik

iws , …, nk
nws } is a

functional qualified composite solution, where each
component service ik

iws is the ki-th candidate in Pooli of
task tki(1≤i≤n).

For example, as in Fig. 1, assume that there are four
tasks in a composition process, then TK={tk1, tk2, tk3, tk4}.

Assume that for each task node, there are four candidate
services; Then, for task node tki (1≤i≤4), its service pool
Pooli ={ 1

iws , …, 4
iws }. If we only consider two QoS

criteria: latency and reputation, whose constraints are
respectively latency<1s and reputation>98%, then set
CR={latency, reputation} and CSTglobal={latency ∈ (0s,
1s), reputation∈(98%, 100%)}. If WGT = {wgtla, wgtre}
where wgtla = 0.7 and wgtre = 0.3, then it means that
latency is more important than reputation for the end user.
Consider the example in Fig. 1, set { 2

1ws , 1
2ws , 3

3ws , 4
4ws }

is a composite solution that belongs to set CompS.
Next, with the introduced basic concepts and the

example in Fig. 1, we can clarify our motivation more
clearly and formally. As there are n composition tasks
{tk1, …, tkn} in set TK, and for each task tki (1≤i≤n) in TK,
there are l functional qualified candidates { 1

iws , …, l
iws }

in service pool Pooli, the total number of functional
qualified composite solutions is ln. Next, our goal is to find
a QoS-optimal composite solution CompS from all the ln
ones, while considering the end user’s global QoS
constraints CSTglobal and weight value set WGT.

However, for a WSC problem with large-scale
composition structure, the number of composition tasks
(i.e., n) is usually large, which may lead to much time cost
in order to find a QoS-optimal composite solution and
disappoints the end user. In view of this, we put forward a
composition method DCM, in the next section. DCM can
decompose the large-scale composition structure into
several small-scale ones, through which the composition
efficiency could be improved significantly.

web service composition structure

QoS-optimal composite solution

functional
service matching

 ……

 ……

……

 ……

QoS-aware
service selection

Figure1. An example of QoS-aware web service composition process

 candidate service

 selected service

service pool

Symbol legend： composition task

82Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

TABLE I. AGGREGATION TYPES AND AGGREGATION FUNCTIONS OF
QOS CRITERIA

III. A SERVICE COMPOSITION METHOD: DCM
In this section, a service composition method DCM is

proposed, to improve the efficiency of WSC problems
with large-scale composition structure.

A. Hypotheses
For the convenience of further discussions, some

hypotheses are declared firstly.
Hypothesis1: Only negative QoS criteria (i.e., the smaller
its value is, the better it is for user) are considered, e.g.,
composition time, composition price, as positive criteria
could be transformed into negative ones by multiplying -1.
Hypothesis2: Only the sequential composition model
illustrated in Fig. 1 is discussed, as other composition
models (e.g., parallel, alternative and loops) could be
transformed into the sequential model by present mature
unfolding techniques [4-5].
Hypothesis3: In the sequential composition model, the
aggregation types of various QoS criteria are different. In
this paper, the common aggregation types and aggregation
functions introduced in [4] are employed as in Table 1,
where CompS denotes a composite solution and n is the
number of tasks in composition structure.

B. A QoS-aware service composition Method: DCM
The main idea of our proposed DCM is: Firstly, the

large-scale composition structure with n tasks is
decomposed into /n k   small-scale composition
segments, each with k (1≤k≤n) tasks. Secondly, calculate
the segment QoS constraints for each composition
segment, through mixed integer programming. Thirdly,
for each composition segment, find a QoS-optimal
composite solution that satisfies the segment QoS
constraints. Next, we will introduce these three steps of
proposed DCM method separately.

(1) Step1: Decompose the large-scale composition
structure into /n k   small-scale composition
segments.

As the composition structure is large-scale (i.e, n is

large), the needed time cost for finding a QoS-optimal
composite solution may disappoints the end user.
Therefore, we firstly decompose the large-scale
composition structure into /n k   small-scale
composition segments, each with k (1≤k≤n) tasks. For
example, as illustrated in Fig. 2, the composition structure
with n tasks is decomposed into /n k   composition
segments, which are denoted by SEG1=(tk1, …, tkk),
SEG2=(tkk+1, …, tk2k), …, /n kSEG  

=(
(/ 1)* 1n k ktk − +  

, …, tkn).

(2) Step2: Decompose the global QoS constraints

CSTglobal into /n k   segment QoS constraints via
mixed integer programming.

After achieving /n k   small-scale composition
segments, in this step, we calculate the segment QoS
constraints for each composition segment, by
decomposing the global QoS constraints CSTglobal via
mixed integer programming technique.

Firstly, by the mathematical statistic technique, we
calculate the minimal and maximal values over QoS
criterion crj (1≤j≤m) of candidate services for each task tki
(1≤i≤n), which are denoted by j

imin and j

imax respectively.
Then a value range [j

imin , j

imax] is achieved, which
depicts the QoS criterion crj’s value distribution of task
tki’s candidate services. Then, we calculate the value
distribution of candidates of each composition segment
SEGp (1≤p≤ /n k  ) over QoS criterion crj, which is
denoted by [j

pMIN , j

pMAX], according to the aggregation
functions introduced in TABLE Ⅰ . Afterwards, range
[j

pMIN , j

pMAX] is discretized into d (d≥2) discrete value
with interval j

pdis =(j

pMAX - j

pMIN)/(d-1), i.e.,
{ 1 j

pBound ,…, j

p

d Bound }, where 1 j

pBound = j

pMIN
and j

p

d Bound = j

pMAX . Here, each discrete value
j

p

x Bound (1≤x≤d) corresponds to the composition segment
SEGp’s QoS constraint [0, j

p

x Bound] over QoS criterion

Aggregation type Criterion Aggregation function

Summation price,
duration CompS.crj=

1

.
i

n

j
i

crws
=

∑

Average reputation CompS.crj=
1

.
1

i

n

j
i

crws
n =

∑

Multiplication availability,
success rate CompS.crj=

1
.

i

n

j
i

crws
=

∏

 tkk+1 tk2k

 (/ 1)* 1n k ktk − +  

…

 tkn …

…

 tk1 tkk …

Figure2. Decompose the large-scale composition
structure into small-scale composition segments

SEG1

SEG2

/n kSEG  

83Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

crj. Our final object of this step is to find an appropriate x
value for each QoS criterion crj (1≤j≤m) of each segment
SEGp (1≤p≤ /n k  ).

Next, we utilize the mixed integer programming to
determine the best segment constraint [0, j

p

x Bound] for
each QoS criterion crj of each composition segment SEGp.
According to the mixed integer programming, this
optimization problem could be formalized into the
following question:

Maximize
1 1

/

()
m

x j
p

p j

n k

Utility Bound
= =

  

∏∏ (1)

Subject to
1

/
x j

p
p

n k

Bound
=

  

∏ ≤ cstj (2)

/

1

1

/

n k
x j

p
pn k

Bound
=

  

  
∑ ≤ cstj (3)

/

1

n k
x j

p
p

Bound
=

  

∑ ≤ cstj (4)

x∈{1, 2, …, d} (5)

Here, ()x j

pUtility Bound in (1) denotes the “goodness”
of utilizing [0, x j

pBound] as segment SEGp’s QoS
constraint over criterion crj, whose computation manner
could be found in [5], so we will not discuss it here. The
left parts of (2)-(4) respectively denote the aggregated
segment QoS constraints, corresponding to the three
aggregation types in TABLE Ⅰ, which should not exceed
the end user’s global QoS constraint. The constraint
condition in (5) means that variable x has d possible values.
After solving the above optimization problem with mixed
integer programming, we can derive the best segment QoS
constraints [0, x j

pBound](1≤j≤m) for each composition
segment SEGp (1≤p≤ /n k  ).

(3) Step3: For each composition segment, find the
QoS-optimal composite solution that satisfies
segment QoS constraints.

In Step1, we obtain /n k   small-scale composition
segments { SEG1, SEG2,…,

 /n kSEG }, each with k
(1≤k≤n) tasks. Through which, we successfully transform
a large-scale WSC problem into /n k   small-scale WSC
sub-problems. And in Step2, for each WSC sub-problem,
its QoS constraints are also obtained. So in Step3, we only
need to solve these QoS constrained WSC sub-problems.
Next, we formalize the WSC sub-problem (corresponding
to a composition segment) as follows:

Maximize ()pUtility SEG (6)

Subject to
*

(1)* 1 1
(. *)

p k

q p k

l
z z
q j q

z
ws cr x

= − + =
∏ ∑ ≤ x j

pBound (7)

*

(1)* 1 1

1

/
(. *)

p k l
z z
q j q

q p k zn k
ws cr x

= − + =  
∑ ∑ ≤ x j

pBound (8)

*

(1)* 1 1
. *

p k l
z z
q j q

q p k z
ws cr x

= − + =
∑ ∑ ≤ x j

pBound (9)

1
1

l
z
q

z
x

=

=∑ x∈{1, 2, …, d} (10)

z
qx ∈{0, 1} (11)

Here, ()pUtility SEG in (6) denotes the utility value of

composite solution for SEGp. The left parts of (7)-(9)
respectively denote the aggregated value for composite
solution of segment SEGp, over QoS criterion crj, which
should not exceed the calculated segment QoS constraints,
according to the three aggregation types in TABLE Ⅰ.
The constraint conditions in (10)-(11) mean that for a
segment task, only one candidate service would be
selected, to form a composite solution. After solving the
above mixed integer programming problem, a QoS-
optimal composite solution CompS-p could be achieved
for composition segment SEGp. And finally, the set
{CompS-1, …, CompS-  /n k } makes up the QoS-
optimal composite solution, for the original WSC problem
with large-scale composition structure.

IV. EXPERIMENT
In this section, a group of experiments are enacted and

executed to validate the effectiveness and efficiency of
proposed DCM method, especially in dealing with the
WSC problems with large composition structure.

A. Experiment Configuration
In this paper, the experiment is based on the updated

QWS Dataset from Dr. Eyhab Al-Masri [5], which is
widely used in the service computing domain. The
experiments were deployed and executed on a Lenovo
machine with Intel Pentium 2.40 GHz processors and 1.00
GB RAM. The machine is running under Windows XP
and C++ integration environment.

B. Experiment Results and Analyses
In order to evaluate the feasibility and efficiency of

DCM in dealing with WSC problems with large-scale
composition structure, the following four test profiles are

84Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

designed and compared with another two present methods:
Global [6] and Hybrid [5]. In the experiments, the
parameter d is equal to 5 for both Hybrid and DCM, and
five QoS constraints are employed for all test cases.

Profile1: performance comparison of DCM, Global and
Hybrid with different task number (i.e., n)

In this profile, the computation time of three methods
are tested and compared, for finding a QoS-optimal
composite solution. In the experiment setting, the number
of tasks in composition structure (i.e., n) is varied from 5
to 25. And for each task, there are 10 candidate services,
i.e., l=10. The parameter k in DCM is equal to 3. The
experiment comparison results are demonstrated in Fig. 3.
As can be seen from Fig. 3, the computation time of DCM
outperforms the other two methods when n is increased.
Especially when the value of n is large, the proposed
DCM method exhibits its significant advantages, in
dealing with WSC problems.

Profile2: performance comparison of DCM, Global
and Hybrid with different candidates (i.e., l)

In this profile, the computation time of three methods
is compared when the number of candidate services
changes. In the experiment setting, the number of tasks in
composition structure, i.e., n=10. And for each task, the
number of candidate services (i.e., l), is varied from 10 to
50. The parameter k in DCM is equal to 3. The
experiment comparison results are demonstrated in Fig. 4.
As in Fig. 4, the computation time of Global increases
significantly when l arises. However, DCM and Hybrid
exhibit similar change trends, whose computation time
both stay nearly unchanged with the increase of l.

Profile3: performance comparison of DCM with
different values of parameter k

In our proposed DCM method, we improve the
composition efficiency, by transforming a large-scale
WSC problem with n tasks into /n k   small-scale WSC
sub-problems. Therefore, k is an important parameter in
DCM. In this profile, we observe the performance change
of DCM with the increase of k. In the experiment setting,
the number of tasks in composition structure, i.e., n=20.
And for each task, the number of candidate services, i.e., l
is equal to 10, while the value of parameter k is varied
from 1 to 9, with interval of 2. The experiment
comparison results are demonstrated in Fig. 5. As can be
seen from Fig. 5, the computation time of DCM decreases
firstly with the arise of the k, this is because when k
grows, the computation workload for achieving segment
QoS constraints reduces. While when k grows further, the
computation workload for finding segment QoS-optimal
composite solution increase, so the computation time
arises correspondingly.

Profile4: QoS optimality comparison of DCM, Global
and Hybrid

Execution time is an important evaluation item for
QoS-aware web service composition, however, the QoS
optimality of obtained composite solution should also be
considered. In this profile, we test the QoS optimality of
three methods. In the experiment setting, the number of
candidate services for each task, i.e., l is fixed to 10, n is
varied from 5 to 25, the employed parameter k (the task
length of each composition segment) is equal to / 3n   .
The experiment results are shown in Fig. 6. As in Fig. 6,
the Global method is the best in terms of QoS optimality
of obtained composite solution. And the QoS optimality
of DCM is almost the same as that of Hybrid, both close
to 100%. Therefore, DCM can generate a QoS near-to-
optimal composite solution, while ensures better
composition efficiency.

V. EVALUATION
In this section, we will analyze the time complexity of

DCM. A comparison with related work is also presented,
to show the advantages of our proposed DCM method.

A. Complexity Analysis
In this subsection, the time complexity of the three

steps of DCM will be analyzed separately, after which we
obtain the total time complexity of DCM.
 (1)Step1: Decomposition of large-scale composition

structure into small-scale ones
With the determined k value in DCM, we can

decompose the large-scale composition structure with n
tasks into /n k   small-scale composition segments,
whose time complexity is O(1).

Figure3. Performance comparison
w.r.t. number of tasks

Figure4. Performance
comparison w.r.t. number of

candidates

Figure5. Performance comparison
w.r.t. parameter k

Figure6. QoS optimality w.r.t.
number of tasks

85Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

(2)Step2: Determine the segment QoS constraints for
all composition segments
A MIP problem is achieved, for determining the

segment QoS constraints for each composition segment.
Therefore, its time complexity is O(/ * *2 n k m d  ), where n
is the task number, k is the decomposition parameter
employed in DCM, m is the number of QoS constraints,
and d is the discretization parameter.
(3)Step3: Determine the QoS-optimal composite

solution
The QoS-optimal sub-composition solutions of
/n k   composition segments make up the QoS-optimal

composite solution, for the original WSC problem with
large-scale composition structure. For each composition
segment, the time complexity is O(2k*m*d), for determining
the QoS-optimal sub-composition solution. Therefore, the
time complexity of Step3 is O(/n k   *2k*m*d).

According to the above analysis, a conclusion could
be made that the time complexity of our proposed DCM is
O(/ * *2 n k m d   + /n k   *2k*m*d) = O(/ * *2 n k m d  ), as k is a
fixed value in DCM. Therefore, DCM outperforms
Global and Hybrid methods, whose time complexity are
O(2n*l) and O(2n*m*d) respectively, when dealing with
WSC problems with large-scale composition structure.

B. Related Work and Comparison Analysis
QoS-aware web service composition has been a hot

research topic in the domain [1-3]. In [6], a Global
method is introduced, where the QoS-aware WSC
problem is modeled into a mixed integer programming
one, whose time complexity is still large. To reduce the
time complexity of WSC, many works focus on
minimizing the number of candidate services for each task,
such as the Hybrid method [5], the LOEM method [4],
Skyline method [7], MOCACO method [8] and heuristic
method [9]. However, their time complexity is still
exponential with the task number, which may lead to
much time cost when the composition task number is
large. In this paper, we transform the large-scale WSC
problem into several small-scale ones, and put forward a
decomposition-based composition method DCM.
Through experiments, we demonstrate the feasibility and
efficiency of DCM in dealing with the WSC problems
with large-scale composition structure.

VI. CONCLUSIONS
In this paper, a decomposition-based method, named

DCM, has been presented for the WSC problems with
large-scale composition structure. Through experiments,
we demonstrate the feasibility of DCM. However, there
are some shortcomings in the paper; for example, the
employed parameter k is not assigned a concrete value,
which will be studied as a future research topic.

ACKNOWLEDGMENT
This paper is supported by the Open Project of State

Key Lab. for Novel Software Technology (No.
KFKT2012B31), Natural Science Foundation of Shandong
Province of China (No.ZR2012FQ011), SRI of SPED
(No.J12LN06), DRF and UF (BSQD20110123, XJ201227)
of QFNU.

REFERENCES
[1] Yuhong Yan, Min Chen, and Yubin Yang, “Anytime QoS

optimization over the PlanGraph for web service
composition,” Proceedings of ACM Symposium on
Applied Computing (SAC 12), ACM Press, Mar. 2012, pp.
1968-1975, doi:10.1145/2245276.2232101.

[2] Marisol Garcia Valls, R. Fernández-Castro, Iria Estevez
Ayres, Pablo Basanta Val, and Iago Rodriguez, “A
Bounded-time Service Composition Algorithm for
Distributed Real-time Systems,” Proceedings of IEEE
International Conference on High Performance Computing
and Communication (HPCC 12), IEEE Press, Jun. 2012, pp.
1413-1420, doi:10.1109/HPCC.2012.207.

[3] Wada Hiroshi, Suzuki Junichi, Yamano Yuji, and Oba
Katsuya, “E3: A Multiobjective Optimization Framework
for SLA-Aware Service Composition,” IEEE Transactions
on Services Computing, vol. 5, Sep. 2012, pp. 358-372, doi:
10.1109/TSC.2011.6.

[4] Lianyong Qi, Ying Tang, Wanchun Dou, and Jinjun Chen,
“Combining Local Optimization and Enumeration for QoS-
Aware Web Service Composition,” Proceedings of IEEE
International Conference on Web Services (ICWS 10),
IEEE Press, Jul. 2010, pp. 34-41, doi:
10.1109/ICWS.2010.62.

[5] Mohammad Alrifai and Thomass Risse, “Combining global
optimization with local selection for efficient QoS-aware
service composition,” Proceedings of 18th International
Conference on World WideWeb (WWW 09), ACM Press,
Apr. 2009, pp. 881-890, doi: 10.1145/1526709.1526828.

[6] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu,
Marlon Dumas, Jayant Kalagnanam, and Henry Chang,
“QoS-aware middleware for web services composition,”
IEEE Transactions on Software Engineering, May 2004,
vol. 30, pp. 311-327, doi: 10.1109/TSE.2004.11.

[7] Mohammad Alrifai, Dimitrios Skoutas, and Thomas Risse.
“Selecting skyline services for QoS-based web service
composition,” Proceedings of 19th International
Conference on World Wide Web (WWW 10), ACM Press,
Apr. 2010, pp. 11-20, doi: 10.1145/1772690.1772693.

[8] Wang Li and He Yan-xiang, “A Web Service Composition
Algorithm Based on Global QoS Optimizing with
MOCACO,” Lecture Notes in Computer Science, vol.6082,
Nov. 2011, pp. 79–86, doi:10.1007/978-3-642-13136-3_22.

[9] Adrian Klein, Fuyuki Ishikawa, and Shinichi Honiden,
“Efficient Heuristic Approach with Improved Time
Complexity for QoS-Aware Service Composition,”
Proceedings of IEEE International Conference on Web
Services (ICWS 11), IEEE Press, Jul. 2011, pp. 436-443,
doi: 10.1109/ICWS.2011.60

86Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

	Introduction
	Preliminary Knowledge and Motivation
	A Service Composition Method: DCM
	Hypotheses
	A QoS-aware service composition Method: DCM

	Experiment
	Experiment Configuration
	Experiment Results and Analyses

	Evaluation
	Complexity Analysis
	Related Work and Comparison Analysis

	Conclusions
	Acknowledgment
	References

