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Abstract—Web service composition (WSC), has been 
considered as a promising way for integrating various 
distributed computing resources for complex application 
requirements. However, for a QoS-aware WSC problem 
with large composition structure, much computation time is 
necessary to determine the QoS-optimal composite solution, 
which challenges the service composition applications in 
large-scale collaboration environment. In view of this 
challenge, a Decomposition-based service Composition 
Method, named DCM, is introduced in this paper. Firstly, 
the proposed DCM method decomposes the large-scale 
composition structure into many small-scale composition 
segments, through mixed integer programming. Then for 
each small-scale composition segment, find a QoS-optimal 
composite solution with less time cost. Through experiments, 
we demonstrate that the execution efficiency of DCM 
outperforms the present service composition methods, 
especially for the WSC problems with large-scale 
composition structure.  

Keywords-web service composition; QoS; Decomposition; 
mixed integer programming 

I.  INTRODUCTION  
In recent years, the web service technology has gained 

more and more attention and is becoming the de facto 
standard for integrating various distributed computing 
resources for complex application requirements [1-3]. 
Through functional encapsulation, a web service could be 
advertised by the service provider, and invoked by an end 
user via the pre-provided accessible interfaces. The easy-
to-use property of web service brings more convenience 
for both service providers and end users, and greatly 
benefits the flexible integration of cross-domain 
applications.  

However, the function that a single web service could 
provide is usually limited, compared to the complex 
computing requirements from end users. Therefore, to 
compose various component services into a more powerful 
composite service (WSC) has been considered as a 
promising way to satisfy the end users’ complex 
requirements. For example, more and more WSC instances 
are deployed in the popular areas, e.g., Scientific 
Workflow, Electronic Commerce and Multimedia 
Delivery applications [4]. However, as there are many web 
services that share similar functionality, the candidate 

composite solutions for a WSC problem are multiple, not 
unique. In this situation, quality of service (QoS) could be 
recruited as an important discriminating factor, because a 
WSC process is usually accompanied with various QoS 
constraints from end users. For example, a smart-phone 
end user may expect that the total latency time of the 
composite multimedia service not exceed 2 seconds. 
Therefore, for a WSC problem, the next question is to find 
a QoS-optimal composite solution from the huge amount 
of candidates, while considering the various global QoS 
constraints from end users (QoS-aware web service 
composition). 

 Many researchers concentrate on this hot research 
topic and put forward some valuable methods for the QoS-
aware WSC problems [4-9]. However, these proposed 
methods cannot work very well because of inefficiency. 
This is due to the fact that QoS-aware WSC is inherently a 
NP-hard problem [6], so it is usually time-consuming to 
find the QoS-optimal composite solution. Especially for 
the WSC problem with large-scale composition structure 
(i.e., the WSC process consists of many component tasks. 
For example, an e-Science composite process with dozens 
of tasks), the traditional service composition methods may 
fail in delivering satisfactory results within limited time 
period. Hence, it is of great challenge to study more 
efficient composition method. In view of this challenge, a 
novel Decomposition-based service composition method, 
named DCM, is proposed. DCM is based on mixed integer 
programming, which is an optimization approach that has 
a set of goal function that should be maximized or 
minimized and a set of constraint conditions that should be 
satisfied.  

The remainder of the paper is organized as follows. In 
Section II, we put forward our motivation via a large-scale 
service composition example, and introduce the necessary 
preliminary knowledge. A Decomposition-based service 
composition method, named DCM, is proposed in Section 
Ⅲ. Through the experiments in Section Ⅳ, we demonstrate 
the feasibility and efficiency of DCM in solving the WSC 
problems with large-scale composition structure. In 
SectionⅤ, the proposed DCM method is evaluated, and 
finally we summarize the paper and point out our future 
research directions in SectionⅥ. 
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II.  PRELIMINARY KNOWLEDGE AND MOTIVATION 
In order to facilitate the further discussion, some 

preliminary knowledge of QoS-aware WSC problem, is 
introduced here. Concretely, some basic concepts are 
listed as below. 

1. TK={tk1, …, tki, …, tkn}. tki (1≤i≤n) denotes a 
composition task consisted in the service composition 
structure. 

2. CR={cr1, …, crj, …, crm}. crj (1≤j≤m) is a QoS 
criterion of web service and m is the number of QoS 
constraints requested by an end user. Commonly, for a 
web service ws, its quality value over QoS criterion crj 
could be denoted by ws.crj.  

3. CSTglobal={cst1, …, cstj, …, cstm}. cstj
 (1≤j≤m) is a 

global QoS constraint over criterion crj∈CR by an end-
user and m is the number of QoS constraints. 

4. Pooli={ 1
iws , …, k

iws , …, l
iws } is a service pool 

corresponding to composition task tki∈TK. Namely, each 
service k

iws ∈Pooli (1≤k≤l) could execute task tki(1≤i≤n), 
and l is number of functional qualified candidate services 
for task tki. 

5. WGT = {wgt1, …, wgtj, …, wgtm} is the weight 
value set for different QoS criteria. wgtj ∈WGT (1≤j≤m) 
is the weight value for QoS criterion crj. Generally, set 
WGT could be available from the end-user’s preferences 
for different QoS criteria. 

6. CompS = { 1
1
kws , …, ik

iws , …, nk
nws } is a 

functional qualified composite solution, where each 
component service ik

iws is the ki-th candidate in Pooli of 
task tki(1≤i≤n). 

For example, as in Fig. 1, assume that there are four 
tasks in a composition process, then TK={tk1, tk2, tk3, tk4}.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Assume that for each task node, there are four candidate 
services; Then, for task node tki (1≤i≤4), its service pool 
Pooli ={ 1

iws , …, 4
iws }. If we only consider two QoS 

criteria: latency and reputation, whose constraints are 
respectively latency<1s and reputation>98%, then set 
CR={latency, reputation} and CSTglobal={latency ∈ (0s, 
1s), reputation∈(98%, 100%)}. If WGT = {wgtla, wgtre} 
where wgtla = 0.7 and wgtre = 0.3, then it means that 
latency is more important than reputation for the end user. 
Consider the example in Fig. 1, set { 2

1ws , 1
2ws , 3

3ws , 4
4ws } 

is a composite solution that belongs to set CompS. 
Next, with the introduced basic concepts and the 

example in Fig. 1, we can clarify our motivation more 
clearly and formally. As there are n composition tasks 
{tk1, …, tkn} in set TK, and for each task tki (1≤i≤n) in TK, 
there are l functional qualified candidates { 1

iws , …, l
iws } 

in service pool Pooli, the total number of functional 
qualified composite solutions is ln. Next, our goal is to find 
a QoS-optimal composite solution CompS from all the ln 
ones, while considering the end user’s global QoS 
constraints CSTglobal and weight value set WGT. 

However, for a WSC problem with large-scale 
composition structure, the number of composition tasks 
(i.e., n) is usually large, which may lead to much time cost 
in order to find a QoS-optimal composite solution and 
disappoints the end user. In view of this, we put forward a 
composition method DCM, in the next section. DCM can 
decompose the large-scale composition structure into 
several small-scale ones, through which the composition 
efficiency could be improved significantly. 

web service composition structure 

QoS-optimal composite solution 

functional  
service matching 

 …… 

 
 
 

 

 …… 

…… 

 …… 

QoS-aware  
service selection 

Figure1. An example of QoS-aware web service composition process 

 candidate service 

 selected service 

service pool 

Symbol legend：  composition task 
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TABLE I. AGGREGATION TYPES AND AGGREGATION FUNCTIONS OF 
QOS CRITERIA 

 

III.  A SERVICE COMPOSITION METHOD: DCM 
In this section, a service composition method DCM is 

proposed, to improve the efficiency of WSC problems 
with large-scale composition structure. 

A. Hypotheses 
For the convenience of further discussions, some 

hypotheses are declared firstly. 
Hypothesis1: Only negative QoS criteria (i.e., the smaller 
its value is, the better it is for user) are considered, e.g., 
composition time, composition price, as positive criteria 
could be transformed into negative ones by multiplying -1.  
Hypothesis2: Only the sequential composition model 
illustrated in Fig. 1 is discussed, as other composition 
models (e.g., parallel, alternative and loops) could be 
transformed into the sequential model by present mature 
unfolding techniques [4-5]. 
Hypothesis3: In the sequential composition model, the 
aggregation types of various QoS criteria are different. In 
this paper, the common aggregation types and aggregation 
functions introduced in [4] are employed as in Table 1, 
where CompS denotes a composite solution and n is the 
number of tasks in composition structure. 

B. A QoS-aware service composition Method: DCM 
The main idea of our proposed DCM is: Firstly, the 

large-scale composition structure with n tasks is 
decomposed into /n k   small-scale composition 
segments, each with k (1≤k≤n) tasks. Secondly, calculate 
the segment QoS constraints for each composition 
segment, through mixed integer programming. Thirdly, 
for each composition segment, find a QoS-optimal 
composite solution that satisfies the segment QoS 
constraints. Next, we will introduce these three steps of 
proposed DCM method separately. 

(1) Step1: Decompose the large-scale composition 
structure into /n k   small-scale composition 
segments.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As the composition structure is large-scale (i.e, n is 

large), the needed time cost for finding a QoS-optimal 
composite solution may disappoints the end user. 
Therefore, we firstly decompose the large-scale 
composition structure into /n k    small-scale 
composition segments, each with k (1≤k≤n) tasks. For 
example, as illustrated in Fig. 2, the composition structure 
with n tasks is decomposed into /n k    composition 
segments, which are denoted by SEG1=(tk1, …, tkk), 
SEG2=(tkk+1, …, tk2k), …, /n kSEG  

=(
( / 1)* 1n k ktk − +  

, …, tkn). 
 
(2) Step2: Decompose the global QoS constraints 

CSTglobal into /n k   segment QoS constraints via 
mixed integer programming. 

After achieving /n k   small-scale composition 
segments, in this step, we calculate the segment QoS 
constraints for each composition segment, by 
decomposing the global QoS constraints CSTglobal via 
mixed integer programming technique. 

Firstly, by the mathematical statistic technique, we 
calculate the minimal and maximal values over QoS 
criterion crj (1≤j≤m) of candidate services for each task tki 
(1≤i≤n), which are denoted by j

imin and j

imax respectively. 
Then a value range [ j

imin , j

imax ] is achieved, which 
depicts the QoS criterion crj’s value distribution of task 
tki’s candidate services. Then, we calculate the value 
distribution of candidates of each composition segment 
SEGp (1≤p≤ /n k   ) over QoS criterion crj, which is 
denoted by [ j

pMIN , j

pMAX ], according to the aggregation 
functions introduced in TABLE Ⅰ . Afterwards, range 
[ j

pMIN , j

pMAX ] is discretized into d (d≥2) discrete value 
with interval j

pdis =( j

pMAX - j

pMIN )/(d-1), i.e., 
{ 1 j

pBound ,…, j

p

d Bound }, where 1 j

pBound = j

pMIN  
and j

p

d Bound = j

pMAX . Here, each discrete value 
j

p

x Bound (1≤x≤d) corresponds to the composition segment 
SEGp’s QoS constraint [0, j

p

x Bound ] over QoS criterion 

Aggregation type Criterion Aggregation function 

Summation price,  
duration CompS.crj=

1

.
i

n

j
i

crws
=

∑  

Average reputation CompS.crj=
1

.
1

 
i

n

j
i

crws
n =

∑  

Multiplication availability,  
success rate CompS.crj=

1
. 

i

n

j
i

crws
=

∏  

 tkk+1  tk2k 

 ( / 1)* 1n k ktk − +  
 

… 

 tkn … 

…
 

 tk1  tkk … 

Figure2. Decompose the large-scale composition 
structure into small-scale composition segments 

SEG1 

SEG2 

/n kSEG  
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crj. Our final object of this step is to find an appropriate x 
value for each QoS criterion crj (1≤j≤m) of each segment 
SEGp (1≤p≤ /n k   ). 

Next, we utilize the mixed integer programming to 
determine the best segment constraint [0, j

p

x Bound ] for 
each QoS criterion crj of each composition segment SEGp. 
According to the mixed integer programming, this 
optimization problem could be formalized into the 
following  question: 

Maximize 
1 1

/

( )
m

x j
p

p j

n k

Utility Bound
= =

  

∏∏                      (1) 

Subject to 
1

/
x j

p
p

n k

Bound
=

  

∏ ≤ cstj                                 (2) 

  

/

1

1

/

n k
x j

p
pn k

Bound
=

  

  
∑ ≤ cstj                              (3) 

  
/

1

n k
x j

p
p

Bound
=

  

∑ ≤ cstj                                  (4) 

x∈{1, 2, …, d}                                         (5) 
 

Here, ( )x j

pUtility Bound in (1) denotes the “goodness” 
of utilizing [0, x j

pBound ] as segment SEGp’s QoS 
constraint over criterion crj, whose computation manner 
could be found in [5], so we will not discuss it here. The 
left parts of (2)-(4) respectively denote the aggregated 
segment QoS constraints, corresponding to the three 
aggregation types in TABLE Ⅰ, which should not exceed 
the end user’s global QoS constraint. The constraint 
condition in (5) means that variable x has d possible values. 
After solving the above optimization problem with mixed 
integer programming, we can derive the best segment QoS 
constraints [0, x j

pBound ](1≤j≤m) for each composition 
segment SEGp (1≤p≤ /n k   ). 

(3) Step3: For each composition segment, find the 
QoS-optimal composite solution that satisfies 
segment QoS constraints.  

In Step1, we obtain /n k    small-scale composition 
segments { SEG1, SEG2,…,

 /n kSEG  }, each with k 
(1≤k≤n) tasks. Through which, we successfully transform 
a large-scale WSC problem into /n k   small-scale WSC 
sub-problems. And in Step2, for each WSC sub-problem, 
its QoS constraints are also obtained. So in Step3, we only 
need to solve these QoS constrained WSC sub-problems. 
Next, we formalize the WSC sub-problem (corresponding 
to a composition segment) as follows: 

Maximize ( )pUtility SEG                                            (6) 

Subject to  
*

( 1)* 1 1
( . * )

p k

q p k

l
z z
q j q

z
ws cr x

= − + =
∏ ∑ ≤ x j

pBound                   (7) 

  
*

( 1)* 1 1

1

/
( . * )

p k l
z z
q j q

q p k zn k
ws cr x

= − + =  
∑ ∑ ≤ x j

pBound    (8) 
  

*

( 1)* 1 1
. *

p k l
z z
q j q

q p k z
ws cr x

= − + =
∑ ∑ ≤ x j

pBound                    (9) 

1
1

l
z
q

z
x

=

=∑ x∈{1, 2, …, d}                                     (10) 

z
qx ∈{0, 1}                                                            (11) 

 
Here, ( )pUtility SEG in (6) denotes the utility value of 

composite solution for SEGp. The left parts of (7)-(9) 
respectively denote the aggregated value for composite 
solution of segment SEGp, over QoS criterion crj, which 
should not exceed the calculated segment QoS constraints, 
according to the three aggregation types in TABLE Ⅰ. 
The constraint conditions in (10)-(11) mean that for a 
segment task, only one candidate service would be 
selected, to form a composite solution. After solving the 
above mixed integer programming problem, a QoS-
optimal composite solution CompS-p could be achieved 
for composition segment SEGp. And finally, the set 
{CompS-1, …, CompS-  /n k  } makes up the QoS-
optimal composite solution, for the original WSC problem 
with large-scale composition structure. 

IV. EXPERIMENT 
In this section, a group of experiments are enacted and 

executed to validate the effectiveness and efficiency of 
proposed DCM method, especially in dealing with the 
WSC problems with large composition structure.  

A. Experiment Configuration 
In this paper, the experiment is based on the updated 

QWS Dataset from Dr. Eyhab Al-Masri [5], which is 
widely used in the service computing domain. The 
experiments were deployed and executed on a Lenovo 
machine with Intel Pentium 2.40 GHz processors and 1.00 
GB RAM. The machine is running under Windows XP  
and C++ integration environment. 

B. Experiment Results and Analyses 
In order to evaluate the feasibility and efficiency of 

DCM in dealing with WSC problems with large-scale 
composition structure, the following four test profiles are  
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designed and compared with another two present methods: 
Global [6] and Hybrid [5]. In the experiments, the 
parameter d is equal to 5 for both Hybrid and DCM, and 
five QoS constraints are employed for all test cases. 

Profile1: performance comparison of DCM, Global and 
Hybrid with different task number (i.e., n) 

In this profile, the computation time of three methods 
are tested and compared, for finding a QoS-optimal 
composite solution. In the experiment setting, the number 
of tasks in composition structure (i.e., n) is varied from 5 
to 25. And for each task, there are 10 candidate services, 
i.e., l=10. The parameter k in DCM is equal to 3. The 
experiment comparison results are demonstrated in Fig. 3. 
As can be seen from Fig. 3, the computation time of DCM 
outperforms the other two methods when n is increased. 
Especially when the value of n is large, the proposed 
DCM method exhibits its significant advantages, in 
dealing with WSC problems. 

Profile2: performance comparison of DCM, Global 
and Hybrid with different candidates (i.e., l) 

In this profile, the computation time of three methods 
is compared when the number of candidate services 
changes. In the experiment setting, the number of tasks in 
composition structure, i.e., n=10. And for each task, the 
number of candidate services (i.e., l), is varied from 10 to 
50. The parameter k in DCM is equal to 3. The 
experiment comparison results are demonstrated in Fig. 4. 
As in Fig. 4, the computation time of Global increases 
significantly when l arises. However, DCM and Hybrid 
exhibit similar change trends, whose computation time 
both stay nearly unchanged with the increase of l. 

Profile3: performance comparison of DCM with 
different values of parameter k 

In our proposed DCM method, we improve the 
composition efficiency, by transforming a large-scale 
WSC problem with n tasks into /n k    small-scale WSC 
sub-problems. Therefore, k is an important parameter in 
DCM. In this profile, we observe the performance change 
of DCM with the increase of k. In the experiment setting, 
the number of tasks in composition structure, i.e., n=20. 
And for each task, the number of candidate services, i.e., l 
is equal to 10, while the value of parameter k is varied 
from 1 to 9, with interval of 2. The experiment 
comparison results are demonstrated in Fig. 5. As can be 
seen from Fig. 5, the computation time of DCM decreases 
firstly with the arise of the k, this is because when k  
grows, the computation workload for achieving segment 
QoS constraints reduces. While when k grows further, the 
computation workload for finding segment QoS-optimal 
composite solution increase, so the computation time 
arises correspondingly.  

Profile4: QoS optimality comparison of DCM, Global 
and Hybrid 

Execution time is an important evaluation item for 
QoS-aware web service composition, however, the QoS 
optimality of obtained composite solution should also be 
considered. In this profile, we test the QoS optimality of 
three methods. In the experiment setting, the number of 
candidate services for each task, i.e., l is fixed to 10, n is 
varied from 5 to 25, the employed parameter k (the task 
length of each composition segment) is equal to / 3n   . 
The experiment results are shown in Fig. 6. As in Fig. 6, 
the Global method is the best in terms of QoS optimality 
of obtained composite solution. And the QoS optimality 
of DCM is almost the same as that of Hybrid, both close 
to 100%. Therefore, DCM can generate a QoS near-to-
optimal composite solution, while ensures better 
composition efficiency. 

V. EVALUATION 
In this section, we will analyze the time complexity of 

DCM. A comparison with related work is also presented, 
to show the advantages of our proposed DCM method. 

A. Complexity Analysis 
In this subsection, the time complexity of the three 

steps of DCM will be analyzed separately, after which we 
obtain the total time complexity of DCM.  
 (1)Step1: Decomposition of large-scale composition 

structure into small-scale ones 
With the determined k value in DCM, we can 

decompose the large-scale composition structure with n 
tasks into /n k   small-scale composition segments, 
whose time complexity is O(1). 

Figure3. Performance comparison 
w.r.t.  number of tasks 

Figure4. Performance 
comparison w.r.t. number of 

candidates 
 

Figure5. Performance comparison 
w.r.t. parameter k 

 

Figure6. QoS optimality w.r.t. 
number of tasks 

  

  

85Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing



(2)Step2: Determine the segment QoS constraints for 
all composition segments 
A MIP problem is achieved, for determining the 

segment QoS constraints for each composition segment. 
Therefore, its time complexity is O( / * *2 n k m d   ), where n 
is the task number, k is the decomposition parameter 
employed in DCM, m is the number of QoS constraints, 
and d is the discretization parameter.  
(3)Step3: Determine the QoS-optimal composite 

solution  
The QoS-optimal sub-composition solutions of  
/n k   composition segments make up the QoS-optimal 

composite solution, for the original WSC problem with 
large-scale composition structure. For each composition 
segment, the time complexity is O(2k*m*d), for determining 
the QoS-optimal sub-composition solution. Therefore, the 
time complexity of Step3 is O( /n k   *2k*m*d). 

According to the above analysis, a conclusion could 
be made that the time complexity of our proposed DCM is 
O( / * *2 n k m d   + /n k   *2k*m*d) =  O( / * *2 n k m d   ), as k is a 
fixed value in DCM. Therefore, DCM outperforms 
Global and Hybrid methods, whose time complexity are 
O(2n*l) and O(2n*m*d) respectively, when dealing with 
WSC problems with large-scale composition structure. 

B. Related Work and Comparison Analysis 
QoS-aware web service composition has been a hot 

research topic in the domain [1-3]. In [6], a Global 
method is introduced, where the QoS-aware WSC 
problem is modeled into a mixed integer programming 
one, whose time complexity is still large. To reduce the 
time complexity of WSC, many works focus on 
minimizing the number of candidate services for each task, 
such as the Hybrid method [5], the LOEM method [4], 
Skyline method [7], MOCACO method [8] and heuristic 
method [9]. However, their time complexity is still 
exponential with the task number, which may lead to 
much time cost when the composition task number is 
large. In this paper, we transform the large-scale WSC 
problem into several small-scale ones, and put forward a 
decomposition-based composition method DCM. 
Through experiments, we demonstrate the feasibility and 
efficiency of DCM in dealing with the WSC problems 
with large-scale composition structure. 

VI. CONCLUSIONS 
In this paper, a decomposition-based method, named 

DCM, has been presented for the WSC problems with 
large-scale composition structure. Through experiments, 
we demonstrate the feasibility of DCM. However, there 
are some shortcomings in the paper; for example, the 
employed parameter k is not assigned a concrete value, 
which will be studied as a future research topic. 
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