
Decentralized and Reliable Orchestration
of Open Services

Abul Ahsan Md Mahmudul Haque and Weihai Yu
University of Tromsø – The Arctic University of Norway

Email: {Mahmudul.Haque, Weihai.Yu}@uit.no

Abstract—An ever-increasing number of clouds and web applica-
tions are providing open services to a wide range of applications.
Whilst traditional centralized approaches to services orchestra-
tion are successful for enterprise service-oriented systems, they
are subject to serious limitations for orchestrating the wider
range of open services. Decentralized orchestration provides
an attractive option for applications based on open services.
However, decentralized approaches are themselves faced with
a number of challenges, including the possibility of loss of
dynamic run-time states that are spread over the distributed
environment. This paper presents a dynamic replication scheme
for a decentralized approach to orchestration of open services,
where a network of agents collectively orchestrate open services
using continuation-passing messaging.

Keywords-web service; peer-to-peer; replication.

I. INTRODUCTION
An increasing number of individuals and enterprises are

having an increasing number of their data and business func-
tionality on line and in the cloud. To enable new applications
to access these data and functionality, cloud providers and
online business applications are offering open services through
published Application Program Interfaces (APIs). Service or-
chestration is the coordination and conduct of the execution of
multiple open services in the new applications [1].

Two technologies are highly relevant to the support of
applications built on top of open services. (1) Web mashups
are web applications that use content from multiple open ser-
vices. ProgrammableWeb (www.programmableweb.com), for
instance, lists thousands of open services and mashups. Al-
though web mashups have been around for several years,
they are still very limited in functionality (i.e., content only)
and systematic support. Most noticeably, they are typically
hand-crafted with low-level programming details. Execution
of external open services are conducted by the web servers
running the mashups. (2) Service-oriented computing (SOC)
has been very well developed and supports most of the
functionality such open-service based applications need. Tra-
ditionally, SOC focuses on cost-effective construction and
integration of sophisticated applications within and across
organizational boundaries. Therefore, unlike applications based
on external open services, services composed in SOC generally
limit themselves within enterprises or between enterprises
with mutual agreements (this is generally known as services
choreography [1]). Usually, dedicated central engines carry out
the orchestration of composite services.

Recently, there have been efforts that bring the SOC
technology to the cloud and open-service based applications.
For example, Amazon SWF [2] allows applications to coor-
dinate work (including service invocations) across distributed
components.

In all current approaches, services are orchestrated either
by dedicated central engines (SOC), or by sites hosting appli-
cations (mashups). This clearly has advantages, such as control
and overview of global run-time status. However, application
sites are typically vulnerable with respect to availability, scal-
ability and reliability, whereas finding feasible central engines
is hard when the services are beyond enterprise boundaries [3].
Even if such an engine exists (as with Amazon SWF), relying
on central engines and/or individual big-name vendors would
be subject to issues like censorship, surveillance, policy-
dependence etc. [4]. Furthermore, because open services are
potentially spread all over the world, long network delays are
unavoidable when the locations of central engines are fixed.

Based on the above observations, we believe a de-
centralized or peer-to-peer approach to open-services orches-
tration would be an attractive option to a wide range of next
generation open-service based applications. There have been
research activities in the SOC community on decentralised
orchestration of services (more on these in Section VII on
related work). It is generally challenging to support reliable
orchestration of external services that could be unreliable. It
is even more challenging for decentralized orchestration over
a large group of unreliable peers or agents.

Our decentralized orchestration mechanism is called
continuation-passing messaging (CPM) [5][6]. Our earlier
work addressed issues with exception handling and recovery in
order to support reliable orchestration when external services
are unreliable. In this paper, we present a dynamic replication
scheme for reliable orchestration with potentially unreliable
orchestration agents.

The paper is organized as the following. Section II gives a
motivating example. Section III presents a peer-to-peer system
model for services orchestration. Section IV reviews CPM.
Section V presents replicated CPM, the main contribution
of this paper. Section VI presents performance results. Sec-
tion VII discusses related work. Section VIII concludes.

II. EXAMPLE

Consider an application that assigns reviewers to papers
submitted to a conference for reviewing. The application
achieves this by doing the following. It first uses digital library
L to get a ranked list of candidate reviewers for each submitted
paper based on the title and keywords of the paper as well
as the publications of the candidate reviewers. Then, for the
candidates above a certain threshold, it uses citation indexing
service I to refine the shorted list based on co-authorship,
affiliation and citations. Finally, it uses the refined list and
its on-premise data, such as reviewers’ interests, to assign the
reviewers to the paper.

1Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

The application may handle different exceptions differently.
If during execution the digital library becomes unavailable, it
may try another digital library. If the citation indexing services
becomes unavailable, it may simply accept the ranking list
generated so far without any further refinement. It may be im-
portant for the conference organizer that once the application
starts to run, it keeps running until the final assignments are
done.

When the services of the example application are orches-
trated by a central engine or by the site running the application,
for every paper-reviewer pair, there is at least a round trip
of messages between the engine and the service. Ideally,
the engine can be placed close to the open service, and the
placement can be done at run time. This is the basic idea
behind continuation-passing messaging.

III. SYSTEM MODEL

A service provider (SP) provides services through an open
API with a number of operations. We use Sa, Sb etc., to denote
SPs and a, a1, a2, ā etc., to denote operations provided by Sa.
Operation a of Sa is invoked with message invoke(a) to Sa.
A service-based application (SA) consists of invocations to
a number of service operations in a given prescribed order.
Without loss of generality in our study, we adopt a service-
composition model similar to Web Services Business Process
Execution Language (WS-BPEL) [7].

Fig. 1 shows an example SA p that consists of invocations
to operations a at Sa, b at Sb, c at Sc and d at Sd. The SA
first invokes a and then forks two parallel branches. The first
branch invokes b n times in a loop. The second branch invokes
c and d in sequence.

p: scope(
sequence(
invoke(Sa, a, ā),
fork(
loop(n, invoke(Sb, b, b̄),
scope(
sequence(
invoke(Sc, c),
invoke(Sd, d, d̄)),

any : sequenc(compensate, invoke(Se, e))))),
any : compensate)

Figure 1. An example SA.

We assume that operations a, b and d have reverse oper-
ations ā, b̄ and d̄, and that operation c is read-only and does
not need a reverse operation. The element invoke(Sa, a, ā)
means: “run service operation a at Sa; if p has to be rolled back
due to an exception that occurs after operation a successfully
returns but before the entire p finishes, run service operation
ā to compensate for the executed effect of a”. Notice that
invoke(Sa, a, ā) is an SA construct that is not understood by
Sa. Sa only understands either invoke(a) or invoke(ā).

A scope is a unit of exception handling. Exception handlers
are associated with scopes. When an exception of certain type
is thrown in a scope, all current activities in the scope are
stopped and the corresponding exception handler is executed.
In Fig. 1, the top level scope has an exception handler for any
type of exceptions. It runs a single operation compensate that
rolls back the current execution using the recovery plan that

a

b

c

d

1 . . . n

normal execution

a

b

c

d

e

1 . . . n

rolling forward

b̄

...
b̄

d̄

ā

rolling back

Figure 2. Control flow of example SA.

is automatically generated during the execution. The exception
handler of the inner scope instead first rolls back the execution
of the scope so far and then rolls forward by invoking an
alternative service operation e.

Fig. 2 shows the control flows of a normal execution, a
rolling forward (after the execution of d failed) and a rolling
back (just before the entire p is about to finish).

Fig. 3 shows the service invocation messages (blue lines
with arrows) when the SA is orchestrated by the site Sp

that runs p. In this particular example, when the geographical
distance between Sp and Sb is long, the loop may incur a long
delay. If Sp is a mobile device, the execution of p could be
costly and unreliable.

Sp

Sa Sd

Sb

n times

Sc

Figure 3. Centralized orchestration by the host SA server.

In our decentralized approach, a network of orchestration
agents (OAs) collectively orchestrate the executions of SAs
using continuation-passing messaging (CPM) [6]. We use A,
Aa, Ab etc., to denote OAs. An OA has a coverage of SPs.
Suppose a is an operation of Sa that is under the coverage of
Aa. When a is part of an SA, invocation of a can be made
via Aa.

At a specific moment, SPs may or may not be covered by
OAs and OAs may have overlapping coverages. SPs become
covered by OAs either by registration or through a learning
process. An OA may not have the complete knowledge about
the coverages of other OAs. At present, we assume that OAs
learn effectively and every OA has nearly complete global
knowledge of OA coverages.

An OA can run on a dedicated server, such as provided by
a cloud provider. Alternatively, an SP may volunteer to be an
OA as well. Being an OA may make its service more attractive.
For example, if either Sb or the cloud hosting Sb has an OA,
the loop in p may appear to be much more effective [5][6].

The basic tasks for the management of the OA network
include OA membership, detection of OA availability, regis-
tration and discovery of SPs for their coverage, etc. Some of
the tasks are already provided by existing software (such as
the open source SERF [8]).

An SP may be unavailable, due to disconnection or system
crash, and does not respond to invocations. An SP may also
return an error. We assume that business critical services

2Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

Sp

Ap

Ab Ac

AdSa

Sb Sc

Sd

1

2
3

4

5

6
7

n times

Figure 4. Messages with CPM Orchestration.

support the at-most-once operation semantics. That is, an SP
can recognize duplicated invocations and execute the same
invocation at most once.

When an SP is not available or returns an error message, an
exception is thrown so that an appropriate exception handler
of the SA will handle it, such as by invoking an alternative
service or rolling back the execution so far. Our orchestration
mechanism guarantees effective propagation and handling of
exceptions.

An OA may become unavailable in two ways. It may leave
the OA network intentionally, or it may crash or get discon-
nected due to network failures. We assume a fail-stop crash
model. The replicated CPM enhances the availability of the
orchestration when the OAs are subject to such unavailability.

IV. CPM OVERVIEW

Fig. 4 shows the messages for CPM orchestration of the
example SA p. Here we assume that SPs Sb, Sc and Sd

are covered by OAs Ab, Ac and Ad, and Sa is not covered
by any OA. There are three types of messages for services
orchestration: service invocation messages (blue lines), CPM
messages (red lines) and scope management messages (not
shown in the figure). Orthogonal to the messages for services
orchestration, OAs exchange routing messages to update the
routing and health status of other OAs [6].

During orchestration, information like activity execution
order and SA-aware data is carried in CPM messages in terms
of continuations and environments. A continuation is a stack
of activities that will be carried out, beginning from the head
of the stack. An environment contains information of activity
status and SA-aware data. To facilitate exception handling,
messages also contain compensation continuations, which are
rollback plans automatically generated during SA execution.

The initial continuation and environment of a CPM mes-
sage are generated when an OA starts to orchestrate an SA. The
message is later on sent to subsequent OAs that independently
interpret the messages and invoke the service operations of
the appropriate SPs. New continuations and environments are
generated based on the messages being interpreted, as well as
the outcomes of the service executions.

Fig. 5 shows the overall structure of an OA. In an OA, a
message interpreter interprets an incoming or local message
according to the head activity of the continuation. The follow-
ing may happen during the interpretation.

An initial SA is converted into a CPM message.
OAs are assigned to the corresponding activity ele-
ments according to the information in the OA router.
For our example SA, orch(p, Sp) — orchestration of p

messages

OA
router

message
interpreter

scope
management

backup
management

message
handler

PM SR BSR BM RT

PM: pending messages, SR: scope registry, RT: routing table
BSR: backup scope registry, BM: Backup Messages

Figure 5. Structure of an Orchestration Agent.

from Sp as specified in Fig. 1 — is converted to
orchAp(scopeAp(sequence(invokeAp(Sa, a, ā) . . .))), where
orchestration activities like orch and scope are assigned to
OAs Ap etc. For the purpose of space and readability, in what
follows, we use notations like scopeAp(−) to suppress the
details of the scope element.

In some cases, a message can be interpreted alone. For
example, orchAp(scopeAp(sequence(−)) is interpreted into
scopeAp(sequence(−)) · eorchAp(−), which in turn is inter-
preted into sequence(−) ·eosAp(−) ·eorchAp(−). Here eorch
and eos stand for end-of-orchestration and end-of-scope.

In other cases, multiple messages must be available to be
further interpreted, for example, when messages from multiple
parallel branches join. In this case, the first arrived messages
are put in the pool of pending messages (PM). They are further
interpreted when all dependent messages are available.

The interpretation of a message or multiple messages may
lead to one or more new messages. Some messages are further
interpreted locally by the same OA, like the orchAp(−) above,
and some are sent to other OAs for further interpretation.

If the head element of the continuation is an invocation
assigned to the OA, the OA sends an invocation to the SP
and waits for the result by putting a wait message in its
PM. For example, interpreting message invokeAp(Sa, a, ā) ·
fork(−) · eosAp(−) · orchAp(−), Ap sends invoke(a) to Sa

and puts waitAp(Sa, a, ā) · fork(−) · eosAp(−) · orchAp(−)
in its PM. The wait message is further interpreted according
to the outcome of the invocation.

An OA may also be a scope manager and maintains some
status information of each branch in its scope registry (SR). A
scope manager is notified with a scope management message
when the orchestration of an enclosing branch moves to a new
OA. For example, when a branch moves from Ap to Ab, the
scope manager Ap is notified of the move.

Table I lists the continuations in the remote CPM mes-
sages as shown in Fig. 4. Continuations of intermediate local
messages are not shown in the table. In the table, κ is a
continuation segment that is common in several continuations.

A join element joins multiple parallel branches into one. It
has an identifier and a join condition. Here the join condition
is simply the number of branches to be joined.

The eos element marks the end of a scope and encapsulates
necessary information for exception handling. The general
form of an eos element is eosA(id, κ, h1, h2 . . .), where A

3Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

TABLE I. CONTINUATIONS IN MESSAGES

Msg Continuation

1 orch(scope(−), Sp)

2 invokeAb(Sb, b, b̄)

· loop(n− 1, invokeAb(Sb, b, b̄)) · κ
3 κ

4 invokeAc(Sc, c) · invokeAd(Sd, d, d̄)

· eosAp(−) · κ
5 invokeAd(Sd, d, d̄) · eosAp(−) · κ
6 eosAp(−) · κ
7 eorch(Sp)

κ joinAp(idj , 2) · eosAp(−) · eorchAp(Sp)

is the scope manager, id is the unique identifier of the
scope, κ is a compensation continuation, and h1, h2 etc.,
are exception handlers. The compensation continuation is the
recovery plan of the scope automatically generated during the
orchestration. Table II lists the compensation continuations in
the eos elements of the remote CPM messages. Notice that
Messages 4, 5 and 6 have two eos elements for the two nested
scopes.

TABLE II. COMPENSATION CONTINUATIONS

Msg Compensation continuation

1 nil

2 κ̄

3 invokeAb(Sb, b̄) · · · invokeAb(Sb, b̄) · κ̄
4 κ̄ nil

5 κ̄ nil

6 κ̄ invokeAd(Sd, d̄)

7 nil

κ̄ joinAp(idj′ , 2) · invokeAp(Sa, ā)

· eosAp(−) · eorchAp(Sp)

When Ab catches an exception, it runs the corresponding
exception handler in the enclosing eos element and at the same
time notifies the scope manager Ap of the exception. Ap then
propagate the exception to the other branch(es).

For a scope with a single branch, an exception is com-
pletely handled where it is caught. This is the case of the
nested scope of p. If Ad catches an exception, it handles the
exception without notifying the scope manager Ap.

V. REPLICATED CPM
With CPM, information about the orchestration is usually

already spread among multiple OAs. This information, if
carefully maintained and updated, could be used to handle
occasional unavailability of OAs. This is the key idea behind
replicated CPM.

A. Selection of backup OAs
With replicated CPM, an SA orchestration has a replication

degree k. That is, every activity is assigned with a list of
k + 1 OAs. The first OA in the list, called the active OA,
is responsible for the interpretation of the message. The rest
k OAs are backup OAs. For message c, we use c.A for the

active OA and c.A for the backup OAs. We also use c.A+ for
the list of both c’s active and backup OAs.

One of our primary goals for the selection of backup OAs
is to reuse stored states and keep the run-time overhead of
services orchestration as low as possible. The selection is based
on the following observations:
• Every OA assigned with some activity for the orches-

tration will sooner or later obtain some information
about the orchestration and this information would
overlap with some backup information.

• To keep an OA updated with the information about
an OA it backs up, it is often sufficient to send it the
deltas of the latest changes, which are typically small
fractions of the entire information.

• The amount of overlapping information, and therefore
the sizes of the deltas, depends on the freshness of the
currently stored information at OAs.

An important property of backup selection is that the
backups of an OA can be unambiguously calculated by any OA
at any time of the orchestration. This simplifies the handling
of events like OA crashes.

The selection algorithm is built on OA graphs (OAG) of
orchestrations. An OAG is first obtained with a projection of
the control flow of the SA to the assigned OAs. If the number
of OAs in an OAG is not sufficient for the number of backup
candidates, it is extended with more OAs.

Fig. 6 shows the OAGs of an orchestration of the example
SA p of Fig. 1 and an extension s with more OAs. In the
OAG of p, Ap is a parent of Ab and Ac. If an OA is assigned
to consecutive orchestration activities, the OA appears as a
single node in the OAG. For example, if both invoke(Sc, c)
and invoke(Sd, d, d̄) were assigned to Ad, only a single Ad

node would have appeared in the OAG. On the other hand, the
same OA may appear multiple times in an OAG if it is assigned
to activities separated by other OAs. For example, there are two
Ap nodes in the OAGs. Parallel branches are ordered. The
ordering of branches are decided when an SA is initialized
for orchestration. The general rule is that a branch with more
orchestration activities has higher priority. For example, the
branch with Ab has more orchestration activities than the other
branch when n of the loop is larger than 2. In Fig. 6, a branch
on the left has higher priority than a branch on the right.

The number of OAs in an OAG is the degree of the OAG.
It determines the number of backup candidates each OA may
have. If an orchestration of p requires that every OA should
have 4 backup candidates, the minimum degree of the OAG
is 5. This can be obtained by appending one more OA to the
youngest node Ap, as Au in Fig. 6. The selection of Au is
based on the information in the routing component, such as
geographic distances.

The backup candidates of an OA A are selected with the
following priority order:

S1. OAs of A’s enclosing scopes have higher priorities
than OAs of lower level nested scopes.

a) Scopes closer to A have higher priorities.
S2. In a scope, OAs of the same branch have higher

priorities than OAs of other branches.
In A’s branch,

a) Ascendant OAs have higher priorities than
descendant OAs.

4Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

Ap

Ab

Ac

Ad

Ap

Au

OAG of the example SA p

Ap

Ab

Ac

Ad

Ap

As

Ae

Af

As

Ag

Ac

OAG of an extended SA s

Figure 6. OA graph for backup selection.

b) OAs closer to A have higher priorities.
Among the other branches,

c) OAs of a higher-priority branch have higher
priorities.

d) In the same branch, OAs closer to the scope
manager have higher priorities.

Table III shows the lists of backup candidates (with length
4 for p and 7 for s) of the OAs for the two OAGs in Fig. 6.

TABLE III. BACKUP CANDIDATES

OA p (length = 4) s (length = 7)
As Ap, Ae, Af , Ag , Ac, Ab, Ad

Ap Ab, Ac, Ad,Au As, Ae, Af , Ab, Ac, Ad, Ag

Ab Ap, Ac, Ad,Au Ap, Ac, Ad, As, Ae, Af , Ag

Ac Ap, Ad, Ab,Au Ap, Ad, Ab, As, Ae, Af , Ag

Ad Ac, Ap, Ab,Au Ac, Ap, Ab, As, Ae, Af , Ag

Ae Ap, As, Af , Ag , Ac, Ab, Ad

Af Ae, Ap, As, Ag , Ac, Ab, Ad

Ag As, Ac, Ap, Ae, Af , Ab, Ad

Ac Ag , As, Ap, Ae, Af , Ab, Ad

The table only contains Ap and As once for each SA.
The reason is that the backups for Ap is computed when Ap

becomes a scope manager and it stays active until the end of
the scope.

As an example, the backups for Ae, are selected according
to the following rules of the selection algorithm: Ap (S1.a,
S2.a, S2.b), As (S1.a, S2.a), Af (S1.a, S2), Ag (S1.a, S2.c),
Ac (S1.a), Ab (S2.c) and Ad.

During an orchestration, c.A+, the actual active and backup
OAs for message c are selected from the first k + 1 available
OAs in the candidates OAs obtained from the OAG.

B. Normal execution
Every CPM message contains an integer k as the replica-

tion degree of the current branch, an OAG of degree l (l > k)
and a list of actual active OA and backups.

In addition, every message has a timestamp that can be used
to check causal relations between messages. A timestamp is
of the form [b0, n0] · [b1, n1] · . . . , where b0, b1, . . . are the
unique identifies of the branches which the message is part of,
and n0, n1, . . . are the sequence numbers in the branches. As
shown in Fig. 7, in the beginning, there is only one branch (0).
After a fork, two new branches (0, 0) and (0, 1) are created.
The orch message has sequence number 0 in branch (0). All

orch
[(0), 0]

invoke(b) · . . .
[(0), 1] · [(0, 0), 0]

wait(b) · . . .
[(0), 1] · [(0, 0), 1]

join · . . .
[(0), 1] · [(0, 0), n1]

invoke(c) · . . .
[(0), 1] · [(0, 1), 0]

wait(c) · . . .
[(0), 1] · [(0, 1), 1]

eos · . . .
[(0), 1] · [(0, 1), n2]

eorch
[(0), 2]

Figure 7. Message timestamps.

messages in the new branches have the same sequence number
1 in the parent branch (0), but different sequence numbers 0,
1, . . . , in the new child branches (0.0) and (0, 1).

To compare the causality of two messages m1 and m2,
we first get the longest prefix of their timestamps such that
b10 = b20, . . . , b

1
i = b2i (i ≥ 0). Message m1 happens before

Message m2 in the same SA execution, denoted m1 ≺ m2

or m2 � m1, if n10 = n20, . . . , n
1
i−1 = n2i−1 and n1i < n2i .

Messages m1 and m2 are concurrent, denoted m1 ‖ m2, if
n10 = n20, . . . , n

1
i = n2i .

Suppose that OA A, after interpreting a remote message
c0 and some local interpretations, is currently interpreting
message c. Suppose further that the current scope manager and
its backups are c.S and c.S (and c.S+ = {c.S} ∪ c.S). The
following are the steps related with sending messages during
the orchestration of a normal execution:

C1. When the orchestration of a branch is moving away
from A with CPM message c:

a) Select c.A+.
b) Send to c.A+ message c (or its delta).
c) Notify c.S+ ∪ c0.A− c.A+ about the move

with message m. m contains two sets of OAs
c.S+ and G = c0.A− c.A+.

C2. When A stores a local message c in its PM, it also
sends the delta of the message cA to c0.A.

Step C1.a selects the next active OA and its backups
according to the availability of OAs obtained from its RT. Step
C1.b extends the destination of a CPM message to include the
backups. Step C1.c has two purposes: 1) it extends a scope
message to include the scope manager’s backups (c.S+); 2) it
informs some of A’s backups (G, which no longer backup the
subsequent states of the same SA) to purge the backup states.
Step C2 informs A’s backups about its own state changes.

c.S+ in step C1.c was selected when the corresponding
scope element was interpreted. Step C1.c does not check
the availability of the scope manager like step C1.a. The
unavailability of an OA that has been active, like a scope
manager, is handled in Subsection V-C.

Some messaging overhead is reduced when OAs play mul-
tiple roles. For example, when c.A = {A}, which is typically
true for k = 1 (according to the backup selection rules), step

5Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

C1.b does not involve any additional remote message than a
non-replicated orchestration.

When OA Ar receives a CPM message c (or delta), it does
the following:

R1. Ignore c if Ar has already received a message c′ such
that c′ � c.

R2. If Ar = c.A, interpret c.
R3. If Ar ∈ c.A, store or update backup status of c.A.
R4. If Ar = c.S, update scope state in SR.
R5. If Ar ∈ c.S, update BSR.

If a message of a later stage of the same SA execution has
already been processed, the newly arrived message is ignored
(step R1). The message is handled depending on whether the
receiver is an active OA (step R2), a backup OA (step R3),
an active scope manager (step R3) or a backup scope manager
(step R4).

When OA Ar receives a message m, notifying that an
orchestration is moving from A to A′, it does the following:

M1. Ignore m if Ar has already received a scope message
m′ such that m′ � m.

M2. If Ar = m.S, update the status of scope in the SR.
M3. If Ar ∈ m.S, update the backup status of the scope

in BSR.
M4. If Ar ∈ m.G, purge backup status of A.

Notice that in some situations, c.A+ ∩ c.S+ 6= ∅, the tasks
for steps M2 and M3 are done in R4 and R5. In general, the
more these sets overlap, the more overhead is avoided.

C. Handling unavailability of OAs
When an OA becomes unavailable, its tasks for services

orchestration, either as an active or backup OA, are taken over
by other OAs. There are two types of tasks: interpretation of
CPM messages and management of scopes. In this subsection,
we focus on the first type, i.e., to continue interpreting CPM
messages when an OA becomes unavailable. The steps to
continue scope management is almost the same.

The unavailability of OAs is handled on a per-message
basis, or a per-branch basis, because every CPM message
represents an SA branch. When an OA in c.A+ becomes
unavailable, it is always the highest ranked available OA in
c.A+ to take the responsibility of handling the unavailability.

An OA becomes unavailable either when it leaves the OA
network on purpose, or when it crashes or is disconnected due
to some network failure. Before OA A leaves on purpose, it
notifies the highest ranked available OA in c.A+ − {A} for
every message c in its PM and BM about its leaving. An OA
Ar does the following when receiving this message:

L1. If A is the highest ranked OA in c.A+, Ar takes over
as the actual active OA of c.

L2. Add a new OA to c.A+ according to the OAG and
inform the new c.A+ about the latest update of c.

When an OA crashes or is disconnected from the network,
its unavailability is detected when another OA is unable to send
it a message. Because the OAs exchange routing messages
regularly [6], the unavailability is detected in short time.
Generally, the busier the OA network, the shorter the detection
time. As soon as an unavailability is detected, it is propagated
to the entire OA network.

When an OA Ar is notified of the unavailability of A, it
finds relevant CPM messages in its PM and BM. A message

c is relevant if A ∈ c.A+. For each such message c, it does
the following:

U1. If Ar is the highest ranked available OA in
c.A+ − {A}, do L1 and L2.

With respect to correctness, think of a message as repre-
senting a particular step of a branch. Because only the highest
ranked available backup OA takes over the role as the new
active OA of a message when the current active OA becomes
unavailable (and once an OA is detected as unavailable, it
will not be re-assigned to the same process execution when
it becomes available again), it is impossible for two OAs to
simultaneously take over as the new active OA of the same
message.

However, backups of different messages of the same branch
may coexist in different OAs. Consequently, different OAs
may independently take over the role as the active OAs of
different steps of the same branch. This does no harm when
business critical services enforce the at-most-once execution
model. In addition, if a scope manager observes that two OAs
are responsible for the orchestration of the same branch, it kills
the activities represented by the outdated messages. Eventually,
the active OA of the most up-to-date message wins as the only
active OA of the branch.

To make the last point clearer, consider this particular
situation: OA A becomes unavailable just after an orchestration
moved to the next OA A′, and the notification of the unavail-
ability arrives to Ar before the notification of the move (steps
C1.b and C1.c in Subsection V-B). In this situation, Ar may
take over and repeat the work that A had just finished before it
became unavailable. The repeated work will eventually arrive
at A′. By checking the timestamp of the message (step R1
in Subsection V-B), A′ can figure out that the orchestration of
this branch has already passed over this stage. The same is also
detected by the scope manager (step M1). In the worst case, if
a service invocation is repeated, a business-critical service will
return with an exception due to the at-most-once semantics.

The last issue will not occur for replicated scope managers,
because a scope manager never moves from OA to OA in the
basic CPM scheme.

At this point, it should be clear that the replication scheme
can tolerate up to k crashes during the time interval between
the detection and the handling of an unavailability.

VI. PERFORMANCE

We developed an OA prototype that runs in a simulator [9]
for performance study. We study the performance of OAs with
different degrees of replication and at different workload.

In our experiment, there are 100 SPs, 10 of the which
are OAs as well. That is, these 10 sites both process service
invocations and contribute to orchestration of services. Every
OA covers 10 SPs. The distances between an OA and the SPs
it covers are relatively short. An SP spends on average 100ms
to process a service invocation. An OA spends on average
10ms to interpret a CPM message, and 1ms to handle a scope
message, backup message or purge message. We model the
workload with multiprogramming levels (MPLs) of SPs, which
is the number of concurrent service operations it executes most
of the time. Initially, a fixed number of SA executions are
fed into the system. A new SA execution starts as soon as
an existing one terminates. An SA execution consists of 4
operation invocations to different randomly chosen SPs.

6Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

160
170
180
190
200
210
220
230

3 6 9

T
hr

ou
gh

pu
t

(S
A

s/
se

c)

MPL

k = 0
k = 1
k = 2
k = 3

Figure 8. Throughput of 100 SPs.

1.5

2

2.5

3

3.5

4

4.5

3 6 9

R
es

po
ns

e
tim

e
(s

ec
)

MPL

k = 0
k = 1
k = 2
k = 3

Figure 9. Response time of SAs.

Fig. 8 shows the aggregate throughput of all SPs (measured
in the number of completed SA executions per second). Fig. 9
shows the average response time of the SAs.

Fig. 10 shows the average resource utilization at OAs when
the SP MPL is 6. We only show the resource utilization at one
MPL, because although the total resource utilization varies at
different MPLs, the proportion of different kinds of message
handling is almost the same through all MPLs. As the degree
of replication increases, the overhead of backup management
(“B” and “G”) increases, and the capability of normal service
orchestration (“I” and “S”) and service operation execution
(“P”) decreases. Consequently, the overall SP throughput de-
creases and SA response time increases, as shown in Fig. 8
and Fig. 9.

It is interesting to notice that when k = 1, the overhead of
backing up orchestration states (“B”) is less than the overhead
of purging the backup states (“G”). The reason for this is that
when an OA A forwards the orchestration to the next OA A′,
c.A+ = {A,A′} in step C1 of Subsection V-B. In other words,
A already has the state locally and the overhead of backing
up the state is therefore low.

It is also interesting to notice that when k increases, the
overhead of purging the backup states (“G”) decreases. This
is because an OA backups up the states of several stages of
the same orchestration. When it store the backup state of a
new stage, it also purges the state of an earlier stage. In other
words, the larger overlap of c0.A and c.A+ in step C1.c of
Subsection V-B leads to the decrease of “G”.

When an OA becomes unavailable, other OAs will handle
the unavailability. We expected that this will cause a sudden
increase of workload which will influence the overall per-
formance of the system. For example, when k is 2 and SP
MPL is 6, an OA covering 10 SPs is handling (most of the

80%

P

I

k = 3

79%

P

I

k = 2

78%

P

I

k = 1

77%

P

I

k = 0

S
G
B

P: service process, I: message interpretation, S: scope management
B: store/update of backup states, G: purge of backup states

Figure 10. Resource utilization at OAs at MPL 6.

time) 60 CPM messages and backing up 120 for other OAs. If
an OA crashes, 180 messages will be handled by other OAs.
However, in our experiments, we could not observe significant
overall performance hiccup. The main observable difference
in overall performance is that MPL of OAs has increased
nearly 10%, both during handling of the unavailability and
afterwards. It turns out that the messages that the unavailable
OA was actively orchestrating (60 in this example) were the
primary contributor to the increase of load at other OAs. The
backup messages (120 in this example) contributed only very
little to the increase of load at other OAs. More precisely, it is
primarily the “I” part in Fig. 10 that contributed to the increase
of load at the remaining OAs.

VII. RELATED WORK

Decentralized orchestration in SOC research can be cat-
egorized into instantiation-based or messaging-based [5]. An
instantiation-based approach [10][11][12][13][14] instantiates
in advance a composition with resource and control allocation
in the distributed environment. The allocated resources and
control are responsible for the orchestration of the subsequent
executions of the same composition. This approach is therefore
more suitable for enterprise applications where allocation
of resources is possible, and compositions are stable and
are typically repeated many times [5]. In messaging-based
approaches [5][10][15][16], information like execution order
of activities is carried in messages. Since no resource or
control is allocated in the distributed environment before an
execution starts, messaging-based approaches would be more
appropriate for orchestration where either the compositions or
the environment are so dynamic that pre-allocation of resources
is impractical.

The focus of research on reliable services orchestration has
been on dealing with failures of constituent services, mostly
based on compensation-based recovery [5][12][13][16]. Little
work is done on dealing with failures of orchestration engines
or agents.

Several replication schemes have been proposed in the re-
search area of data streams and continuous queries. Gedik and
Liu [17] applied a passive or backup replication mechanism
to executions of continuous queries. A continuous query is
executed on peers with matching ids. The selection of replicas

7Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

or backups is based on peer ids and neighbor proximity of
the peer-to-peer network. In [18], data flow from sensors to
data processing programs through an overlay network of peers.
Peers are grouped into cells. Active replication is applied
to the peers in the same cells to enhance the availability
of the data flows. Martin, Fetzer and Brito [19] proposed
an active replication scheme to a stream variant of map-
reduce system consisting of stages of map-reduce operators.
Replication is applied among data partitions of the same stage.
The focus is on utilizing unused CPU cycles for replication.
Zhang et al. [20] introduced a hybrid active/passive replication
scheme to a peer-to-peer stream processing system to deal with
transient failures due to high workload. It dynamically switches
between active and passive schemes according to the workload
in order to utilize the best part of both schemes.

The key difference of the afore-mentioned replication work
and ours is that in continuous queries or data stream process-
ing, tasks assigned to processing agents or peers are long last-
ing. It is therefore more suitable to have a relatively stable set
of replicas and even special-purpose multicast communications
among them.

Continuation-passing messaging was presented in more
detail in our early work [5]. This early approach was however
too intrusive. It requires that service providers support message
interpretation. Although this might be arguably acceptable for
enterprise applications, it is too strong a requirement for open
services. Organization of OA networks for orchestration was
later presented in [6]. Support for exception handling and
rollback due to service failures was also presented in more
detail in [5].

VIII. CONCLUSION

We presented a replication scheme for decentralized or-
chestration of open services with continuation-passing mes-
saging. The scheme utilizes the knowledge about the control
structure that is encapsulated in messages and the run-time
state that is already spread in the distributed environment to
enhance the availability of the orchestration. For a degree-k
replicated orchestration, every branch can tolerate simultane-
ous crashes of up to k orchestration agents. Our performance
study shows the overhead of replication during normal services
orchestration.

There are still a number of issues to be addressed before
the new approach can be practically adopted.

Security is always an important concern of distributed
applications. We have not worked on security issues yet,
but our approach is already useful when used in special
cases. For example, if the orchestration agents are deployed
at geographically different places by the same organization or
a set of trusted applications, these agents can be used as a
smart pool of orchestration engines where the orchestration
activities are dispatched to the most appropriate engines.

The performance study shows that replication does incur
a performance penalty. An incentive model would encour-
age more service providers to offer as orchestration agents.
For example, applications that offer orchestration capabilities
should have higher priority when scheduled and should be
more entitled to higher degree of replication.

REFERENCES
[1] C. Peltz, “Web services orchestration and choreography,” Computer,

vol. 36, no. 10, 2003, pp. 46–52.

[2] Amazon SWF: The Amazon Simple Workflow Service, [retrieved:
April, 2014] http://aws.amazon.com/documentation/swf/.

[3] M. Wieland, K. Görlach, D. Schumm, and F. Leymann, “Towards
reference passing in web service and workflow-based applications,”
in Proceedings of the 13th IEEE International Enterprise Distributed
Object Computing Conference (EDOC), Auckland, New Zealand, 2009,
pp. 109–118.

[4] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta, “PeerSoN: P2P
social networking: early experiences and insights,” in Proceedings of the
Second ACM EuroSys Workshop on Social Network Systems (SNS),
Nuremberg, Germany, 2009, pp. 46–52.

[5] W. Yu and A. A. M. M. Haque, “Decentralised web-services orchestra-
tion with continuation-passing messaging,” IJWGS, vol. 7, no. 3, 2011,
pp. 304–330.

[6] A. A. M. M. Haque, W. Yu, A. Andersen, and R. Karlsen, “Peer-to-peer
orchestration of web mashups,” in The 14th International Conference
on Information Integration and Web-based Applications and Services
(iiWAS), Bali, Indonesia. ACM, 2012, pp. 294–298.

[7] Web Services Business Process Execution Language (WS-BPEL)
Version 2.0, Organization for the Advancement of Structured In-
formation Standards (OASIS), April 2007, [retrieved: April, 2014]
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[8] SERF, [retrieved: April, 2014] http://www.serfdom.io/.
[9] A. Varga, “OMNeT++,” in Modeling and Tools for Network Simulation,

K. Wehrle, M. Günes, and J. Gross, Eds. Springer, 2010, pp. 35–59.
[10] A. Barker and R. Buyya, “Decentralised orchestration of service-

oriented scientific workflows,” in Proceedings of the 1st International
Conference on Cloud Computing and Services Science (CLOSER),
Noordwijkerhout, Netherlands, 2011, pp. 222–231.

[11] B. Benatallah, M. Dumas, and Q. Z. Sheng, “Facilitating the rapid
development and scalable orchestration of composite web services,”
Distributed and Parallel Databases, vol. 17, no. 1, 2005, pp. 5–37.

[12] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda, “Decentralized
orchestration of composite web services,” in Proceedings of the 13th
international conference on World Wide Web (WWW), New York,
USA, 2004, pp. 134–143.

[13] G. J. Fakas and B. Karakostas, “A peer to peer (P2P) architecture
for dynamic workflow management,” Information & SW Technology,
vol. 46, no. 6, 2004, pp. 423–431.

[14] P. Muth, D. Wodtke, J. Weißenfels, A. K. Dittrich, and G. Weikum,
“From centralized workflow specification to distributed workflow exe-
cution,” J. Intell. Inf. Syst., vol. 10, no. 2, 1998, pp. 159–184.

[15] D. Martin, D. Wutke, and F. Leymann, “A novel approach to de-
centralized workflow enactment,” in Proceedings of the 12th Inter-
national IEEE Enterprise Distributed Object Computing Conference
(EDOC), Munich, Germany, 2008, pp. 127–136.

[16] T. Möller and H. Schuldt, “A platform to support decentralized and
dynamically distributed P2P composite OWL-S service execution,” in
Proceedings of the 2nd Workshop on Middleware for Service Oriented
Computing (MW4SOC), Newport Beach, California, USA, 2007, pp.
24–29.

[17] B. Gedik and L. Liu, “A scalable peer-to-peer architecture for distributed
information monitoring applications,” IEEE Transactions on Computers,
vol. 54, no. 6, 2005, pp. 767–782.

[18] R. Martins, P. Narasimhan, L. Lopes, and F. Silva, “Lightweight fault-
tolerance for peer-to-peer middleware,” in Proceedings of the 29th IEEE
Symposium on Reliable Distributed Systems (SRDS), New Delhi, India,
2010, pp. 313–317.

[19] A. Martin, C. Fetzer, and A. Brito, “Active replication at (almost)
no cost,” in Proceedings of the 30th IEEE Symposium on Reliable
Distributed Systems (SRDS), Madrid, Spain, 2011, pp. 21–30.

[20] Z. Zhang et al., “A hybrid approach to high availability in stream pro-
cessing systems,” in Proceedings of IEEE 30th International Conference
on Distributed Computing Systems (ICDCS), Genova, Italy, 2010, pp.
138–148.

8Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

