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Abstract — The recent proliferation of machine-to-machine 
service-oriented computing and the emergence of cloud 
computing platforms and services provides promising new   
capabilities for wireless sensor networks. A Wireless Sensor 
Network (WSN) by itself is heavily constrained to low-power 
usage resulting in low compute and storage capacity. Also, 
there are problems with aggregating sensor data from multiple 
WSN deployments for the purposes of creating and sharing 
sensor data in “big data” form and for sensor data fusion 
algorithm development. Researchers working on applications 
that require sensor data for modeling and prediction can 
simulate that data but testing their models against real-world 
sensor data and deploying their applications on real-time 
sensor data streams are repeating challenges. In this paper, we 
propose a web service framework that addresses and 
overcomes many of these common problems for users of 
WSNs. We describe the architecture of the framework and the 
REpresentational State Transfer (REST) Application Program 
Interface (API) for accessing framework resources. The results 
from our initial implementation demonstrated the framework 
operation over a continuous 175 hour data collection window 
and successfully presented statistics of processed streaming 
weather sensor data averaged over this entire data record. 

Keywords —  Web Services; Service Oriented Architecture; SOA; 
Wireless Sensor Network; WSN; REST; Cloud Computing. 

I.  INTRODUCTION 

The motivation for this research is the integration of 
wireless sensor networks with cloud services to operate on 
“big data’ systems and provide access to computationally 
intensive compute resources. The fundamental requirements 
of the project were to create a web service that: 
 

(1) Operates on big data, 
(2) Provides a computationally intensive service, 
(3) Hosts the data and compute resources in a cloud, and  
(4) Implements a service oriented architecture. 
 
Our approach was to meet these requirements by creating 

a web services framework for wireless sensor networks that 
addresses some of the challenges in that domain. A Wireless 
Sensor Network (WSN) by itself is heavily constrained to 
low-power usage resulting in low compute and storage 
capacity [1]. Also, there are problems with aggregating 
sensor data from multiple WSN deployments for the 
purposes of creating and sharing sensor data in “big data” 
form and for sensor data fusion algorithm development 
[2][3]. Researchers working on applications that require 
sensor data for modeling and prediction can simulate that 

data but testing their models against real-world sensor data 
and deploying their applications on real-time sensor data 
streams are repeating challenges [4][5]. Our web services 
framework (herein after referred to as the “framework”) 
addresses these challenges. 

In this paper, we first provide an overview of the 
framework in Section II and follow that with use case 
descriptions in Section III and related work in Section IV. 
We then describe the architecture of the framework and our 
initial implementation in Section V with a description of the 
results of our demonstration in Section VI. We conclude the 
paper with a description of future work in Section VII, a 
conclusion summary in Section VIII, acknowledgments in 
Section IX, and a list of references in Section X. 

II. SERVICE DESCRIPTION 

The web service that we provide is a framework for 
WSN data collection and processing in a cloud. The 
framework incorporates a service-oriented architecture 
(SOA) for distributed computing [6] and a REpresentational 
State Transfer (REST) [7] Application Program Interface 
(API) for machine-to-machine communication. To 
demonstrate the operation, a test case WSN is implemented 
and included as an example of using the framework. The 
primary components of the framework are: 

 
(1) REST API 
(2) REST Process Server 
(3) Hyper Text Transfer Protocol (HTTP) Client Server 
(4) Example Sensor Server 
(5) Example Data Processing 
 
The test case WSN used collects weather data from 

temperature, pressure, and humidity sensors. The sensor data 
is aggregated, time stamped, location stamped, and streamed 
into the framework where it is recorded to cloud storage 
resources and made available to users on-demand for 
inspection or for processing on cloud computing resources. 

The entire system is illustrated in Figure 1. There are two 
basic types of users: data producers and data consumers. 
Data producers are users that deploy WSNs and add them to 
the system. When they add a WSN to the system they can 
choose to make the data recorded from their WSN private, 
shared in a group, or shared with the public. Data consumers 
are users that wish to consume data shared by the data 
producers. A data producer is, by default, a data consumer of 
their own WSN data and of any shared data from other data 
producers. 
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The REST process server forms the core of the system. It 
implements the API to all of the framework’s web services, 
abstracting the services into a set of resources with 
operations on those resources and encapsulating all cloud 
resources comprising the framework. Access to the API 
requires an API key. An administrator that deploys and 
maintains a system that uses the framework will allocate an 
admin API key. Only users with the admin API key can add 
users to the system. 

 

 
Figure 1.  Framework System Components. 

Users are added to the system through the HTTP client 
server. The HTTP client server implements a typical web 
portal Graphical User Interface (GUI) with user account 
signup and email verification which uses the admin API key 
to create the user. The HTTP client server is a user of the 
REST API.  Once authenticated, users use their username 
and password to log in to their account. Each user has a user 
profile with an associated workspace and a dashboard for 
interfacing to the system. 

Data producers will use their account to install their 
WSNs into the system. The account dashboard contains 
functions to add, modify, and remove a WSN. A WSN 
comprises a set of sensors and each sensor comprises one or 
more channels of data. For each WSN, sensor, and channel 
added to the system, the REST process server will allocate 
and return a Universally Unique IDentifier (UUID). The data 
producer will use their assigned API key and these UUIDs in 
their sensor server program for streaming their WSN sensor 
data into the system over the REST API to the sensor 
database. An example sensor server program written in 
Python [8] is included with the framework illustrating the 
use of the REST API for these purposes. 

Data consumers will use their account to discover and use 
publically available WSN data or to subscribe to a group 
share. The account dashboard contains functions providing 
different views of WSN data including live sensor data being 
collected, recorded data in the sensor database, or the 
application of a data processing function to the data and a 
display of the results. 

The system is currently designed with one built-in data 
processing function; an example data processing program is 
included. Future work will add the capability for data 
producers and data consumers to create a library of data 
processing functions and select the function to apply to a 
recorded dataset or live data. Additionally, the compute node 
type and number of nodes in the compute cluster running the 
data processing program will be user selectable. 

All of the components in Figure 1 that are identified as 
“cloud resources” are deployed on a cloud platform. From 
the user’s point of view, these resources are virtual and 
elastic. The elasticity of a cloud platform allows the system 
to scale up and scale down as demands require. For this 
project, these resources, due to schedule and budget 
constraints, were allocated on the UMBC BlueGrit 
computing system [9]. Future work will migrate the system 
to a commercial cloud platform for reliability and scalability 
testing purposes on a production cloud, for example Amazon 
Web Services (AWS) Elastic Compute Cloud (EC2). 

III. USE CASES 

The analysis, development, and deployment of wireless 
sensor network technologies are well-established in both 
academia and industry with applications in military, 
surveillance, environmental, industrial, transportation, 
healthcare, agricultural, home, and other many other use 
cases. Our framework extends these established use cases to 
address the following problems for hobbyists, researchers, 
and commercial enterprises: 

 
(1) Aggregating sensor data from multiple WSN 

deployments, 
(2) Creating and sharing sensor data in “big data” form, 
(3) Providing a source of sensor data for sensor data 

fusion algorithm development, 
(4) Replacing simulation data with real-world data in 

modeling and prediction algorithms, and 
(5) Deploying algorithms against real-world real-time 

sensor streams in a cloud. 

A. Hobbyists 

WSN hobbyists could deploy the web services 
framework on a public cloud platform to manage the 
aggregation of their WSN generated data providing 
centralized access to their data from any Internet connected 
device. This would allow hobbyists to globally share their 
data with other hobbyists in a controlled system with 
authenticated users and managed access permissions. In 
addition to sharing data, hobbyists could share their sensor 
data processing functions and generally collaborate with 
each other on all aspects of their WSN interests. Public cloud 
platforms often offer free services for usage rates under 
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thresholds that would meet the requirements for the hobbyist 
use case. 

B. Researchers 

WSN academic, commercial, or military researchers 
creating intellectual property (IP) or other sensitive 
information could deploy the web services framework on a 
private (or community) cloud platform to manage the 
aggregation of their WSN generated data providing 
centralized access within their organization. This would 
allow the research team to collaborate amongst themselves 
or with other collaborative teams within their organization 
through a controlled system with authenticated users and 
managed access permissions. In addition to sharing data, 
researchers could share their sensor data processing 
functions and generally collaborate with each other on all 
aspects of their WSN research. As real-world data collects 
and builds in the sensor database, researchers across the 
organization could use the data in sensor data fusion and 
modeling and prediction algorithms. 

C. Commercial 

A production deployment of the web services framework 
on a commercial cloud platform could monetize the services 
and create value for the stakeholders. The service-oriented 
architecture is scalable over an elastic cloud infrastructure 
providing the service elasticity required for commercial 
service deployments. In this scenario, the cost to maintain 
the service scales up and down as the user demands scale up 
and down. Usage is on-demand with pay-as-you-go billing. 
Users on a commercial deployment could collaborate in the 
same way as described for hobbyists and researchers. The 
framework could be extended to support multiple cloud 
platforms with different price points that the user would 
choose or the user could provide the framework with the 
access credentials to cloud resources that they already have 
accounts with, in which case usage against those accounts 
would accrue against those accounts and a service fee would 
be added to monetize the transaction for the stakeholders. 

IV. RELATED WORK 

In this section, we look at current research and 
commercially deployed products that are related to web 
services for wireless sensor networks. 

A. WSN Middleware 

There is current academic research in the creation of WSN 
middleware primarily focused on the virtualization of WSN 
resources in a similar way that cloud computing offers 
virtualization of data and compute resources. One notable 
project is called “Serviceware” [10]. Serviceware is a 
service-oriented architecture of middleware that runs over 
the embedded WSN devices providing virtualization of the 
hardware in the form of services to multiple users 
concurrently. The motivation here is to drive down the cost 
of deploying, managing, and maintaining large-scale WSNs 
by maximizing the utility of the WSN resources to a broader 
user base and applications through infrastructure sharing. 
The authors note that maximizing WSN device utility also 

increases power consumption and further research is required 
to analyze the utility gains against the need to replace 
batteries more frequently. 

B. SensorCloud 

SensorCloud [11] is an existing commercially available 
proprietary product offering similar services as our web 
services framework for WSNs. Customers sign up for an 
account, choose a level of service with associated cost, 
receive an API key, and use the key to write code on their 
Internet connected sensor network devices that use their 
REST API. Like our REST API, users can get, add, update, 
and remove sensors and channels from their account and 
stream their sensor data to their account where it is stored in 
a database for query, retrieval, visualization, and analysis 
using data processing functions supplied by the user. 

Unlike SensorCloud, our entire framework, including the 
front-end web portal and the back end REST server, will be 
open source and operate on top of open source web service 
software stacks. Additionally, our front-end web portal 
provides a user interface to get, add, update, and remove 
WSNs, sensors, and channels. For each resource added, a 
UUID is assigned and the user simply uses the UUID in their 
code. All of this can also be done through our REST API in 
the same way one would if using SensorCloud. Further, each 
WSN in our framework has Global Positioning System 
(GPS) location and altitude information and each sensor 
attached to a WSN has X,Y,Z grid coordinates relative to the 
GPS location and altitude. Streamed sensor samples include 
both time and location data supporting mobile wireless 
sensor networks. A feature that SensorCloud includes that 
we currently have not specified is the ability to define Short 
Message Service (SMS) and email alerts when certain user-
defined conditions are detected. 

C. Google’s Data Sensing Cloud 

At the 2013 Google I/O Developer’s Conference in the 
San Francisco Moscone Center, Google implemented a 
version of the O'Reilly Data Sensing Lab, a collaborative 
project between O’Reilly Media and some of their partners. 
Google’s Data Sensing Lab deployed a 525 node, wireless 
sensor network at the conference feeding over 4000 
continuous streams of sensor data into the Google Cloud 
Platform with Google Cloud Datastore for sensor data 
recording and Google Compute Engine for sensor data 
processing with results presented through a web application. 
Sensing consisted of temperature, humidity, noise, light, 
motion, and pressure to analyze the general atmosphere and 
traffic patterns of conference attendees throughout the 
conference’s changing of events and agenda. A Google 
representative at the conference stated “We think about data 
problems all the time and this looked like an interesting big 
data challenge that we could try to solve.” [12] 

The fundamental architecture of Google’s project is very 
similar to our web services framework, although their focus 
was not in developing and demonstrating the required web 
services with an API, but on raising awareness and interest in 
hobbyists to build sensor nodes (the “lab” part of the project) 
and connecting to, and using, their cloud services. 
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D. Xively Cloud Services 

Xively is building a business around services for the 
Internet of Things (IoT). User’s develop and deploy their IoT 
products into the Xively “Connected Object Cloud” using 
Xively development tools, directory services, and data 
services through their API. The Xively API is a REST 
interface providing developers with web services to stream 
and record their sensor data to Xively servers and connect to 
other objects in the Xively cloud. Users, for a fee, can 
connect to those applications and embed the results in their 
websites or stream the data, for a fee, into their applications 
using the Xively API. The user relationships within this 
cloud ecosystem form a marketplace for real-time sensor fee-
based data trading between connected devices and 
applications. “This sort of common platform is exactly what 
the Internet of Things really needs. Xively and similar 
platforms like Open.Sen.se will make it much easier and 
faster for unrelated devices to connect with each other and 
start delivering on the promise of smart homes, intelligent 
devices services and similar long-promised notions.” [13] 

An interesting capability here is the ability of sensor 
applications to use each other’s data. The addition of REST 
services to our framework for the data processing function to 
use the data from other WSN sources would move our 
framework into the realm of this IoT paradigm. Whereas the 
Xively service is a closed proprietary deployment on Xively 
cloud resources, our framework, when deployed, will be 
open source for deployment on any cloud platform. 

E. IBM InfoShpere Streams 

Typical processing of big data resulting from sensor 
networks is performed on data that has been collected into a 
database where it is later queried, extracted, and analyzed. In 
the IBM InfoSphere Streams (“Streams”) architecture, real-
time sensor data streams are analyzed on a high performance 
computing platform before storing to a database. In this 
paradigm, data analysis is continuous, resulting in a 
continuous stream of low-latency real-time results for trend 
prediction, accelerating user responses to critical real-time 
events. A motivation for business applications is to address 
global economic competition; a motivation for government 
applications is to address global cybersecurity threats. Other 
example applications include telecommunications, financial 
services, healthcare, transportation, environmental, 
insurance, and utilities. Streams can consume data from 
satellites, sensors, cameras, news feeds, and a variety of 
other sources including traditional databases and Hadoop 
systems. In summary, Streams can process huge volumes 
and varieties of real-time data from diverse sources with very 
low latency, providing decision makers with the relevant and 
timely information they need [14]. 

An interesting capability here is the ability to process the 
sensor data in real-time before recording to a database. The 
addition of REST services to our framework for the data 
processing function to be a applied to the data either before 
or after recording to the database would extend the our 
framework to provide a similar capability. Whereas the 
Streams service is a closed proprietary deployment on IBM 

cloud resources, our framework, when deployed, will be 
open source for deployment on any cloud platform. 

V. FRAMEWORK ARCHITECTURE 

The top-level architectural components and interfaces 
comprising our web services framework for wireless sensor 
networks are illustrated in Figure 1 and listed here: 

 
(1) REST API 
(2) REST Process Server 
(3) HTTP Client Server 
(4) Example Sensor Server 
(5) Example Data Processing 
 
As described previously, there are two types of users: (1) 

data producers that deploy one or more WSNs and install 
them into the system for private, group, or public use and (2) 
data consumers that subscribe to and use WSN data shared 
by data producers. 

The REST API forms the interface to the core services 
provided by the REST process server. The REST process 
server abstracts a set of resources that it manages and allows 
users to use those resources through REST request messages. 
All user API keys and cloud resources including the sensor 
database and compute cluster are allocated and managed by 
the REST process server. 

The HTTP client server provides a web portal for users to 
create an account in the system and acquire an API key for 
using the REST API. The portal also implements a 
dashboard of functions for data producers to get, add, 
modify, and delete the resources representing their WSNs. 
Additionally, with their API key, users can perform these 
WSN administration functions directly from programs they 
may write. 

The example sensor server runs on a WSN gateway node. 
It collects sensor samples from the attached sensor nodes and 
streams them to the REST process server where they are 
recorded to the sensor database. Users can access the live 
data or recorded data through the HTTP client server’s web 
portal or from their programs. Live data and recorded 
datasets can be displayed. A user provided data processing 
function can be applied to datasets and the results displayed. 

The test case WSN used in the project collects weather 
data from temperature, pressure, and humidity sensors. The 
sensor data is aggregated, time stamped, location stamped, 
and streamed into the framework where it is recorded to 
cloud storage and made available to users on-demand for 
inspection or for processing on a compute cluster. 

A. REST API 

The REST API forms the programming interface to the 
framework’s set of web services. A RESTful [15] interface 
has client and server roles where clients initiate requests to 
servers and the servers process the requests and return 
responses. The requests and responses are formed into 
messages. The server manages resources that are addressable 
through the client requests. The representation of a resource 
and its state is captured in a document within the messages, 
typically in eXtensible Markup Language (XML) or 
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JavaScript Object Notation (JSON). Some REST interfaces 
support one or the other or both. The current specification of 
our framework uses the JSON format for the client request 
messages and the server response messages. 

Requests and responses are typically processed using 
HTTP. Clients initiate requests using the HTTP request 
methods GET, POST, PUT, and DELETE. The client session 
transitions through its states based on the resource 
information returned from the server. This design pattern 
frees the server from the complexity of maintaining client 
and user interface state information, simplifying server logic 
and increasing server robustness, reliability, and scalability. 

The framework’s web services are abstracted into a set of 
resources where each resource is addressed by a unique 
Uniform Resource Locator (URL) and the operations on a 
resource are defined by the HTTP methods requested against 
the URLs. For GET methods, query parameters attached to 
the URL further define the data requested from the resource. 
For POST and PUT methods, the HTTP message body will 
contain the data to be transferred to the resource. The 
framework’s root URL for accessing resources and services 
is: https://<FQDN>/api/<key>. FQDN indicates a Fully 
Qualified Domain Name, for example, www.example.com. 
Figure 2 illustrates the hierarchy of the resources comprising 
the framework and following is a description of each. 

 
Figure 2.  Framework Resource Hierarchy. 

(1) Groups – A group resource is created by an admin 
user. A group is used to manage a group of users that share 
access to the same framework managed resources. Group 
services include listing all groups, creating and deleting a 
group, getting and updating a group’s attributes, and adding 
and removing users to/from a group. The group resource was 
not implemented in the concept demonstration. The group 
resource URL relative to the root is: /groups/<groupid>. 

 (2) Users – Anyone with programmatic access to the 
REST API is a user. A program that sends a request message 
to the REST API must provide a user API key in the request 
message URL. API keys are created by an admin user that 
has an admin API key. The admin user makes a request on 
the REST API to create a user, and a unique user API key is 
returned. The HTTP client server web portal automates this 
process through the user account sign up process. User 
services include listing all users, creating and deleting a user, 

and getting and updating a user’s attributes. The user 
resource URL relative to the root is: 
/groups/<groupid>/users/<username> 

(3) Catalogs – All resources offered to a user by the 
framework are organized into a hierarchy. At the top of this 
hierarchy is the catalog resource. The framework is currently 
architected with a single catalog, however, it can be extended 
to provide multiple catalogs for deployments that may wish 
to implement a “marketplace” of disparate catalogs 
distinguished, for example, by different legal agreements and 
terms and conditions of service. Catalog services include 
listing all catalogs, creating and deleting a catalog, getting 
and updating a catalog’s attributes, and adding and deleting 
WSNs to/from a catalog. Catalog services were not 
implemented in the concept demonstration. The catalog 
resource URL relative to the root is: /catalogs/<catalogid>. 

(4) WSNs – The top-level resource in a catalog is a 
wireless sensor network. A user that creates a WSN is 
considered a “data producer” and the “owner” of the WSN. 
The user can choose to make their WSN private, shared 
within a group of users, or shared with the public (all users). 
In the framework architecture the “sensor server” runs on a 
typical WSN gateway device where the WSN sensor devices 
stream their data to the WSN gateway for local storage or 
transmission over a network, in this case, transmission to the 
REST process server over the Internet. The WSN resource 
encapsulates information about the WSN gateway where the 
sensor server software will run. For example the initial GPS 
coordinates of the WSN gateway are specified when the 
WSN resource is created and they can be updated from time 
to time for a mobile WSN. WSN services include listing all 
WSNs available to the user, creating and deleting a WSN, 
getting and updating a WSN’s attributes, adding and 
removing sensors to/from a WSN, recording samples to the 
WSN’s sensor database, viewing live data from the WSN, 
viewing the WSN’s recorded data, and applying a data 
processing function to a recorded WSN dataset. Applying 
data processing to the live stream was not implemented in 
the concept demonstration. The WSN resource URL relative 
to the root is: 
/catalogs/<catalogid>/wsns/<wsnid> 

(5) Sensors – The sensor resource encapsulates the 
identity, location, and sampling information about the sensor 
data channels that it physically contains and serves. 
Information about each sensor is captured when a sensor is 
created and it can be updated from time to time, for example 
the sampling frequency and the location for a sensor in a 
mobile WSN. Sensor services include listing all sensors 
owned by the user, creating and deleting a sensor, getting 
and updating a sensors’s attributes, and adding and removing 
channels to/from a sensor. The sensor resource URL relative 
to the root is: 
/catalogs/<catalogid>/wsns/<wsnid>/sensors/<sensorid> 

(6) Channels – Sensor channels are the sources of sensor 
data in the framework. The channel resource encapsulates 
the data type and data unit for a sensor channel. For example 
a data type could be “Temperature” and the data unit could 
be “Celsius”. Channel services include listing all channels 
owned by the user, creating and deleting a channel, and 
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getting and updating a channels’s attributes. The channel 
resource URL relative to the root is: 
/catalogs/<catalogid>/wsns/<wsnid>/sensors/<sensorid>/cha
nnels/<channeleid>. 

(7) Samples – A sample resource is the only resource that 
is not created by the framework (unless a simulation 
capability were added). A sample is the set of sensor channel 
values captured at any point in time, and location, by the 
sensor server according to the sample set configuration and 
the sample frequency. The sample set can be all of the 
sensors connected to the sensor server or a subset. The 
sensor server collects the sample set, adds a time stamp, adds 
a location stamp (GPS location and altitude and local grid 
location and altitude relative to GPS), and posts the data to a 
WSN. 

B. REST Process Server 

The REST process server component of the framework 
identified previously in Figure 1 is implemented in our 
concept demonstration with the software stack illustrated in 
Figure 3 below.  At the top of the stack there are the 
framework’s web services that we developed and integrated 
with the lower layers. The web services layer uses the 
services of the lower layers to implement all resources and 
services exposed by the REST API. Internally, it manages 
the sensor database and compute cluster for each WSN and 
schedules the data processing functions and returns results as 
directed by REST requests. Views of live sensor data, 
recorded sensor data, and processed sensor data are 
composed by the REST process server and returned in REST 
responses in JSON format. 

 

 
Figure 3.  REST Process Server Stack. 

For the concept demonstration, we utilized the resources 
of the BlueGrit computing platform at UMBC. The REST 
process server stack is built on Linux using open-source 
software. At the foundation is Apache HTTP Server. Secure 
Sockets Layer (SSL) encryption was enabled and utilized to 
secure all messages passing over the REST API.  For 

database services, MySQL [16] was used. One database 
serves the framework and one database serves each WSN 
added to the system. Python was chosen for development of 
the framework’s web services and Flask [17] was chosen to 
provide the required web application framework for 
deploying our REST web services. Flask is open source and 
implements the Web Server Gateway Interface (WSGI) 1.0 
specification. 

C. HTTP Client Server 

The HTTP client server component of the framework 
identified previously in Figure 1 is implemented in our 
concept demonstration with the software stack illustrated in 
Figure 4 below.  At the top of the stack is the framework’s 
web portal that we developed and integrated with the lower 
layers. The web portal layer uses the services of the lower 
layers to implement the graphical user interface where users 
sign up for accounts, login into their account, and use a 
dashboard to manage their WSN deployments and to access 
and create views of WSN data and to process data and view 
the results.  Internally, the web portal makes REST API 
requests to the REST process server on behalf of the user. 
The code that implements this interface is encapsulated in a 
PHP module that we installed into Drupal [18]. Drupal is a 
modular open-source Content Management System (CMS) 
framework written in PHP Hypertext Preprocessor (PHP). 

 

 
Figure 4.  HTTP Client Server Stack. 

For the concept demonstration, we again utilized the 
resources of the BlueGrit computing platform at UMBC for 
the HTTP client server, although there is no requirement that 
this server and the REST process server be on the same 
platform as long as they are both connected to the Internet. 
The HTTP client server stack is also built on Linux using 
open-source software. Also, at the foundation, is Apache 
HTTP Server. SSL encryption was enabled and utilized to 
secure all information passing between the user’s web 
browser and the web portal.  For database services, MySQL 
was used. A single Drupal database holds all the web portal 
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content and the module that we added to Drupal adds a table 
to that database. 

The use of Drupal for the web portal immediately solves 
the problem of putting a “web face” on the service without 
reinventing all of the wheels that comprise a professional 
user-friendly dynamic website, which is a fundamental 
requirement that we have established for our framework.  
And because Drupal is modular, you install and use what you 
need. Only the core set of five Drupal modules (System, 
User, Node, Block, and Filter) and two contributed modules 
for enabling SSL, are required for the framework’s web 
portal. Figure 5 is a screenshot of the web portal home page. 

 

 
Figure 5.  Web Portal Home Page. 

The second and more important problem that Drupal 
immediately solves is the user signup and account 
management problem. User signup, authentication, login, 
and password management are entirely implemented with the 
core User module. When user authentication is complete and 
a user is created in the web portal, a REST request with the 
admin key is sent to the REST process server and an API key 
is allocated, returned, and made available to the user through 
their account on the web portal. 

In addition to meeting these two fundamental 
requirements (a professional web face and user account sign 
up), a deployment of the framework’s web portal could 
leverage the work from thousands of contributed Drupal 
modules, depending on the specific needs of the use case. 
For the hobbyist and researcher use cases identified 
previously, a deployment for these users could add profiles, 
forums, blogs, and other social networking tools for user 
interest discovery and collaboration. For the commercial use 
case, the open-source Ubercart [19] suite of Drupal modules 
could be added which comprise a complete end-to-end 
ecommerce workflow that integrates with several payment 
processing service providers.  The commercial developers 
can create a catalog, add products, add terms and conditions, 
and build a shopping cart that buyers can take to checkout 
where their services are deployed. As of November 11, 2013 
the Drupal developer community reached 30,000 with over 
24,000 contributed modules [20]. 

D. Example Sensor Server 

The example sensor server component of the framework 
identified previously in Figure 1 is implemented in our 
concept demonstration with the software stack illustrated in 
Figure 6 below.  In this example test case, the sensor server 
is a “weather sensor server”. This example is intended to be 
the “hello, world” for an initial test of a sensor server in a 
framework deployment. As such, it does not rely on actual 
physical sensors and the associated problems of procuring, 
installing, and getting the sensors to work just to test the 
framework. Instead, we rely on sensors that are already 
deployed with their data available to us on a REST API 
which we will inject into our system as if it were data 
collected on a deployed WSN. We used the Weather 
Underground (Wunderground) REST API [21] on a test 
account we setup that utilized their free level of service 
which was sufficient for both integration testing and the 
demonstration without exceeding the free usage levels. 

 

 
Figure 6.  Example Sensor Server Stack. 

Our weather sensor server was written in Python and 
executed on a Mac mini with OS X. A main control loop first 
updates its sampling frequency by a query to the REST 
process server where all WSN configuration parameters are 
maintained. It then sleeps for a time equal to the sample 
period. When it awakens it makes two calls to the 
Wunderground API for the current GPS location (in our 
demonstration the location is static): (1) the current weather 
conditions for the current location and (2) the 24-hour 
forecast for the current location. From the JSON responses, 
the temperature (T), pressure (P), and humidity (H) are 
extracted for both cases. The current(T, P, H) represent 
sensor 1 with three channels of data and the forecast(T, P, H) 
represent sensor 2 with three channels of data. Using the test 
user’s API key and the resource IDs assigned by the web 
portal, two REST requests are made to the REST process 
server: (1) a POST of the current(T, P, H) with a timestamp 
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equal to the current time and (2) a post of the forecast(T, P, 
H) with a timestamp equal to the current time plus 24 hours. 
In our demonstration, we set the sample frequency to 12 
times per hour, or once every five minutes and collected data 
for 151 hours. In addition to pushing the data out on the 
REST API, we also logged it to a text file in Comma 
Separated Value (CSV) format for testing and integration. 

E. Example Data Processing 

The example data processing component of the 
framework identified previously in Figure 1 is implemented 
in our concept demonstration with the program illustrated in 
Figure 7 below.  In this example test case, the data 
processing program is a “weather data processing” program. 
Like the example sensor server, this example is intended to 
be the “hello, world” for an initial test of a data processing 
program in a framework deployment. 

 

 
Figure 7.  Example Data Processing Program. 

The input to the data processing program is a sensor data 
file containing a dataset extracted from the sensor database. 
In a completely integrated system, the sensor data file would 
be pulled from the sensor database by the REST process 
server after a request to apply the data processing program to 
the data. The REST process server would place the file into a 
shared file system available to a compute cluster and launch 
the data processing program on that cluster. In our concept 
demonstration, we took the sensor data file that was recorded 
on the sensor server and uploaded it to a BlueGrit compute 
blade and executed the data processing program on the data. 

The data processing pipeline shown in Figure 7 illustrates 
a general input -> process -> output dataflow. For this test 
case, the sensor data file contains 175 hours of data collected 

on two sensors with 12 samples collected per hour per 
sensor. Each sample contains a timestamp and the current 
temperature, pressure, and humidity for that sensor. Each 
sensor 1 sample contains the actual temperature, pressure, 
and humidity at that time. Each sensor 2 sample contains the 
24-hour forecasted temperature, pressure, and humidity for 
that time. The “build input buffer” function averages the 12 
samples for each one hour time slot and creates two arrays 
indexed by hour; the “measured samples array” from the 
sensor 1 samples and the “forecast samples array” from the 
sensor 2 samples. The data in the input buffer is then 
processed. 

The “process data” function consists of four 
computations with the results of each computation saved to 
the output buffer. They are: 

(1) Compute the deltas between measured and forecasted 
(2) Compute the arithmetic mean over the deltas array 
(3) Compute the delta variance2 array 
(4) Compute the  standard deviation 
The “write results” function summarizes and formats the 

contents of the output buffer and writes it to a text file where 
the REST process server picks it up. 

Note that the first 24 hours (hour 0 through hour 23) of 
the 175 hours of data collected have no 24-hour forecast 
values for comparison and the last 24 hours (hour 151 
through hour 174) have no measured values, therefore, the 
actual computable dataset is 127 hours of data from hour 24 
to hour 150. 

VI. PROJECT RESULTS 

We successfully completed the initial design and 
implementation of each framework system component and 
demonstrated the functionality of each component 
separately, with partial integration of the HTTP client server 
with the REST process server. The following demonstrations 
of the REST API specification were presented: 
 

(1) User account creation 
(2) User dashboard walkthrough 
(3) Sensor server demonstration (of live data) 
(4) Sensor data processing (of recorded data) 
 
Implementation consisted of installing and configuring 

the open-source components of the server stacks and 
software development of key components. The web services 
in the REST process server stack consisted of a Python 
application that we developed (about 1000 lines) and 
installed on Flask. The web portal in the HTTP client server 
stack consisted of a PHP module (about 1100 lines) that we 
developed and installed in Drupal. The example sensor 
server consisted of a Python application that we developed 
(about 130 lines) and installed on an Internet connected Mac 
mini. The example data processing program consisted of a C 
program that we developed (about 900 lines) and executed 
on a BlueGrit compute blade. The computation results of the 
data processing program are presented in Figure 8. A 
performance comparison between a Windows laptop and a 
BlueGrit blade is presented in Figure 9. 
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Figure 8.  Data Processing Computation Results. 

 
Figure 9.  Data Processing Performance Results. 

VII. FUTURE WORK 

Looking at this project as a set of sequential phases, this 
initial phase represents a three month concept study 
culminating in a concept demonstration which we have 
documented in this paper. Future work would address 
incomplete areas in the concept study and include research 
on new capabilities. 

A. Incomplete areas to address 

• Complete the integration of the concept study components 
• Demonstrate parallel computation on the sensor data 
• Implement the group resource and services 
• Demonstrate on a commercial public cloud (Amazon) 

B. New capabilities to research 

• Cloud scalability, elasticity, load balancing 
• Mobile WSN demonstration 
• Data processing library creation and sharing  
• Virtualization middleware on the sensor server and sensors 
• Data processing on multiple input sources and types 
• Data processing on live sensor streams 
• Compute instance type and cluster size selection 
• Network Protocol Time (NTP) on the sensor server 

VIII. CONCLUSION 

In conclusion, we successfully demonstrated an 
architecture and initial implementation of a web services 
framework for wireless sensor networks. A test case WSN 
was simulated on a Mac mini pulling actual real-time 
weather data from the Wunderground REST API and feeding 
it into the framework. Each framework component was 
individually constructed, tested, and demonstrated. The 
cloud storage and compute resources were provisioned from 
the UMBC BlueGrit computing platform. Future work 
includes end-to-end integration and testing of all 
components, the demonstration of parallel computation, the 
implementation of user groups, and a demonstration on a 
commercial public cloud. Other future work includes several 
areas of research, notably cloud scalability, mobile WSN, 
data processing libraries and sharing, and virtualization 

middleware extending the concept of cloud computing into 
the WSN domain. 
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