

Web Services Framework for Wireless Sensor Networks

Mark Allen Gray and Philip Newsam Scherer
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County (UMBC)
mgray2@umbc.edu, pscher1@umbc.edu

Abstract — The recent proliferation of machine-to-machine
service-oriented computing and the emergence of cloud
computing platforms and services provides promising new
capabilities for wireless sensor networks. A Wireless Sensor
Network (WSN) by itself is heavily constrained to low-power
usage resulting in low compute and storage capacity. Also,
there are problems with aggregating sensor data from multiple
WSN deployments for the purposes of creating and sharing
sensor data in “big data” form and for sensor data fusion
algorithm development. Researchers working on applications
that require sensor data for modeling and prediction can
simulate that data but testing their models against real-world
sensor data and deploying their applications on real-time
sensor data streams are repeating challenges. In this paper, we
propose a web service framework that addresses and
overcomes many of these common problems for users of
WSNs. We describe the architecture of the framework and the
REpresentational State Transfer (REST) Application Program
Interface (API) for accessing framework resources. The results
from our initial implementation demonstrated the framework
operation over a continuous 175 hour data collection window
and successfully presented statistics of processed streaming
weather sensor data averaged over this entire data record.

Keywords — Web Services; Service Oriented Architecture; SOA;
Wireless Sensor Network; WSN; REST; Cloud Computing.

I. INTRODUCTION

The motivation for this research is the integration of
wireless sensor networks with cloud services to operate on
“big data’ systems and provide access to computationally
intensive compute resources. The fundamental requirements
of the project were to create a web service that:

(1) Operates on big data,
(2) Provides a computationally intensive service,
(3) Hosts the data and compute resources in a cloud, and
(4) Implements a service oriented architecture.

Our approach was to meet these requirements by creating

a web services framework for wireless sensor networks that
addresses some of the challenges in that domain. A Wireless
Sensor Network (WSN) by itself is heavily constrained to
low-power usage resulting in low compute and storage
capacity [1]. Also, there are problems with aggregating
sensor data from multiple WSN deployments for the
purposes of creating and sharing sensor data in “big data”
form and for sensor data fusion algorithm development
[2][3]. Researchers working on applications that require
sensor data for modeling and prediction can simulate that

data but testing their models against real-world sensor data
and deploying their applications on real-time sensor data
streams are repeating challenges [4][5]. Our web services
framework (herein after referred to as the “framework”)
addresses these challenges.

In this paper, we first provide an overview of the
framework in Section II and follow that with use case
descriptions in Section III and related work in Section IV.
We then describe the architecture of the framework and our
initial implementation in Section V with a description of the
results of our demonstration in Section VI. We conclude the
paper with a description of future work in Section VII, a
conclusion summary in Section VIII, acknowledgments in
Section IX, and a list of references in Section X.

II. SERVICE DESCRIPTION

The web service that we provide is a framework for
WSN data collection and processing in a cloud. The
framework incorporates a service-oriented architecture
(SOA) for distributed computing [6] and a REpresentational
State Transfer (REST) [7] Application Program Interface
(API) for machine-to-machine communication. To
demonstrate the operation, a test case WSN is implemented
and included as an example of using the framework. The
primary components of the framework are:

(1) REST API
(2) REST Process Server
(3) Hyper Text Transfer Protocol (HTTP) Client Server
(4) Example Sensor Server
(5) Example Data Processing

The test case WSN used collects weather data from

temperature, pressure, and humidity sensors. The sensor data
is aggregated, time stamped, location stamped, and streamed
into the framework where it is recorded to cloud storage
resources and made available to users on-demand for
inspection or for processing on cloud computing resources.

The entire system is illustrated in Figure 1. There are two
basic types of users: data producers and data consumers.
Data producers are users that deploy WSNs and add them to
the system. When they add a WSN to the system they can
choose to make the data recorded from their WSN private,
shared in a group, or shared with the public. Data consumers
are users that wish to consume data shared by the data
producers. A data producer is, by default, a data consumer of
their own WSN data and of any shared data from other data
producers.

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

The REST process server forms the core of the system. It
implements the API to all of the framework’s web services,
abstracting the services into a set of resources with
operations on those resources and encapsulating all cloud
resources comprising the framework. Access to the API
requires an API key. An administrator that deploys and
maintains a system that uses the framework will allocate an
admin API key. Only users with the admin API key can add
users to the system.

Figure 1. Framework System Components.

Users are added to the system through the HTTP client
server. The HTTP client server implements a typical web
portal Graphical User Interface (GUI) with user account
signup and email verification which uses the admin API key
to create the user. The HTTP client server is a user of the
REST API. Once authenticated, users use their username
and password to log in to their account. Each user has a user
profile with an associated workspace and a dashboard for
interfacing to the system.

Data producers will use their account to install their
WSNs into the system. The account dashboard contains
functions to add, modify, and remove a WSN. A WSN
comprises a set of sensors and each sensor comprises one or
more channels of data. For each WSN, sensor, and channel
added to the system, the REST process server will allocate
and return a Universally Unique IDentifier (UUID). The data
producer will use their assigned API key and these UUIDs in
their sensor server program for streaming their WSN sensor
data into the system over the REST API to the sensor
database. An example sensor server program written in
Python [8] is included with the framework illustrating the
use of the REST API for these purposes.

Data consumers will use their account to discover and use
publically available WSN data or to subscribe to a group
share. The account dashboard contains functions providing
different views of WSN data including live sensor data being
collected, recorded data in the sensor database, or the
application of a data processing function to the data and a
display of the results.

The system is currently designed with one built-in data
processing function; an example data processing program is
included. Future work will add the capability for data
producers and data consumers to create a library of data
processing functions and select the function to apply to a
recorded dataset or live data. Additionally, the compute node
type and number of nodes in the compute cluster running the
data processing program will be user selectable.

All of the components in Figure 1 that are identified as
“cloud resources” are deployed on a cloud platform. From
the user’s point of view, these resources are virtual and
elastic. The elasticity of a cloud platform allows the system
to scale up and scale down as demands require. For this
project, these resources, due to schedule and budget
constraints, were allocated on the UMBC BlueGrit
computing system [9]. Future work will migrate the system
to a commercial cloud platform for reliability and scalability
testing purposes on a production cloud, for example Amazon
Web Services (AWS) Elastic Compute Cloud (EC2).

III. USE CASES

The analysis, development, and deployment of wireless
sensor network technologies are well-established in both
academia and industry with applications in military,
surveillance, environmental, industrial, transportation,
healthcare, agricultural, home, and other many other use
cases. Our framework extends these established use cases to
address the following problems for hobbyists, researchers,
and commercial enterprises:

(1) Aggregating sensor data from multiple WSN

deployments,
(2) Creating and sharing sensor data in “big data” form,
(3) Providing a source of sensor data for sensor data

fusion algorithm development,
(4) Replacing simulation data with real-world data in

modeling and prediction algorithms, and
(5) Deploying algorithms against real-world real-time

sensor streams in a cloud.

A. Hobbyists

WSN hobbyists could deploy the web services
framework on a public cloud platform to manage the
aggregation of their WSN generated data providing
centralized access to their data from any Internet connected
device. This would allow hobbyists to globally share their
data with other hobbyists in a controlled system with
authenticated users and managed access permissions. In
addition to sharing data, hobbyists could share their sensor
data processing functions and generally collaborate with
each other on all aspects of their WSN interests. Public cloud
platforms often offer free services for usage rates under

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

thresholds that would meet the requirements for the hobbyist
use case.

B. Researchers

WSN academic, commercial, or military researchers
creating intellectual property (IP) or other sensitive
information could deploy the web services framework on a
private (or community) cloud platform to manage the
aggregation of their WSN generated data providing
centralized access within their organization. This would
allow the research team to collaborate amongst themselves
or with other collaborative teams within their organization
through a controlled system with authenticated users and
managed access permissions. In addition to sharing data,
researchers could share their sensor data processing
functions and generally collaborate with each other on all
aspects of their WSN research. As real-world data collects
and builds in the sensor database, researchers across the
organization could use the data in sensor data fusion and
modeling and prediction algorithms.

C. Commercial

A production deployment of the web services framework
on a commercial cloud platform could monetize the services
and create value for the stakeholders. The service-oriented
architecture is scalable over an elastic cloud infrastructure
providing the service elasticity required for commercial
service deployments. In this scenario, the cost to maintain
the service scales up and down as the user demands scale up
and down. Usage is on-demand with pay-as-you-go billing.
Users on a commercial deployment could collaborate in the
same way as described for hobbyists and researchers. The
framework could be extended to support multiple cloud
platforms with different price points that the user would
choose or the user could provide the framework with the
access credentials to cloud resources that they already have
accounts with, in which case usage against those accounts
would accrue against those accounts and a service fee would
be added to monetize the transaction for the stakeholders.

IV. RELATED WORK

In this section, we look at current research and
commercially deployed products that are related to web
services for wireless sensor networks.

A. WSN Middleware

There is current academic research in the creation of WSN
middleware primarily focused on the virtualization of WSN
resources in a similar way that cloud computing offers
virtualization of data and compute resources. One notable
project is called “Serviceware” [10]. Serviceware is a
service-oriented architecture of middleware that runs over
the embedded WSN devices providing virtualization of the
hardware in the form of services to multiple users
concurrently. The motivation here is to drive down the cost
of deploying, managing, and maintaining large-scale WSNs
by maximizing the utility of the WSN resources to a broader
user base and applications through infrastructure sharing.
The authors note that maximizing WSN device utility also

increases power consumption and further research is required
to analyze the utility gains against the need to replace
batteries more frequently.

B. SensorCloud

SensorCloud [11] is an existing commercially available
proprietary product offering similar services as our web
services framework for WSNs. Customers sign up for an
account, choose a level of service with associated cost,
receive an API key, and use the key to write code on their
Internet connected sensor network devices that use their
REST API. Like our REST API, users can get, add, update,
and remove sensors and channels from their account and
stream their sensor data to their account where it is stored in
a database for query, retrieval, visualization, and analysis
using data processing functions supplied by the user.

Unlike SensorCloud, our entire framework, including the
front-end web portal and the back end REST server, will be
open source and operate on top of open source web service
software stacks. Additionally, our front-end web portal
provides a user interface to get, add, update, and remove
WSNs, sensors, and channels. For each resource added, a
UUID is assigned and the user simply uses the UUID in their
code. All of this can also be done through our REST API in
the same way one would if using SensorCloud. Further, each
WSN in our framework has Global Positioning System
(GPS) location and altitude information and each sensor
attached to a WSN has X,Y,Z grid coordinates relative to the
GPS location and altitude. Streamed sensor samples include
both time and location data supporting mobile wireless
sensor networks. A feature that SensorCloud includes that
we currently have not specified is the ability to define Short
Message Service (SMS) and email alerts when certain user-
defined conditions are detected.

C. Google’s Data Sensing Cloud

At the 2013 Google I/O Developer’s Conference in the
San Francisco Moscone Center, Google implemented a
version of the O'Reilly Data Sensing Lab, a collaborative
project between O’Reilly Media and some of their partners.
Google’s Data Sensing Lab deployed a 525 node, wireless
sensor network at the conference feeding over 4000
continuous streams of sensor data into the Google Cloud
Platform with Google Cloud Datastore for sensor data
recording and Google Compute Engine for sensor data
processing with results presented through a web application.
Sensing consisted of temperature, humidity, noise, light,
motion, and pressure to analyze the general atmosphere and
traffic patterns of conference attendees throughout the
conference’s changing of events and agenda. A Google
representative at the conference stated “We think about data
problems all the time and this looked like an interesting big
data challenge that we could try to solve.” [12]

The fundamental architecture of Google’s project is very
similar to our web services framework, although their focus
was not in developing and demonstrating the required web
services with an API, but on raising awareness and interest in
hobbyists to build sensor nodes (the “lab” part of the project)
and connecting to, and using, their cloud services.

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

D. Xively Cloud Services

Xively is building a business around services for the
Internet of Things (IoT). User’s develop and deploy their IoT
products into the Xively “Connected Object Cloud” using
Xively development tools, directory services, and data
services through their API. The Xively API is a REST
interface providing developers with web services to stream
and record their sensor data to Xively servers and connect to
other objects in the Xively cloud. Users, for a fee, can
connect to those applications and embed the results in their
websites or stream the data, for a fee, into their applications
using the Xively API. The user relationships within this
cloud ecosystem form a marketplace for real-time sensor fee-
based data trading between connected devices and
applications. “This sort of common platform is exactly what
the Internet of Things really needs. Xively and similar
platforms like Open.Sen.se will make it much easier and
faster for unrelated devices to connect with each other and
start delivering on the promise of smart homes, intelligent
devices services and similar long-promised notions.” [13]

An interesting capability here is the ability of sensor
applications to use each other’s data. The addition of REST
services to our framework for the data processing function to
use the data from other WSN sources would move our
framework into the realm of this IoT paradigm. Whereas the
Xively service is a closed proprietary deployment on Xively
cloud resources, our framework, when deployed, will be
open source for deployment on any cloud platform.

E. IBM InfoShpere Streams

Typical processing of big data resulting from sensor
networks is performed on data that has been collected into a
database where it is later queried, extracted, and analyzed. In
the IBM InfoSphere Streams (“Streams”) architecture, real-
time sensor data streams are analyzed on a high performance
computing platform before storing to a database. In this
paradigm, data analysis is continuous, resulting in a
continuous stream of low-latency real-time results for trend
prediction, accelerating user responses to critical real-time
events. A motivation for business applications is to address
global economic competition; a motivation for government
applications is to address global cybersecurity threats. Other
example applications include telecommunications, financial
services, healthcare, transportation, environmental,
insurance, and utilities. Streams can consume data from
satellites, sensors, cameras, news feeds, and a variety of
other sources including traditional databases and Hadoop
systems. In summary, Streams can process huge volumes
and varieties of real-time data from diverse sources with very
low latency, providing decision makers with the relevant and
timely information they need [14].

An interesting capability here is the ability to process the
sensor data in real-time before recording to a database. The
addition of REST services to our framework for the data
processing function to be a applied to the data either before
or after recording to the database would extend the our
framework to provide a similar capability. Whereas the
Streams service is a closed proprietary deployment on IBM

cloud resources, our framework, when deployed, will be
open source for deployment on any cloud platform.

V. FRAMEWORK ARCHITECTURE

The top-level architectural components and interfaces
comprising our web services framework for wireless sensor
networks are illustrated in Figure 1 and listed here:

(1) REST API
(2) REST Process Server
(3) HTTP Client Server
(4) Example Sensor Server
(5) Example Data Processing

As described previously, there are two types of users: (1)

data producers that deploy one or more WSNs and install
them into the system for private, group, or public use and (2)
data consumers that subscribe to and use WSN data shared
by data producers.

The REST API forms the interface to the core services
provided by the REST process server. The REST process
server abstracts a set of resources that it manages and allows
users to use those resources through REST request messages.
All user API keys and cloud resources including the sensor
database and compute cluster are allocated and managed by
the REST process server.

The HTTP client server provides a web portal for users to
create an account in the system and acquire an API key for
using the REST API. The portal also implements a
dashboard of functions for data producers to get, add,
modify, and delete the resources representing their WSNs.
Additionally, with their API key, users can perform these
WSN administration functions directly from programs they
may write.

The example sensor server runs on a WSN gateway node.
It collects sensor samples from the attached sensor nodes and
streams them to the REST process server where they are
recorded to the sensor database. Users can access the live
data or recorded data through the HTTP client server’s web
portal or from their programs. Live data and recorded
datasets can be displayed. A user provided data processing
function can be applied to datasets and the results displayed.

The test case WSN used in the project collects weather
data from temperature, pressure, and humidity sensors. The
sensor data is aggregated, time stamped, location stamped,
and streamed into the framework where it is recorded to
cloud storage and made available to users on-demand for
inspection or for processing on a compute cluster.

A. REST API

The REST API forms the programming interface to the
framework’s set of web services. A RESTful [15] interface
has client and server roles where clients initiate requests to
servers and the servers process the requests and return
responses. The requests and responses are formed into
messages. The server manages resources that are addressable
through the client requests. The representation of a resource
and its state is captured in a document within the messages,
typically in eXtensible Markup Language (XML) or

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

JavaScript Object Notation (JSON). Some REST interfaces
support one or the other or both. The current specification of
our framework uses the JSON format for the client request
messages and the server response messages.

Requests and responses are typically processed using
HTTP. Clients initiate requests using the HTTP request
methods GET, POST, PUT, and DELETE. The client session
transitions through its states based on the resource
information returned from the server. This design pattern
frees the server from the complexity of maintaining client
and user interface state information, simplifying server logic
and increasing server robustness, reliability, and scalability.

The framework’s web services are abstracted into a set of
resources where each resource is addressed by a unique
Uniform Resource Locator (URL) and the operations on a
resource are defined by the HTTP methods requested against
the URLs. For GET methods, query parameters attached to
the URL further define the data requested from the resource.
For POST and PUT methods, the HTTP message body will
contain the data to be transferred to the resource. The
framework’s root URL for accessing resources and services
is: https://<FQDN>/api/<key>. FQDN indicates a Fully
Qualified Domain Name, for example, www.example.com.
Figure 2 illustrates the hierarchy of the resources comprising
the framework and following is a description of each.

Figure 2. Framework Resource Hierarchy.

(1) Groups – A group resource is created by an admin
user. A group is used to manage a group of users that share
access to the same framework managed resources. Group
services include listing all groups, creating and deleting a
group, getting and updating a group’s attributes, and adding
and removing users to/from a group. The group resource was
not implemented in the concept demonstration. The group
resource URL relative to the root is: /groups/<groupid>.

 (2) Users – Anyone with programmatic access to the
REST API is a user. A program that sends a request message
to the REST API must provide a user API key in the request
message URL. API keys are created by an admin user that
has an admin API key. The admin user makes a request on
the REST API to create a user, and a unique user API key is
returned. The HTTP client server web portal automates this
process through the user account sign up process. User
services include listing all users, creating and deleting a user,

and getting and updating a user’s attributes. The user
resource URL relative to the root is:
/groups/<groupid>/users/<username>

(3) Catalogs – All resources offered to a user by the
framework are organized into a hierarchy. At the top of this
hierarchy is the catalog resource. The framework is currently
architected with a single catalog, however, it can be extended
to provide multiple catalogs for deployments that may wish
to implement a “marketplace” of disparate catalogs
distinguished, for example, by different legal agreements and
terms and conditions of service. Catalog services include
listing all catalogs, creating and deleting a catalog, getting
and updating a catalog’s attributes, and adding and deleting
WSNs to/from a catalog. Catalog services were not
implemented in the concept demonstration. The catalog
resource URL relative to the root is: /catalogs/<catalogid>.

(4) WSNs – The top-level resource in a catalog is a
wireless sensor network. A user that creates a WSN is
considered a “data producer” and the “owner” of the WSN.
The user can choose to make their WSN private, shared
within a group of users, or shared with the public (all users).
In the framework architecture the “sensor server” runs on a
typical WSN gateway device where the WSN sensor devices
stream their data to the WSN gateway for local storage or
transmission over a network, in this case, transmission to the
REST process server over the Internet. The WSN resource
encapsulates information about the WSN gateway where the
sensor server software will run. For example the initial GPS
coordinates of the WSN gateway are specified when the
WSN resource is created and they can be updated from time
to time for a mobile WSN. WSN services include listing all
WSNs available to the user, creating and deleting a WSN,
getting and updating a WSN’s attributes, adding and
removing sensors to/from a WSN, recording samples to the
WSN’s sensor database, viewing live data from the WSN,
viewing the WSN’s recorded data, and applying a data
processing function to a recorded WSN dataset. Applying
data processing to the live stream was not implemented in
the concept demonstration. The WSN resource URL relative
to the root is:
/catalogs/<catalogid>/wsns/<wsnid>

(5) Sensors – The sensor resource encapsulates the
identity, location, and sampling information about the sensor
data channels that it physically contains and serves.
Information about each sensor is captured when a sensor is
created and it can be updated from time to time, for example
the sampling frequency and the location for a sensor in a
mobile WSN. Sensor services include listing all sensors
owned by the user, creating and deleting a sensor, getting
and updating a sensors’s attributes, and adding and removing
channels to/from a sensor. The sensor resource URL relative
to the root is:
/catalogs/<catalogid>/wsns/<wsnid>/sensors/<sensorid>

(6) Channels – Sensor channels are the sources of sensor
data in the framework. The channel resource encapsulates
the data type and data unit for a sensor channel. For example
a data type could be “Temperature” and the data unit could
be “Celsius”. Channel services include listing all channels
owned by the user, creating and deleting a channel, and

19Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

getting and updating a channels’s attributes. The channel
resource URL relative to the root is:
/catalogs/<catalogid>/wsns/<wsnid>/sensors/<sensorid>/cha
nnels/<channeleid>.

(7) Samples – A sample resource is the only resource that
is not created by the framework (unless a simulation
capability were added). A sample is the set of sensor channel
values captured at any point in time, and location, by the
sensor server according to the sample set configuration and
the sample frequency. The sample set can be all of the
sensors connected to the sensor server or a subset. The
sensor server collects the sample set, adds a time stamp, adds
a location stamp (GPS location and altitude and local grid
location and altitude relative to GPS), and posts the data to a
WSN.

B. REST Process Server

The REST process server component of the framework
identified previously in Figure 1 is implemented in our
concept demonstration with the software stack illustrated in
Figure 3 below. At the top of the stack there are the
framework’s web services that we developed and integrated
with the lower layers. The web services layer uses the
services of the lower layers to implement all resources and
services exposed by the REST API. Internally, it manages
the sensor database and compute cluster for each WSN and
schedules the data processing functions and returns results as
directed by REST requests. Views of live sensor data,
recorded sensor data, and processed sensor data are
composed by the REST process server and returned in REST
responses in JSON format.

Figure 3. REST Process Server Stack.

For the concept demonstration, we utilized the resources
of the BlueGrit computing platform at UMBC. The REST
process server stack is built on Linux using open-source
software. At the foundation is Apache HTTP Server. Secure
Sockets Layer (SSL) encryption was enabled and utilized to
secure all messages passing over the REST API. For

database services, MySQL [16] was used. One database
serves the framework and one database serves each WSN
added to the system. Python was chosen for development of
the framework’s web services and Flask [17] was chosen to
provide the required web application framework for
deploying our REST web services. Flask is open source and
implements the Web Server Gateway Interface (WSGI) 1.0
specification.

C. HTTP Client Server

The HTTP client server component of the framework
identified previously in Figure 1 is implemented in our
concept demonstration with the software stack illustrated in
Figure 4 below. At the top of the stack is the framework’s
web portal that we developed and integrated with the lower
layers. The web portal layer uses the services of the lower
layers to implement the graphical user interface where users
sign up for accounts, login into their account, and use a
dashboard to manage their WSN deployments and to access
and create views of WSN data and to process data and view
the results. Internally, the web portal makes REST API
requests to the REST process server on behalf of the user.
The code that implements this interface is encapsulated in a
PHP module that we installed into Drupal [18]. Drupal is a
modular open-source Content Management System (CMS)
framework written in PHP Hypertext Preprocessor (PHP).

Figure 4. HTTP Client Server Stack.

For the concept demonstration, we again utilized the
resources of the BlueGrit computing platform at UMBC for
the HTTP client server, although there is no requirement that
this server and the REST process server be on the same
platform as long as they are both connected to the Internet.
The HTTP client server stack is also built on Linux using
open-source software. Also, at the foundation, is Apache
HTTP Server. SSL encryption was enabled and utilized to
secure all information passing between the user’s web
browser and the web portal. For database services, MySQL
was used. A single Drupal database holds all the web portal

20Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

content and the module that we added to Drupal adds a table
to that database.

The use of Drupal for the web portal immediately solves
the problem of putting a “web face” on the service without
reinventing all of the wheels that comprise a professional
user-friendly dynamic website, which is a fundamental
requirement that we have established for our framework.
And because Drupal is modular, you install and use what you
need. Only the core set of five Drupal modules (System,
User, Node, Block, and Filter) and two contributed modules
for enabling SSL, are required for the framework’s web
portal. Figure 5 is a screenshot of the web portal home page.

Figure 5. Web Portal Home Page.

The second and more important problem that Drupal
immediately solves is the user signup and account
management problem. User signup, authentication, login,
and password management are entirely implemented with the
core User module. When user authentication is complete and
a user is created in the web portal, a REST request with the
admin key is sent to the REST process server and an API key
is allocated, returned, and made available to the user through
their account on the web portal.

In addition to meeting these two fundamental
requirements (a professional web face and user account sign
up), a deployment of the framework’s web portal could
leverage the work from thousands of contributed Drupal
modules, depending on the specific needs of the use case.
For the hobbyist and researcher use cases identified
previously, a deployment for these users could add profiles,
forums, blogs, and other social networking tools for user
interest discovery and collaboration. For the commercial use
case, the open-source Ubercart [19] suite of Drupal modules
could be added which comprise a complete end-to-end
ecommerce workflow that integrates with several payment
processing service providers. The commercial developers
can create a catalog, add products, add terms and conditions,
and build a shopping cart that buyers can take to checkout
where their services are deployed. As of November 11, 2013
the Drupal developer community reached 30,000 with over
24,000 contributed modules [20].

D. Example Sensor Server

The example sensor server component of the framework
identified previously in Figure 1 is implemented in our
concept demonstration with the software stack illustrated in
Figure 6 below. In this example test case, the sensor server
is a “weather sensor server”. This example is intended to be
the “hello, world” for an initial test of a sensor server in a
framework deployment. As such, it does not rely on actual
physical sensors and the associated problems of procuring,
installing, and getting the sensors to work just to test the
framework. Instead, we rely on sensors that are already
deployed with their data available to us on a REST API
which we will inject into our system as if it were data
collected on a deployed WSN. We used the Weather
Underground (Wunderground) REST API [21] on a test
account we setup that utilized their free level of service
which was sufficient for both integration testing and the
demonstration without exceeding the free usage levels.

Figure 6. Example Sensor Server Stack.

Our weather sensor server was written in Python and
executed on a Mac mini with OS X. A main control loop first
updates its sampling frequency by a query to the REST
process server where all WSN configuration parameters are
maintained. It then sleeps for a time equal to the sample
period. When it awakens it makes two calls to the
Wunderground API for the current GPS location (in our
demonstration the location is static): (1) the current weather
conditions for the current location and (2) the 24-hour
forecast for the current location. From the JSON responses,
the temperature (T), pressure (P), and humidity (H) are
extracted for both cases. The current(T, P, H) represent
sensor 1 with three channels of data and the forecast(T, P, H)
represent sensor 2 with three channels of data. Using the test
user’s API key and the resource IDs assigned by the web
portal, two REST requests are made to the REST process
server: (1) a POST of the current(T, P, H) with a timestamp

21Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

equal to the current time and (2) a post of the forecast(T, P,
H) with a timestamp equal to the current time plus 24 hours.
In our demonstration, we set the sample frequency to 12
times per hour, or once every five minutes and collected data
for 151 hours. In addition to pushing the data out on the
REST API, we also logged it to a text file in Comma
Separated Value (CSV) format for testing and integration.

E. Example Data Processing

The example data processing component of the
framework identified previously in Figure 1 is implemented
in our concept demonstration with the program illustrated in
Figure 7 below. In this example test case, the data
processing program is a “weather data processing” program.
Like the example sensor server, this example is intended to
be the “hello, world” for an initial test of a data processing
program in a framework deployment.

Figure 7. Example Data Processing Program.

The input to the data processing program is a sensor data
file containing a dataset extracted from the sensor database.
In a completely integrated system, the sensor data file would
be pulled from the sensor database by the REST process
server after a request to apply the data processing program to
the data. The REST process server would place the file into a
shared file system available to a compute cluster and launch
the data processing program on that cluster. In our concept
demonstration, we took the sensor data file that was recorded
on the sensor server and uploaded it to a BlueGrit compute
blade and executed the data processing program on the data.

The data processing pipeline shown in Figure 7 illustrates
a general input -> process -> output dataflow. For this test
case, the sensor data file contains 175 hours of data collected

on two sensors with 12 samples collected per hour per
sensor. Each sample contains a timestamp and the current
temperature, pressure, and humidity for that sensor. Each
sensor 1 sample contains the actual temperature, pressure,
and humidity at that time. Each sensor 2 sample contains the
24-hour forecasted temperature, pressure, and humidity for
that time. The “build input buffer” function averages the 12
samples for each one hour time slot and creates two arrays
indexed by hour; the “measured samples array” from the
sensor 1 samples and the “forecast samples array” from the
sensor 2 samples. The data in the input buffer is then
processed.

The “process data” function consists of four
computations with the results of each computation saved to
the output buffer. They are:

(1) Compute the deltas between measured and forecasted
(2) Compute the arithmetic mean over the deltas array
(3) Compute the delta variance2 array
(4) Compute the standard deviation
The “write results” function summarizes and formats the

contents of the output buffer and writes it to a text file where
the REST process server picks it up.

Note that the first 24 hours (hour 0 through hour 23) of
the 175 hours of data collected have no 24-hour forecast
values for comparison and the last 24 hours (hour 151
through hour 174) have no measured values, therefore, the
actual computable dataset is 127 hours of data from hour 24
to hour 150.

VI. PROJECT RESULTS

We successfully completed the initial design and
implementation of each framework system component and
demonstrated the functionality of each component
separately, with partial integration of the HTTP client server
with the REST process server. The following demonstrations
of the REST API specification were presented:

(1) User account creation
(2) User dashboard walkthrough
(3) Sensor server demonstration (of live data)
(4) Sensor data processing (of recorded data)

Implementation consisted of installing and configuring

the open-source components of the server stacks and
software development of key components. The web services
in the REST process server stack consisted of a Python
application that we developed (about 1000 lines) and
installed on Flask. The web portal in the HTTP client server
stack consisted of a PHP module (about 1100 lines) that we
developed and installed in Drupal. The example sensor
server consisted of a Python application that we developed
(about 130 lines) and installed on an Internet connected Mac
mini. The example data processing program consisted of a C
program that we developed (about 900 lines) and executed
on a BlueGrit compute blade. The computation results of the
data processing program are presented in Figure 8. A
performance comparison between a Windows laptop and a
BlueGrit blade is presented in Figure 9.

22Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

Figure 8. Data Processing Computation Results.

Figure 9. Data Processing Performance Results.

VII. FUTURE WORK

Looking at this project as a set of sequential phases, this
initial phase represents a three month concept study
culminating in a concept demonstration which we have
documented in this paper. Future work would address
incomplete areas in the concept study and include research
on new capabilities.

A. Incomplete areas to address

• Complete the integration of the concept study components
• Demonstrate parallel computation on the sensor data
• Implement the group resource and services
• Demonstrate on a commercial public cloud (Amazon)

B. New capabilities to research

• Cloud scalability, elasticity, load balancing
• Mobile WSN demonstration
• Data processing library creation and sharing
• Virtualization middleware on the sensor server and sensors
• Data processing on multiple input sources and types
• Data processing on live sensor streams
• Compute instance type and cluster size selection
• Network Protocol Time (NTP) on the sensor server

VIII. CONCLUSION

In conclusion, we successfully demonstrated an
architecture and initial implementation of a web services
framework for wireless sensor networks. A test case WSN
was simulated on a Mac mini pulling actual real-time
weather data from the Wunderground REST API and feeding
it into the framework. Each framework component was
individually constructed, tested, and demonstrated. The
cloud storage and compute resources were provisioned from
the UMBC BlueGrit computing platform. Future work
includes end-to-end integration and testing of all
components, the demonstration of parallel computation, the
implementation of user groups, and a demonstration on a
commercial public cloud. Other future work includes several
areas of research, notably cloud scalability, mobile WSN,
data processing libraries and sharing, and virtualization

middleware extending the concept of cloud computing into
the WSN domain.

IX. ACKNOWLEDGMENT

The authors thank Dr. Milton Halem for his direction and
encouragement over the course of this project and his
teaching assistant Lawrence Sebald for his support in the
installation and configuration of various software services on
the UMBC BlueGrit computing platform.

X. REFERENCES
[1] W. Dargie and C. Poellabauer, Fundamentals of Wireless Sensor

Networks: Theory and Practice, Wiley, 2010.

[2] A. Cuzzocrea and G. Fortino, “Managing Data and Processes in
Cloud-Enabled Large-Scale Sensor Networks: State-Of-The-Art and
Future Research Directions”, 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing, pp. 583-588.

[3] R. Govindan, J. M. Hellerstein, W. Hong, S. Madden, M. Franklin,
and S. Shenker, “The Sensor Network as a Database”, University of
Southern California, 2002, pp. 1-8.

[4] D. Tracey and C. Sreenan, “A Holistic Architecture for the Internet of
Things, Sensing Services and Big Data”, 2013 13th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing, pp.
546-553

[5] S.K. Dash, S. Mohapatra, and P.K. Pattnaik “A Survey on
Applications of Wireless Sensor Network Using Cloud Computing”,
International Journal of Computer Science & Emerging Technologies,
Volume 1, Issue 4, December 2010, pp. 50-55.

[6] M. P. Singh and M. N. Huhns, Service Oriented Computing:
Semantics, Processes, and Agents, Wiley, 2005.

[7] Roy Thomas Fielding, Architectural Styles and the Design of
Network-based Software Architectures, Dissertation, University of
California, Irvine, 2000.

[8] Python. [Online]. Available: www.python.org. Retrieved Dec 2013.

[9] BlueGrit. [Online]. Available:
http://bluegrit.cs.umbc.edu/userdocs.php . Retrieved December 2013.

[10] S. Rea, M. S. Aslam, and D. Pesch, “Serviceware - A Service Based
Management Approach for WSN Cloud Infrastructures”, 10th IEEE
International Workshop on Managing Ubiquitous Communications
and Services 2013, San Diego, March 2013, pp. 133-138.

[11] SensorCloud. [Online]. Available:
http://www.sensorcloud.com/system-overview. Retrieved Dec 2013.

[12] K. Fogarty, “Google's Wireless Sensors: Big Data or Big Brother?”,
www.networkcomputing.com, May 22, 2013. Retrieved Dec 2013.

[13] B. Proffitt, “Xively Actually Connects Things to the Internet of
Things”, www.readwrite.com, May 14, 2013. Retrieved Dec 2013.

[14] R. Rea, “IBM InfoSphere Streams, Redefining real-time analytics
processing”, IBM Software, Thought Leadership White Paper, May
2013, pp. 1-8.

[15] L. Richardson and S. Ruby, RESTful Web Services, O'Reilly Media,
2007.

[16] MySQL. [Online]. Available: www.mysql.com. Retrieved Dec 2013.

[17] Flask. [Online]. Available: http://flask.pocoo.org. Retrieved Dec
2013.

[18] Drupal. [Online]. Available: https://drupal.org. Retrieved Dec 2013.

[19] Ubercart. [Online]. Available: http://www.ubercart.org. Retrieved
Dec 2013.

[20] S. Choudhury, “30,000 Developers in Drupal.org and growing…”,
[Online]. Available: https://drupal.org/node/2133153. Retrieved Dec
2013.

[21] Weather Underground (Wunderground) API. [Online]. Available:
http://www.wunderground.com/weather/api/. Retrieved Dec 2013.

23Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

