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Abstract—Web services have become the technology of choice
for Service-Oriented Computing (SOC) implementation. Their
composition is a recent field that has seen a flurry of different
approaches proposed towards the goal of flexible distributed
heterogeneous inter-operation of software systems. These systems
are usually derived from higher-level models rather than be coded
at low level. In practice, achieving Web service compatibility
nonetheless continues to require significant efforts for modeling at
multiple abstraction levels. Existing formal approaches typically
require the analysis of the global space of joint executions of
interacting Web services. We propose a formal approach where
Web service choreography is represented with the high-level
model of Colored Petri Nets (CPNs). ASK-Computational Tree
Logic (ASK-CTL) is used to describe the behavioral compatibility
of these services in terms of message order properties. Then,
model checking is applied for the verification of these properties.
The effectiveness of our work has been validated with the recent
version of CPN Tools.

Keywords-Web Service Choreography; Behavioral Com-
patibility; Model Checking; CPN; ASK-CTL.

I. INTRODUCTION

SOC is a new computing paradigm that utilizes services
as the basic constructs to support the development of rapid,
low-cost and easy composition of distributed applications
even in heterogeneous environments [1]. Web services [2] are
considered as one of the most promising computing paradigms,
which work as plugin mode to provide the value-added ap-
plications in SOC and Service-Oriented Architecture (SOA)
[3]. They may use the Internet as the communication medium
and open Internet-based standards, such as the Simple Object
Access Protocol (SOAP) as transmission medium and the Web
Services Description Language (WSDL) for their description.
They currently support the externalization of atomic business
capabilities [4]. Specifically, it is commonly accepted that a
Web service description should include not only the interface,
but also the business protocol supported by the service (i.e.,
its behavior, which is the specification of possible message
exchange sequences that it supports). Services can be com-
posed through choreography and orchestration. Choreography
describes the interactions between participating services to the
business process from a global perspective, while orchestration

uses a central coordinator. Many composition methods as
well as several proposals, such as Web Services Business
Process Execution Language (WSBPEL) [2] for orchestration
or Web Service Choreography Definition Language (WSCDL)
[5] for choreography, have been brought forward to construct
and describe the interactions among services. However, they
are concerned only with syntactic or semantic compatibility
among services, and the behavioral compatibility is ignored.

Behavioral compatibility analysis for Web service composi-
tion is one of the most important topics. In this paper, our goal
is to investigate this topic in the context of choreography. We
provide a formal basis for developing demonstrably correct
choreography. Our definition for this correctness is related
to message order requirements. We consider the problem of
choreographing Web services from a high-level, conceptual
perspective, that abstracts from the details of the interaction
paradigm. As pointed by De Backer et al. [6], the first step of
verifying if two Web services are compatible should occur on
an abstract level that hides unnecessary underlying coordina-
tion and allows to focus on high-level units of collaboration.
This simplifies the verification and provides a first step towards
a compatibility before investigating details of a Web service
description such as the content of a message. We propose
the modeling of Web services and their choreography using
CPNs [7] and show how a model checking technique can
be employed to verify if the modeled choreography satisfies
the order properties given as ASK-CTL [8] formulas. The
CPN models are implemented using the recent version of
the software CPN Tools (CPN Tools 4.0 [9]). The ASK-CTL
toolkit provided with this tool is used to perform automated
verification in order to prove that a service choreography
is correct at design time. This is an important step towards
reliable service choreography composition, since problems
could be detected early in the development cycle, before even
starting the implementation.

The rest of this paper is structured as follows. In Section II,
we give a simple illustrating example of Web service behaviors
in a choreography. Formal definitions of CPNs and ASK-CTL
are recalled in Section III, with a brief description of the
model checking technique. The formalization of behavioral
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compatibility is presented in Section IV. Related works are
discussed in Section V. Conclusions and future works are
presented in Section VI.

II. MOTIVATING EXAMPLE

Let us consider a simple example where the scenario is that
of a travel agency, with the cooperation of four partners:

1) Travel Agency has two main tasks: airline booking and
hotel reservations,

2) Bank acts as a financial intermediary between the Airline
company (respectively the Hotel) and the Travel Agency,

3) Airline Company sells flight tickets to Travel Agencies,
4) Hotel proposes nights to Travel Agencies.
The last three partners want to provide functionalities to

the Travel Agency partner using the Web service technology.
Each partner is a published Web service, participating in a
choreography and is modeled as a business process including
the description of its partners (or a link permitting to get it),
the description of its interface (but not its local operations),
and the description of an abstract process that represents its
behavior (exchanged messages). The behavior of the four Web
services is as follows (see Fig. 1.).

Fig. 1. A Web service choreography: A Travel Agency Example

First, a customer contacts the Travel Agency Web service
and chooses its travel plan including information about the
order and the payment method. Consequently, this service
contacts the Bank Web service to pay the Airline Company
(respectively the Hotel) Web service. Next, the Bank pays the
Airline Company (respectively the Hotel) and asks them for
the payment confirmation. The Airline Company (respectively
the Hotel) sends its confirmation. If the payment operations
are completed successfully then the Travel Agency contacts its
customer and confirms his travel plan, and if one of them fails
then it contacts the customer and asks if any other plan suits
him or to cancel his request. The messages exchanged between
the four Web services have constraints of order forming their
behaviors.

The possible scenarios can be the following message
ordering sequences: 0, 1, 2, 3, 2′, 3′, 4, 5 or 0, 1, 2, 2′, 3, 3′, 4, 5
or 0, 1, 2, 2′, 3′, 3, 4, 5 or 0, 1, 2′, 3′, 2, 3, 4, 5 or
0, 1, 2′, 2, 3′, 3, 4, 5 or 0, 1, 2′, 2, 3, 3′, 4, 5.

To guarantee the successful execution of these scenarios,
Web services need to be verified formally in order to ensure
that mutual interactions between them do not lead to any con-
flict. Specifically, we need to verify their compatibility. There
are three aspects of service compatibility: syntactic, semantic,
and behavioral [10]. Syntactic compatibility means that the
structural interfaces of the interacting services are consistent.
Semantic compatibility means that the interacting services
exchange information that can be understood in a consistent
and unambiguous way. Finally, behavioral compatibility means
that the interacting services agree on what to expect from each
other in terms of operations to execute, outcomes to deliver,
and messages to be sent and received.

The static compatibility including the syntactic and semantic
compatibility is essential to be checked. Checking the behav-
ioral one, however, is a much more challenging task. In the
example, the four partners may be syntactically and semanti-
cally compatible in interfaces, but they can behave improperly
for the message exchange protocol. An example of behavioral
property that we will later check is the following requirement:
The payment confirmation will be sent by the Airline Company
after it receives the payment confirmation request. It is obvious
that if this property is not satisfied, then the collaboration
leads to an erroneous message ordering even if they are
syntactically and semantically consistent. Thus, the behavior
of services must be taken into account in composition. The
manual checking of service compatibility would clearly be
error-prone and time consuming. Consequently, an approach
to realize automatic and transparent checking is necessary.

This example will be modeled and the above behavioral
property will be verified in order to respect the six anticipated
scenarios.

III. BACKGROUND

In this section, we briefly recall some formal definitions
related to model checking formulas of the ASK-CTL logic
for CPNs.

A. Colored Petri Nets

CPNs represent today one of the most widely used for-
malism incorporating data and hierarchy [11]. They are a
discrete-event modeling language combining PNs and the
functional programming language CPN ML. Initially, CPNs
were supported by Design/CPN, later replaced by CPN Tools
that supports the design of complex processes and the analysis
of such processes using simulation and state space analysis.

In this section, we first recall definitions of CPNs that
will be useful in establishing a CPN model for Web service
choreography. These definitions are presented here in a simple
way in order to adapt them to our problem of behavioral
compatibility. A relation between them and CPN Tools 4.0
notations is also presented.

Definition 1 (Multi-set). A multi-set over a non-empty set Z is
a mapping b : Z → N, where N is the set of natural numbers.
The support of b is the set supp(b) = {z ∈ Z | b(z) 6=
0}. We denote by Bag(Z) the set of multi-sets over Z with
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finite support and we write sometimes explicitly b ∈ Bag(Z)
as b =

∑
z∈Z b(z)z. An order relation, an addition and a

difference on multi-sets are defined as follows. For two multi-
sets b, b′ ∈ Bag(Z):
• b ≤ b′ if for all z ∈ Z, b(z) ≤ b′(z),
• b+ b′ is given by

∑
z∈Z(b(z) + b′(z))z.

• if b ≤ b′, then b′ − b =
∑

z∈Z(b′(z)− b(z))z.

Remark 1. In CPN Tools 4.0, special symbols are used for
multi-sets: the order relation is noted �, the addition is noted
++, with ++

MS

∑
for a sum, and the symbol ‘ is placed

between b(z) (the multiplicity) and z (the element). These
notations appear in Figures 3 and 4 for instance, where CPNs
are extracted from the graphical interface of the tool.

CPN definitions use a set Σ of color domains containing
the set Bool = {true, false} and a set V of variables. The
variables are typed by the function Type : V → Σ and we
consider a set Exp(V ) of expressions using elements of V as
free variables (or the empty expression).

Definition 2 (CPN Syntax). A CPN over the set of color
domains Σ and the set of variables V is a 5-uplet N =
(P, T,C,E,M0) where:
• P is a finite set of places,
• T is a finite set of transitions such that P ∩ T = ∅,
• C : P → Σ associates a color domain with each place,
• E : P ×T ∪T ×P → Exp(V ) associates with each pair

(p, t) or (t, p) an expression typed as a multi-set over the
color domain of the place: Type(E(p, t)) = Bag(C(p))
and Type(E(t, p)) = Bag(C(p)),

• M0 is the initial marking, with M0(p) ∈ Bag(C(p)) for
each place p ∈ P .

Remark 2. We do not define explicitly the set of arcs to
simplify the notations and we use the habitual convention of
Petri nets: the expression is empty if there is no arc, an empty
expression evaluating to an empty multi-set.

The following definition presents the semantics of CPNs.

Definition 3 (CPN semantics). The semantics of a CPN N is
described by a transition system TN = (M,M0,−→):
• the configurations of M are markings M , with M(p) ∈
Bag(C(p)) for each place p ∈ P ,

• the initial configuration is the initial marking M0,
• the transition relation −→ is defined as follows.

Let t be a transition and let v be a valuation of vari-
ables. We write v−(p, t) ∈ Bag(C(p)) and v+(t, p) ∈
Bag(C(p)) for the respective values of E(p, t) and
E(t, p) for p ∈ P .
The transition M t,v−−→ M ′ is possible if, for each place
p ∈ P , M(p) ≥ v−(p, t) and in this case,
M ′(p) = M(p)− v−(p, t) + v+(t, p) for each p ∈ P .

An execution starting from M is a sequence of firings M t1,v1−−−→
M1

t2,v2−−−→M2 . . .. A marking M ′ is reachable from M if there
exists a finite execution M t1,v1−−−→M1

t2,v2−−−→M2 . . .
tn,vn−−−→Mn

starting from M such that M ′ = Mn.

Remark 3. In this definition, a single transition is fired to

avoid the steps in the presentation of Jensen [7]. This is not a
problem because a step can be represented by the successive
firing of several transitions.

B. The logic ASK-CTL

The logic ASK-CTL of CPN Tools (see [12] for more de-
tails) is an extension of the standard CTL [13]. An ASK-CTL
formula is interpreted over the transition system TN (called
State Space (SS) in the tool) associated with a CPN model
N and takes into account both configuration information (on
markings, also called states) and transition information, thus
extending CTL, where only configurations are labeled with
sets of atomic propositions. The model checker of CPN Tools
checks if such a formula holds over TN .

In the following definition, we consider the transition system
TN of a given CPN N . Operators ¬,∧ are boolean negation
and conjunction, 〈.〉 is an existential ”next” modality, U is the
standard until modality of CTL and E, A are respectively the
existential and universal quantifiers on executions from CTL.

Definition 4 (ASK-CTL Syntax). The ASK-CTL logic has two
categories of formulas: state and transition formulas, defined
by mutual induction.

State formulas are given by the grammar:
A ::= α| ¬A |A1 ∧ A2| EU(A1,A2)| AU(A1,A2)| 〈B〉
where α is a mapping from the set M of markings into
booleans, A,A1,A2 are state formulas and B is a transition
formula.

Transition formulas are given by the grammar:
B ::= β| ¬β |β1 ∧ β2| EU(β1, β2)| AU(β1, β2)| 〈A〉
where β, β1, β2 are mappings from the set of pairs (t, v)
labelling transitions into booleans and A is a state formula.

The semantics of ASK-CTL is defined inductively on con-
figurations of the transition system TN in the spirit of CTL,
from the basis case: A configuration M satisfies α, written
M |= α, if α(M) is true. For instance:
- M |= EU(A1,A2) if there exists an execution M t1,v1−−−→
M1

t2,v2−−−→ M2 . . .
tn,vn−−−→ Mn starting from M such that Mn

satisfies A2 and all markings from M to Mn−1 satisfy A1.
- M |= AU(A1,A2) if for all executions starting from M ,
there exists a marking M ′ satisfying A2 with all intermediate
markings satisfying A1.
The next modality is similar to the one from the µ-calculus:
M |= 〈B〉 if there is a transition M t,v−−→M ′ from M satisfying
B, as defined below.

The semantics of transition formulas is defined similarly:
- A transition e = M t,v−−→M ′ satisfies β if β(t, v) is true.
- e |= 〈A〉 if M ′ satisfies A.
- The formulas EU(β1, β2) and AU(β1, β2) are then defined
like above on executions starting by e, with β1 and β2 satisfied
by successive transitions instead of configurations.

Note that we may also use the standard abbreviations
false = α ∧ ¬α, true = ¬false, ϕ → ψ = ψ ∨ ¬ϕ,
AFϕ = AU(true, ϕ) and AGϕ = ¬AF(¬ϕ).
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C. Model Checking

A model checking procedure answers the following ques-
tion: Given a state ASK-CTL formula A and a CPN N , does
the initial configuration M0 of TN satisfy A ? For this, it
must be able to answer any similar question on reachable
configurations or transitions of TN . The tool uses Standard
ML (SML) functions for this purpose. For instance, checking a
state formula is expressed in SML by a function eval node :<
formula >,< node >, which takes two arguments: the
formula to be checked and a configuration (called node in
the tool) from where the model checking should start. The
mappings α are defined in SML by functions like NF(<
message >,< node function >), where node function
takes a node and returns a boolean and message is used when
a formula evaluates to false. Similarly, the mappings β are de-
fined by functions like AF(< message >,< arc function >
). A formula EU(α1, α2) for two mappings α1 and α2, simply
translates in SML as EXIST UNTIL(α1, α2), and so on.

Now, we deal with our proposed formal approach.

IV. A CPN AND ASK-CTL -BASED APPROACH

Our approach analyzes behavioral compatibility using the
above definitions of CPNs and ASK-CTL. It is composed of
two related phases (see Fig. 2.):
• Choreography Modeling and Validation: Modeling a Web

service choreography by constructing Web service behav-
iors based on CPNs semantics and composing them. This
modeling is validated by multiple simulations using CPN
Tools 4.0. The result is a behavioral model to check.

• Behavioral Properties Checking: Verifying some behav-
ioral properties on the generated behavioral model in
terms of message order using the model checking tech-
nique described above. We first formally describe the be-
havioral properties as ASK-CTL formulas. Subsequently,
we rewrite these formulas into SML format. In this way,
a concrete formalization of the behavioral properties is
obtained. The verification of these properties will be done
over the transition system (or SS) that has been generated
from the behavioral model by CPN Tools 4.0.

A. Choreography Modeling and Validation

In this first phase, we have three related steps: CPN Mod-
eling, Simulation, and CPNs Composition.

1) CPN Modeling: According to the Web service behav-
iors, which are specified by the informal language Unified
Modeling Language Diagram Activities (UML DA [14]), we
construct a formal model for each Web service behavior based
on CPN semantics such as the choreography may require dif-
ferent instances of a participating Web service. Consequently:
• the behavior execution states are captured by places.
• the message type (Web service instances and its incoming

messages) is captured by the color set of the token (we
do not look into the content of a message as it is not
known until run time).

• the operation of its instance is captured by a transition
(send or receive).

Fig. 2. Overview of our proposed approach

• the Web service initial state is captured by the initial
marking M0.

In our modeling, a Web service behavior is a conversation
protocol that is defined as a CPN N where:
• the set of colors is Σ = {INS , I ,MSGSTATE , I ×

MSGSTATE , INS × I ×MSGSTATE}, where:
– INS is a color set, which defines the Web service

instances:
colset INS = with ins1|ins2;
We define a variable x having as type INS :
var x : INS;

– the static subclasses of I ×MSGSTATE include I ,
which is an integer type that represents the message
identifier and MSGSTATE, which is an enumera-
tion type that represents a message:
colset I = int;
colset MSGSTATE = with TravelRequest
|Response|PaymentOrder|PaymentNotification
|PaymentConfirmationRequestAC
|PaymentConfirmationRequestH
|PaymentConfirmation;
we define two variables msgid and currentstate
and m0,m1,m4,m5 having respectively as type I ,
MSGSTATE , and I ×MSGSTATE :
var msgid : I;
var currentstate : MSGSTATE;
var m0,m1,m4,m5 : I ×MSGSTATE ;

– we define two variables xm2, xm3 having as type
INS × I ×MSGSTATE :
var xm2, xm3 : INS × I ×MSGSTATE ;

– we define also functions that will be attached to
transitions and eventually two arcs, for example the
function startSend1 that allows the sending of the
message m1 that represents the Payment Order in
Fig. 1. It is defined as follows:
fun startSend1((msgid, currentstate) : I ×
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MSGSTATE ) = let val new msgid = 1
val new currentstate = PaymentOrder
in (new msgid, new currentstate) end

• a place p ∈ P represents the protocol state, a transition
t ∈ T represents the message exchange consisting on
an invocation of a Web service operation, and the initial
marking M0 represents the Web service initial state.

For instance a part of the Travel Agency Web service
behavior is shown in Fig. 3.

Fig. 3. A CPN modeling of a part of the Travel Agency Web service behavior

As we can see, each of the Travel Agency Web service
operation is represented by a transition. The initial marking
consists in the token in the place TR not received. The
relations between operations are modeled by the firing rules
of the CPN:
• Receive TR is the first transition that can be fired if the

token (0, T ravelRequest) is present in its input place.
• Send PO will then be fired with the function
startSend1 defined above.

We can now describe the CPN that models this part of the
Travel Agency Web service behavior.

1) Σ = {INS , I ,MSGSTATE , I ×MSGSTATE , INS ×
I ×MSGSTATE},

2) P = {TR not received, TP received, PO sent}
3) T = {Receive TR, Send PO}
4) E(TR not received,Receive TR) =

E(Receive TR, TP received) =
E(TP received, Send PO) = m0, . . .

5) M0 = {(0, T ravelRequest) ++ ins1}.
A finite execution of the protocol of the Travel
agency Web service is defined by a sequence
M0

Receive TR,msgid=0,currenstate=TravelRequest−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M1

Send PO,msgid=1,currenstate=PaymentOrder−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→M2, ...
2) Simulation: The above figure showed that the marking

M0 of the Travel Agency model changed to another marking
M1 after the occurrence of the transition Receive TR. Another
transition could be enabled and fire as a result of the new
marking. This process of firing of a sequence of transitions
is called simulation. Fig. 3. shows the simulation tool palette
used for validating the Travel Agency Web service behavior.
We note that simulations are also performed on CPNs com-
position step. In addition, simulations analyze a finite number

of executions and help to validate the model by detecting and
finding errors in the CPN model and demonstrates that the
model works correctly. However, it is impossible to guarantee
the correctness of the model with 100% certainly because all
the possible executions are not covered [15]. This correctness
will be analyzed in the second phase of our approach.

3) CPNs Composition: From the Web service behaviors
that have been modeled on CPN models, we can now perform
their composition using the concept of sub-module and the
result will be a formal model that represents the Web service
choreography called behavioral model. In this composition, the
CPN models can be structured into a set of sub-modules to
handle large specifications. These modules-pages interact with
each other through a set of well-defined interfaces, in a similar
way to programming languages. Fig. 4. shows the CPNs
composition where we have four sub-modules (T,B,H,AC)
representing respectively the four Web services behaviors
(Travel Agency, Bank, Hotel, and Airline Company).

Fig. 4. CPNs Composition

For example, the two places TR not received and PN sent
represent input ports for the T sub-module. The two places
PO sent and R sent are its output ports. This means that these
places form the interface through which the T sub-module
exchanges tokens with the other sub-pages. It will import
tokens via the input ports and it will export tokens via the
output ports. The composition of p sub-modules N1, . . . Np is
denoted by N1⊕· · ·⊕Np. Since we have composed our CPNs
models representing the taken Web services, we can substitute
each sub-module by its corresponding CPN. As said above,
simulation is performed on the composition to validate it but,
it is not sufficient to prove its behavioral compatibility. To do
so, we perform the next phase.

B. Behavioral Properties Checking
From a generated behavioral model representing the Web

service choreography, the behavioral properties checking can
be performed through the verification of the message order
properties. The notion of syntactical and semantic compati-
bility are preconditions of the following checking. Also, we
consider the case where the component Web services in a
choreography have correct behaviors. In this case, whether
the composition can properly execute or not depends on the
behavioral compatibility of its participating Web services.

Definition 5 (Behavioral Compatibility). Let N = N1 ⊕ Np

be a CPN representing the behavioral model produced by
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the composition of p CPNs N1, . . . , Np representing the Web
service models. Let (i, j, request,m) denote transition labels
for the sending of a request m from service i to service j and
let (i, j, answer,m) denote the transition label for the answer
to this request from j to i. Then, N is behaviorally compatible
with respect to message ordering if for all i, j,m, the following
state formulas are satisfied by the initial configuration of N :

• AG(〈(i, j, request,m)〉 → AF(〈(i, j, answer,m)〉)),
meaning that any request is eventually followed by an
answer, and

• AU(¬〈(i, j, answer,m)〉, 〈(i, j, request,m)〉), meaning
that no answer is sent until a request has been sent first.

Justification: We recall that each Web service is represented
by a CPN, each Web service interaction (send or receive)
is represented by a transition, and each exchanged message
is represented by a color set of the token. Analyzing the
behavioral compatibility of a Web service choreography is
subject to verifying its correctness. This correctness is related
to some qualitative requirements that are set on the order of
the exchanged messages. We note that the second formula
corresponds to the property given in Section II as example for
the case study: The payment confirmation will be sent by the
Airline Company after it receives the payment confirmation
request. Both of the two formulas will be verified using a
model checking technique based on SS. Thus, in this second
phase, we have three related steps: State Space Computation,
ASK-CTL/SML Property Description, and Model Checking.

1) State Space Computation: Our approach verifies the
behavioral compatibility of a Web service choreography by
using CPN Tools to automatically generate the transition
system TN associated with the choreography model. Only
nodes reachable from the initial marking M0 of the net
and the associated transitions are kept by the tool. For our
example above, the transition system TN has 17 nodes (see
Fig. 5.) representing the different markings, generated by all
transitions:
M0

x=ins1,Receive TR,msgid=0,currentstate=TravelRequest−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→M1

M1
x=ins1,Send PO,msgid=1,currentstate=PaymentOrder−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→M2

and so on, up to
M16

x=ins1,Send Response,msgid=5,currentstate=Response−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
M17

The transition system TN can be used not only to obtain a
standard report (including standard properties such as deadlock
freeness) but also to verify ASK-CTL formulas like those
defined for compatibility.

2) ASK-CTL/SML Properties Description: ASK-CTL for-
mulas are used here to describe the behavioral properties to
be checked. Let us deal with the behavioral property taken for
our example (corresponding to a formula of the second type
in Definition 5).
Behavioral Property: The payment confirmation will be sent
by the Airline Company after it receives the payment confir-
mation request.

We rewrite the corresponding ASK-CTL formula into SML
to obtain a concrete formalization of the property (see Table

Fig. 5. Transition system of our behavioral model

I). This formula is given by AU(¬A2, A1) where A1 denotes
the characteristic predicate for the transition of receiving the
payment confirmation request by the Airline Company Web
service and A2 denotes the characteristic predicate for the
transition of sending the payment confirmation by the same
Web service.

TABLE I
SML FUNCTIONS FOR CHECKING THE BEHAVIORAL PROPERTY OF THE

EXAMPLE

SML Description

Functions
and

values
declara-

tion

fun Arc1
a = (Bind.BehavioralModel′Receive PCR AC

(1, {xm2 =
(ins1, 2, PaymentConfirmationRequestAC)})

= ArcToBE a);
fun Arc2

a = (Bind.BehavioralModel′Send PC AC
(1, {xm2 =

(ins1, 2, PaymentConfirmationRequestAC)})
= ArcToBE a);

valA1 = AF (”Receive”, Arc1);
valA2 = AF (”Send”, Arc2);

Formula
val myASKCTLformula =

FORALL UNTIL(NOT (A2), A1);
Verification eval arc myASKCTLformula InitNode;

In this description, A1 is interpreted by:
fun Arc1
a = (Bind.BehavioralModel′Receive PCR AC

(1, {xm2 = (ins1, 2, PaymentConfirmationRequestAC)});
referring the variable xm2 of transition Receive PCR AC.

And A2 is interpreted by:
fun Arc2
a = (Bind.BehavioralModel′Send PC AC

(1, {xm2 = (ins1, 2, PaymentConfirmationRequestAC)});
referring to the variable xm2 of transition Send PC AC.

The global formula (FORALL UNTIL(NOT (A2), A1)
holds if the Payment Confirmation message is not sent
by the Airline Company until the Payment Confirmation
Request has been sent. Note that InitNode means the initial
marking of the transition system.

3) Model Checking: Here, we adopt the model checking
toolkit provided by CPN Tools 4.0 to check whether the gener-
ated behavioral model N meets the two conditions introduced
in the behavioral compatibility definition (definition 5).

First, ASK-CTL module should be loaded in CPN Tools
4.0. The commands are shown in high part of Fig. 6. Then,
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the SML property description is written and then evaluated
by “evaluate ML” option in the simulation tool palette. The
checking result is shown in the green part of Fig. 6.

Fig. 6. Model Checking the behavioral property: true

We can see that the checking results returns true, which
indicates that the behavioral model satisfies the property. This
checking is not sufficient to say that the behavioral model is
correct. We also need to check the two conditions given in
the behavioral compatibility definition for all pairs (request,
answer) in our modeled system. In our approach, if failures
are detected then we must return to the first phase to correct
these errors. For our example, we make some errors related
to message order and in this case the checking results of
our same taken property is given in Fig. 7. The correction is
based on a behavior failure analysis that is done on exploring
all property violation scenarios and pinpoints areas where
modeling changes or revisions will be considered.

Fig. 7. Model Checking the behavioral property: false

Having shown that CPN based model checking of order
property is feasible, we can then exploit the CPN Tools
advanced graphical environment, to interactively simulate the
actions performed in possible property violation scenarios.
Behavior failure analysis is based on inspection of the ter-
minal markings in all property violation paths. The simulation
control functionality found in the CPN Tools 4.0 allows
firing transitions with an interactively chosen transition. Thus,
the actions included in the scenario of interest are easily
reproduced and we can explore all possible behavior revision
prospects to repair the detected property violation.

V. RELATED WORK

To capture the behavior of service composition in some
formal way, a variety of formal analysis techniques have
been proposed. Most of them adopt a formal model such
as PNs or Finite State Machines (FSM) or pi-calculus to
express service behavior in a service orchestration and then
utilize its theories and tools to accomplish the automatic
verification. For example, Lucchi and Mazzara [16] propose an
approach that analyzes service orchestration using WS-BPEL
and the formalism pi-calculus. Benatallah et al. [17] propose
an approach that analyzes the behavioral compatibility and
the similarity of Web services. Hamadi et al. [18] propose
an algebra of PNs to analyze the behavioral compatibility
of Web services. The orchestration is modeled by the use
of simple operators such as arbitrary sequence and more
complex operators like iteration. Also, Tan et al. [19] propose
an approach to analyze the compatibility of two services by
translating their BPEL abstract processes into CPNS and check
if their composition violates the constraints imposed by either
side.

Compared to the works listed above, the approach proposed
in [20] verifies service choreography by checking not only
deadlock-freeness but also other properties, such as liveness
and other specific properties. This approach is based on the
automata formalism for modeling and on model checking for
the analysis of behavioral compatibility and the satisfaction
of temporal constraints: timing conflicts that may arise in a
choreography can be detected. Another example that inves-
tigated choreography is [21], where Martnes et al. propose
a PN based approach to model and analyze the behavioral
compatibility of Web services, initially described by BPEL
processes. Each selected BPEL process is transformed into a
BPN. Then, the corresponding BPN models are composed, and
the deadlock-freeness of the resulting net has to be proven.

In contrast to these works, our paper focuses not only on
automatically reasoning about deadlock freeness, but also on
message ordering properties. In addition, our verification is
done at design time while current approaches are specific
to a given programming language and only focus on the
verification of already implemented composite services. The
benefit of our approach is that the composition specification
is proven to be correct before its implementation with a
programming language such as BPEL. Few works has been
done, to the best of our knowledge, in this research direction.
For example, Achilleos et al. [22] propose an approach that
combines Model Driven Architecture (MDA) and PNs to
provide design, verification and code generation. Recently,
in [23], a MDA for creating consistent service orchestrations
is presented. Service execution and interaction are described
with a high-level model in terms of extended PNs notation.
Also, recently, Dumez et al. [24] propose a MDA approach
to specify, verify and implement service composition using
existing specification and implementation languages. To sup-
port the formal verification of the composition, a translation
of the composition workflow model is done into a Language
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of Temporal Ordering Specification (LOTOS [25]) formal
specification. The CADP [26] tool-set is then used to verify
the composition via its LOTOS specification. Our work has
a similar objective, adopting instead CPNs to formalize the
behaviors and interactions of services. This model is well
suited to specify service composition due to its composition-
ality properties. Moreover, it uses CPN Tools, providing the
designer with the ASK-CTL toolkit that is expressive enough
to describe message ordering.

Our paper presents a formal approach that goes beyond
checking for deadlock-freeness as proposed by the majority of
related work. We note that our approach has a disadvantage
since it is based on state space analysis that presents the
state explosion problem. To address this problem, we can use
reduction techniques that are supported by CPN Tools 4.0.

VI. CONCLUSION AND FUTURE WORK

CPNs enhance classical PNs with commonly agreed upon
extensions such as data and hierarchy. The resulting modeling
language is highly expressive and is supported by CPN Tools
4.0, a recent powerful software tool for the modeling and
analysis of CPNs. This paper used an example to explain
the behavioral compatibility that is analyzed using CPNs
during the early design phase of choreography, thus avoiding
iterative cycles between the choreography implementation and
the compatibility analysis. The interest of our proposed ap-
proach lies in the clear presentation of the analysis model and
readiness for its implementation. We have demonstrated how
to use CPNs to model and compose the Web service behaviors
and how to use CPN Tools 4.0 to analyze their behavioral
compatibility basing on ASK-CTL and model checking.

In future work, we will extend our model to allow the per-
formance analysis in terms of quantitative timing constrains.
Our new timed model will be based on Timed CPN [7], also
supported by CPN Tools 4.0, and its analysis will be done by
simulations that allow performance analysis. In addition, we
plan to extend our approach of verification by using MDA in
order to have a development process of service choreography
that is based of CPNs and Timed CPNs.
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