
Performance Evaluation of OM4SPACE’s Activity Service

Irina Astrova Arne Koschel,
Alexander Olbricht, Matthias Popp

Marc Schaaf,
Stella Gatziu Grivas

Institute of Cybernetics Faculty IV, Department for Computer Science Institute for Information Systems
Tallinn University of Technology University of Applied Sciences and Arts

Hannover
University of Applied Sciences

Northwestern Switzerland
Tallinn, Estonia Hannover, Germany Olten, Switzerland
irina@cs.ioc.ee akoschel@acm.org marc.schaaf@fhnw.ch

Abstract—OM4SPACE provides cloud-based event notification
middleware. This middleware delivers a foundation for the
development of scalable complex event processing applications.
The middleware decouples the event notification from the
applications themselves, by encapsulating this functionality
into a component called Activity Service. This paper presents
preliminary results of the performance evaluation for the
Activity Service.

Keywords—OM4SPACE; Activity Service; WebLogic JMS;
Amazon SQS; Event-Driven Architecture (EDA); Service-
Oriented Architecture (SOA); Complex Event Processing (CEP);
cloud computing.

I. INTRODUCTION
 In 2010, the University of Applied Sciences

Northwestern Switzerland in cooperation with the University
of Applied Sciences and Arts Hannover Germany started a
project called OM4SPACE [1]-[6]. The idea behind
OM4SPACE was to merge Event-Driven Architecture
(EDA), Service-Oriented Architecture (SOA), Complex
Event Processing (CEP) and cloud computing together to
provide cloud-based event notification middleware for
decoupled communication between CEP application
components on all the layers of a cloud stack, including
infrastructures, platforms, components, business processes
and presentations (see Figure 1). By decoupled, we mean
that events are posted to the middleware without knowing if
and how they are processed later.

Figure 1. Cloud stack [3].

Performance is typically one of the top evaluation criteria
for middleware products in general and OM4SPACE in
particular. Since OM4SPACE is still relatively new, users
expect that it will continue over time to improve its
functionality, usability and reliability. However, users
typically do want to get the best performance possible. Since
the user’s level satisfaction with OM4SPACE is largely
determined by its performance, in this paper we evaluate the
performance of OM4SPACE’s Activity Service.

The rest of the paper is organized as follows. Section II
presents the architecture of OM4SPACE. Section III
describes the performance tests run against OM4SPACE.
Section IV summarizes the results obtained during the
performance tests and outlines future directions in the
development of OM4SPACE.

II. ARCHITECTURE
Figure 2 gives an overview of the architecture of

OM4SPACE, which includes the following components:
Event Producers (also called Event Sources), Event
Consumers and Activity Service.

Figure 2. Architecture of OM4SPACE [3].

58Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

The Activity Service itself includes the following
components:

• Event Service: This component receives events from
Event Producers, pre-processes the events and
delivers them to Event Consumers subscribed for
those events. The Event Service contains a registry.
Event Consumers look up events in the registry. If
an Event Consumer finds an event of interest, it
subscribes to that event.

• Complex Event Detector: This component receives
events from the Event Service and derives from
them new complex events, which are fed back into
the Event Service for further processing.

• Rule Execution Service: This component receives
events from the Event Service, evaluates them
against CEP rules and triggers the rules into
execution, which results in the execution of external
action handlers that are provided by other third-party
components.

The communication between all the components in the
architecture is done through events, where an event is any
kind of information sent as a notification from one
component to another.

III. PERFORMANCE EVALUATION
One of the main advantages offered by OM4SPACE is

its independence of channel service providers such as
WebLogic, Amazon and Google because the Activity
Service enables the transparent use of different transport
technologies.

Figure 3. Transport technologies used by Activity Service.

In the current version of OM4SPACE, the Activity

Service supports the following transport technologies:
• WebLogic JMS, which serves as an example of a

topic service.
• Amazon SQS, which serves as an example of a

queue service.
Once an Event Producer has sent events to the channel,

the Activity Service located in a public cloud will forward
the events to the channel of an Event Consumer that is
subscribed for those events (see Figure 3). A decision on
which channel to use for sending events is left solely to the
Event Producer. Similarly, a decision on which channel to
use for receiving events is left solely to the Event Consumer.

For example, the Event Producer can select a JMS topic
because it is not chargeable, whereas the Event Consumer
can select an SQS queue because it is highly available (i.e.,
the availability of an SQS queue is not affected if the cloud
instance fails).

A. Tests
We conducted the performance evaluation to answer the

following questions:
• Will the Activity Service (sitting between the Event

Producer and the Event Consumer) affect the time
needed for events to reach their destination?

• If it does, will the performance still be good?
The answers to these questions were important because

the application areas for OM4SPACE include smart grids [6]
that need to address the challenges related to the constantly
increasing number of events and near real-time reaction on
those events.

To answer the questions above, we performed the
following tests:

• T1: The Activity Service was not used. Events were
sent via a JMS topic and received via the same topic.

• T2: The Activity Service was used. Events were sent
via a JMS topic and received via another JMS topic.

• T3: The Activity Service was not used. Events were
sent via an SQS queue and received via the same
queue.

• T4: The Activity Service was used. Events were sent
via an SQS queue and received via another SQS
queue.

• T5: The Activity Service was used. Events were sent
via a JMS topic but received via an SQS queue.

• T6: The Activity Service was used. Events were sent
via an SQS queue but received via a JMS topic.

These tests were intended to prove or disprove the
following hypotheses:

• H1: JMS alone can achieve better performance than
JMS interconnected with the Activity Service.

• H2: SQS alone can achieve better performance than
SQS interconnected with the Activity Service.

• H3: There can be a difference in the performance of
JMS alone and SQS alone.

• H4: There can be a difference in the performance of
JMS interconnected with the Activity Service and
SQS interconnected with the Activity Service. This
difference can be the same as above.

• H5: The number of events can affect the
performance of JMS alone.

• H6: The number of events can affect the
performance of SQS alone.

• H7: The number of events can affect the
performance of JMS interconnected with the
Activity Service.

• H8: The number of events can affect the
performance of SQS interconnected with the
Activity Service.

We performed the tests in the following way:

59Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

• Each test was executed with a different number of
events (100, 500 and 1000) to see how the event
number affects the performance.

• Each test was executed ten times to calculate the
average where outliers were still visible.

• In each test, the time from sending the first event to
receiving the last one was measured using a Java
method System.currentTimeMillis (which
returns the current time in msecs).

• Depending on the test, either all the components (the
Event Producer, the Activity Service and the Event
Consumer) were running on the same cloud instance
or each component was running on its own cloud
instance. Because of the decision to use SQS,
Amazon EC2 was used as the cloud. Generally,
Event Producers and Event Consumers are not
limited to the components of a public cloud where
the Activity Service is located. Rather, they can be
located in private clouds or in some other public
clouds (see Figure 6).

The measurements were made with two Ubuntu Linux
9.10 systems, which both used Sun Java 1.6.0. The machine,
which hosted the Event Producer, the Activity Service and
the Event Consumer, was a dual core system with 4GB
memory. The machine for the cloud was a quad core system
with 8GB memory. The two machines were interconnected
with a gigabit Ethernet.

B. Test Results
The test results proved H1, H2, H3, H5, H6, H7 and H8,

but disproved to some degree H4.
Figure 4 summarizes the test results for T1 and T2. What

attracts our attention is a very good performance that JMS
demonstrated in all the tests. For example, sending and
receiving 100 events via JMS interconnected with the
Activity Service took only 1286 msecs. But as one could
expect, this time was longer than without the Activity
Service.

Figure 4. Sending and receiving 100, 500 and 1000 events: JMS alone vs.
JMS interconnected to Activity Service.

One could expect that the time would increase with an

increase of the number of events. Indeed, for sending and
receiving 500 events, JMS interconnected with the Activity
Service needed 3184 msecs more than for sending and
receiving 100 events. However, of peculiar interest is the fact
that for sending and receiving 1000 events, JMS
interconnected with the Activity Service needed only 305
msecs more than for sending and receiving 500 events. In

both cases, the average time was about 4500 msecs.
Therefore, we suggest that extra time needed for sending and
receiving 100 events was the time that the Activity Service
needed for initialization.

The left column in Table I shows the time needed for
JMS to send and receive 500 events without the Activity
Service, whereas the right column with the Activity Service.
What attracts our attention is the sharp deviation in the ten
test runs in both cases. For example, the time needed for
sending and receiving 500 events via JMS interconnected
with the Activity Service was between 3332 and 6300 msecs
(i.e., the test results differed in almost two times).

TABLE I. SENDING AND RECEIVING 500 EVENTS:
JMS ALONE VS. JMS INTERCONNECTED TO ACTIVITY SERVICE

JMS JMS OM4
851 6300
836 3942

3956 3484
3895 4247
1525 3323
713 4522

3865 3360
3835 5247
4023 4168
887 4258

2439 4285

Figure 5 summarizes the test results for T3 and T4. What

attracts our attention is that SQS alone was much slower than
JMS alone – in fact, it was even slower than JMS
interconnected with the Activity Service. For example,
sending and receiving 100 events via SQS already took
13,412 msecs. With the Activity Service interconnected, that
time was even longer (viz., 373,678 msecs). However, as one
could expect, the time increased with an increase of the
number of events but quickly, especially when SQS was
interconnected with the Activity Service.

Figure 5. Sending and receiving 100, 500 and 1000 events: SQS alone vs.
SQS interconnected to Activity Service.

Our tests showed that SQS alone was up to 36 times

slower than JMS alone. One could expect that the same
would keep true if the Activity Service were used. In fact,
SQS interconnected with the Activity Service was up to 120
times slower than JMS interconnected with the Activity
Service. Therefore, we suggest that the Activity Service
greatly affected the performance, when SQS was used as the
transport technology.

The left column in Table II shows the time needed for
SQS to send and receive 500 events without the Activity
Service, whereas the right column with the Activity Service.

60Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

Although the time was extremely long, it was almost
constant for all the ten test runs (viz., between 262,867 and
270,603 msecs for sending and receiving 500 events) when
SQS was interconnected with the Activity Service.

TABLE II. SENDING AND RECEIVING 500 EVENTS:
SQS ALONE VS. SQS INTERCONNECTED TO ACTIVITY SERVICE

SQS SQS OM4
65206 265602
65489 264818
66067 270338
64678 264498
67736 264092
65099 270603
64350 266591
65396 266645
65240 268499
64476 262867
65374 266455

While executing the tests, we noticed that the Activity

Service demonstrated the worst performance when events
were sent via an SQS queue and received via another SQS
queue (T4). The performance improved when events were
sent via a JMS topic but received via an SQS queue (T5).
The performance became even better when events were sent
via an SQS queue but received via a JMS topic (T6).
Therefore, we suggest that sending events via an SQS queue
does not take extra time but receiving events does. That is,
the problem is that when the Activity Service deposits events
to an SQS queue, the Event Consumer receives them with a
big delay. Therefore, the performance problem might be
resolved by optimizing the way the Activity Service works
or with better implementation of the source code (which is
written in Java).

IV. CONCLUSION AND FUTURE WORK
The performance of the Activity Service was evaluated.

Our tests showed that sending and receiving events via JMS
interconnected with the Activity Service took up to three
times longer than without the Activity Service. However,
that time was still short and increased slowly with an
increase of the number of events. Therefore, we consider the
performance to be very good, when JMS is used as the
transport technology.

By contrast, the use of SQS could cause a performance
bottleneck. Our tests showed that SQS itself was up to 36
times slower than JMS. (This was probably due to the
distributed nature of an SQS queue). But with the Activity

Service interconnected, the time for sending and receiving
events increased up to 20 times more, resulting in almost
330,000 msecs delay.

Since OM4SPACE is relatively new, it will continue
over time to improve its performance. In addition,
OM4SPACE seeks to support more transport technologies,
including Google App Engine and WS Notification.
Therefore, in the future, we intend to execute more
performance tests in order to obtain new test results.

ACKNOWLEDGMENT
Irina Astrova’s work was supported by the Estonian

Centre of Excellence in Computer Science (EXCS) funded
mainly by the European Regional Development Fund
(ERDF). Irina Astrova’s work was also supported by the
Estonian Ministry of Education and Research target-financed
research theme no. 0140007s12.

REFERENCES
[1] M. Schaaf, A. Koschel, and S. G. Grivas, “Event processing

in the cloud environment with well-defined semantics,” The
1st International Conference on Cloud Computing and
Services Science (CLOSER 2011), May 2011, pp. 176-179.

[2] A. Koschel, M. Schaaf, S. G. Grivas, and I. Astrova, “An
ADBMS-style Activity Service for cloud environments,” The
1st International Conference on Cloud Computing, GRIDs
and Virtualization (CLOUD COMPUTING 2010) IARIA,
Nov. 2010, pp. 80-85.

[3] R. Sauter, A. Stratz, S. G. Grivas, M. Schaaf, and A. Koschel,
“Defining events as a foundation of an event notification
middleware for the cloud ecosystem,” The 15th International
Conference on Knowledge-Based and Intelligent Information
and Engineering Systems (KES 2011), Sep. 2011, LNCS, vol.
6882, pp. 275-284, doi:10.1007/978-3-642-23863-5_28.

[4] M. Schaaf, A. Koschel, and S. G. Grivas, “Towards a
semantic definition for a cloud-based event notification
service,” The 3rd International Conference on Cloud
Computing and Services Science (CLOSER 2013), May
2013, pp. 345-349.

[5] I. Astrova, A. Koschel, L. Renners, T. Rossow, and M.
Schaaf, “Integrating structured peer-to-peer networks into
OM4SPACE project,” The 27th IEEE International
Conference on Advanced Information Networking and
Applications Workshops (WAINA 2013), Mar. 2013, pp.
1211-1216, doi:10.1109/WAINA.2013.88.

[6] A. Koschel, A. Hödicke, M. Schaaf, and S. G. Grivas,
“Supporting smart grids with a cloud-enabled Activity
Service,” The 27th International Conference on Informatics
for Environmental Protection (EnviroInfo 2013), Sep. 2013,
pp. 205-213.

Figure 6. Distribution of OM4SPACE components [2].

61Copyright (c) IARIA, 2014. ISBN: 978-1-61208-337-7

SERVICE COMPUTATION 2014 : The Sixth International Conferences on Advanced Service Computing

