
Structuring Software Fault Injection Tools for Programmatic Evaluation

Lukas Pirl, Lena Feinbube, and Andreas Polze
Operating Systems and Middleware Group

Hasso Plattner Institute at University of Potsdam
Email: lukas.pirl@student.hpi.de, {lena.feinbube, andreas.polze}@hpi.de

Abstract—The increasing complexity of software systems chal-
lenges the assurance of the likewise increasing dependability
demands. Software fault injection is a widely accepted means
of assessing dependability, but far less accessible and integrated
into engineering practices than unit or integration testing. To
address this issue, we present a dataset of existing fault injection
tools in a programmatically evaluable model. Our Fault Injection
ADvisor (FIAD) suggests applicable fault injectors mainly by
analyzing definitions from Infrastructure as Code (IaC) solutions.
Perspectively, FIAD can yield findings on how to classify fault
injectors and is extensible in a way that it can additionally suggest
workloads or run fault injectors.

Keywords–fault injection; infrastructure as code; testing;
service-oriented systems; distributed systems.

I. INTRODUCTION

Facilitated by the advent of cloud computing, our society
– politically, commercially and individually – increasingly
relies on utility and service computing. The need for growing
quality and quantity of such ubiquitous distributed software
systems boosts their complexity. There is thus a dire need for
dependability assessment of such systems but they are notably
hard to test: Complex software systems fail in complicated
ways [1] even when fault tolerance is implemented [2]. It is
widely recognized that Software Fault Injection (SFI) should
be part of the development process [3]. Yet, SFI lacks the
high grade of automation and adaption of testing. Many fault
injectors remain research prototypes, others are used only in
high criticality systems.

We assume and address a practical issue with SFI tools
(injectors): Knowledge about available injectors is not user-
friendly accessible and it is thus hard to find applicable ones for
a given infrastructure. We elaborate on a dataset consolidating
the aforementioned knowledge, its programmatically evaluable
model, and the automatic acquisition of information about
infrastructures. Ultimately, this paper presents a tool which
automatically determines applicable injectors by analyzing
systems’ IaC descriptions.

After core concepts have been introduced in the remainder
of this section, Section II outlines related work on the topic.
While Section III defines the research problem and our ap-
proach to address it on a theoretical level, the subsequent sec-
tion describes our concrete realization. Section V demonstrates
an example use case including characteristic code excerpts.
Finally, Section VI draws conclusions from the findings of
this work and proposes areas of possible further investigation.

A. Software Fault Injection
Fault injection testing is a well-established approach to

test the fault tolerance of computer systems. We use the term
SFI to denote the software-implemented injection of software
faults. This is not to be confused with Software-Implemented

Fault Injection (SWIFI), that mainly refers to the injection
of hardware faults, implemented in software. In the broad
field of SFI, many tools exist that differ in target applications,
usability and their implementation strategy. For practitioners
wanting to embed SFI in a software development process,
finding suitable injectors is tedious and likely results in testing
various prototypes of varying fitness and quality.

B. Infrastructure as Code

The increasing complexity of distributed systems has am-
plified the interest in the IaC paradigm [4]. This paradigm
describes the definition of infrastructures in a machine- and
human-readable format. Ideally, IaC enables fully automated
provisioning, as well as deployment. Additionally, it has the
advantageous side effect that other tools can reuse the infras-
tructure definitions.

Ansible [5] is an open source IT configuration manage-
ment, deployment, and orchestration tool of increasing signif-
icance [6]. The desired state of the targeted infrastructure is
defined declaratively in the YAML [7] file format. Using the
same format, so-called Playbooks consolidate the desired state
regarding an infrastructure at the topmost level. Enterprises,
such as Apple and Juniper [8], as well as large open source
projects, such as OpenStack [9], use Ansible actively.

II. RELATED WORK

The concept of dependability [10] is an area of interest for
computer scientists since decades. Recently, the awareness that
the dependability of distributed systems needs in-depth assess-
ment has pervaded major Web enterprises. Netflix injects faults
into its production systems using ChaosMonkey [11], similarly
to Amazon [12] and Etsy [13]. While earliest fault injectors
focused on hardware, SFI became popular in the 1990s (e.g.,
FIAT [14]). It has been acknowledged that the dependability
bottleneck is not within the hardware but within the software
layers [15], [16]. Natella et al. present a comprehensive up-
to-date survey of SFI approaches from research [17]. The
research areas of SFI and “classical” software testing overlap,
and the distinction between “workload” and “faultload” blurs.
[18] presents a fault model oriented view on software testing.
The approach of fuzz testing (e.g., CRASHME [19]) also
exemplifies the overlap of fault injection and testing: Here,
the “fault model” consists of special inputs to the same API
accessed during unit testing. When cataloging injectors, it
is hence imperative to consider a broad spectrum of tools
from both domains. Our dataset includes popular fuzzers, such
as Trinity [20], which are excluded from traditional surveys.
Software testing strategies are further discussed theoretically
in [18] and surveyed in [21].

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-528-9

SERVICE COMPUTATION 2017 : The Ninth International Conferences on Advanced Service Computing

Despite decades of research, there is no “cookbook for SFI
testing”. To the best of our knowledge, no programmatically
evaluable catalog of injectors exists.

III. PROBLEM STATEMENT AND APPROACH

Distributed software systems grow in complexity, also due
to the rapid rise of cloud computing. Their dependability
demands grow along with their importance for enterprises
and customers. Distributed software systems are notoriously
difficult to test and fail even when adhering to well-established
engineering practices (see Section I). SFI is a scalable and
versatile approach to assess their dependability experimentally.

Unit and integration testing is widely incorporated into
software development processes and allows for a decent level
of automation. In contrast, SFI is yet less established and
remains a research rather than an engineering topic. One reason
may be that the application of SFI to an existing product
currently requires significant knowledge and manual effort. It
is laborious to get an overview of available injectors and to
check their applicability regarding an infrastructure.

To overcome this burden, we leverage the unprecedented
availability of information provided by IaC solutions. In par-
ticular, our implementation will initially be based on Ansible
because of its growing popularity. Our tool – FIAD – hence
analyzes Playbooks for the detection of characteristics required
by injectors (hence targets). Further, we created a dataset of
injectors from research, industry and open source projects.
Combining these sources of information, FIAD programmat-
ically identifies applicable injectors. Due to the specificity
of dependability requirements, users are obliged to judge the
fitness of the injectors’ fault models. Possible users include de-
pendability researchers and actors in the software development
process, such as testers, developers and engineers.

Given that an infrastructure is represented using Playbooks,
this approach introduces no extra effort. Also, there are no
minimal requirements regarding the information available via
Playbooks but self-evidently, the more complete the Playbooks,
the more accurate and complete the results. Since no access to
the deployed infrastructure is required, FIAD can as well be
used on infrastructures outside the own administrative domain.

Test environments and workloads often differ from the
production system, which can lead to uncertainty regarding the
fault tolerance of the latter [13]. Since FIAD operates on the
basis of infrastructure descriptions, it is workload-independent.
Hence, it can analyze the actual production system and does
not suffer from the aforementioned problem.

IV. CONCEPTS AND REALIZATION

At its core, the realized model is a two-sided object
oriented class hierarchy: one for injectors and one for targets.
Accompanied by the simplified illustration in Fig. 1, the
following Subsections elaborate further on its details. We
aimed at a programmer oriented model of injectors and targets
which satisfies the requirements listed below:

1) It should allow to flexibly classify injectors by mul-
tiple characteristics and thereby accumulate knowl-
edge from research and documentation of tools.

2) It should be explicit and not overly abstract, allow-
ing users to easily understand, customize and extend
it.

3) It should allow for programmatic evaluation.

FIAD is a command line interface application that reads
Playbooks and outputs a list of applicable injectors. The output
enables users to get an initial overview of applicable injectors
or to expand their existing SFI setup. FIAD is capable of
connecting to hosts referenced in Playbooks for the collection
of Facts [22]. Facts are pieces of information about the target
hosts, such as virtualization, hardware and networking details.

The internal procedure of an execution of FIAD is visual-
ized in Fig. 2. Initially, all models (i.e., injectors and targets)
register themselves at a registry and are set up in the second
step. If required, FIAD detects Playbooks recursively in a
specified directory. Thirdly, Playbooks are loaded from files
using Ansible’s sophisticated internal mechanisms supporting
Playbook dependencies, file inclusions etc. Upon explicit re-
quest of the user, FIAD gathers Facts from all hosts referenced
in Playbooks. Fourthly, all loaded Playbooks are handed to
all registered targets to enable the latter to detect themselves
within the former. Detected targets then imply further targets
accordingly. Finally, detected and implied targets are matched
against injectors and the results are displayed.

FIAD is implemented in a modular structure where the
topmost coordination happens within the module cli. Alongside
with some auxiliary modules (e.g., to load and aid in accessing
Playbooks and Facts), the implementations of injectors and tar-
gets are kept in the module models. This module encapsulates
all the domain-specific knowledge and is the main extension
point of FIAD’s dataset and capabilities. When adding an
injector or a target, the use of a registry eliminates the need
to alter code outside the corresponding module.

A. Injectors
A central contribution is a programmatically evaluable

dataset of existing SFI tools (injectors). Previous surveys
[17], [23] mainly took research in the form of published
conference or journal articles into consideration. Yet, for users
searching for pragmatic answers to the question of which
injector to use, besides the vast body of research, practical
experience of industrial SFI is relevant. Hence, our dataset of
injectors consolidates knowledge from research, commercial
and open source origins. Developers can additionally include
new injectors easily (e.g., a in-house injector of an enterprise).

Due to the wide variety of existing injectors, only a semi-
structured procedure to assemble the dataset could be followed:
Initially, we collected a list of injectors by surveying research
publications and by examining open source, as well as com-
mercial products. To cover a broad range of targets, no tools
were actively excluded because of their maturity or origin. For
every injector found, we identified characterizing properties
(e.g., “injects based on a rate”). Subsequently, we deduced
more abstract characteristics (e.g., “injection trigger”). Where
applicable and possible, we finally determined yet unspecified
properties for all combinations of tools and characteristics.

B. Targets
Injectors typically aim at a group of applications or in-

frastructures sharing certain characteristics, such as “instances
on Amazon EC2”. We refer to a characteristic required by
an injector as target. Targets can be at different layers of
abstraction (e.g., an operating system versus a Web API).

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-528-9

SERVICE COMPUTATION 2017 : The Ninth International Conferences on Advanced Service Computing

Figure 1. The class hierarchies for injectors (brown) and targets (blue). They interweave through the requirements of injectors on targets (gray).

Figure 2. FIAD’s execution procedure (excerpt).

Targets can be general, such as “requires a POSIX API”, or
more specific, such as “requires a Linux operating system”.
In this example, the latter target implies the former, since
Linux implements the POSIX API. We use object oriented
inheritance to represent such implications. Consequently, our
dataset contains a hierarchy of targets as depicted in Fig. 1.

We experienced that most targets are able to detect them-
selves through indicating commands (Ci), Ansible modules
(Mi), packages to install (Pi) or Facts gathered from hosts
(Fi). As illustrated in equation (1), the default implementation
considers a target detected if any of the indicators found (Cf ,
Mf , Pf , Ff) is present. This enables defining most targets
with little effort. If a more advanced detection is required, the
default can be overridden and optionally be reused selectively.

detected ⇔
∨

X∈{C,M,P,F}

(Xi ∩Xf 6= ∅) (1)

Every detected target determines implied targets by travers-
ing up the class hierarchy. The support for recursive traversal,
taking multiple inheritance into account, allows for an even
more efficient and flexible notation of targets.

C. Matching Targets with Injectors
Once all detected and recursively implied targets are

known, FIAD is able to determine which injector is applicable
to which infrastructure (hence a match). In analogy to the
detection of targets, we observed that the majority of injectors
share logic concerning their required targets. Again, a default
behavior to determine matches is provided. It enables the
definition of injectors with little effort and can be overridden

and reused selectively. To use the default implementation, an
injector must define a set Tall of targets that are all required to
be detected, or a set Tany of targets of which any is required
to be detected, or both. If both sets are provided, requirements
regarding Tany and Tall must be fulfilled to yield a match.
Equation (2) summarizes this default implementation.

match ⇔ (Tdetected ⊇ Tall) ∧
((Tany = ∅) ∨ (Tdetected ∩ Tany 6= ∅))

(2)

V. EXAMPLE

The two following listings exemplify a fraction of the
dataset of FIAD and also demonstrate the characteristically
concise notation of injectors and targets. Listing 1 shows
FIAD’s model representing a Java Runtime Environment
(JRE), Listing 2 the model representing the FATE injector
[14]. Since a JRE is present when it is installed, the Ja-
vaTarget defines INDICATING PACKAGES ANY accordingly.
In analogy, since FATE targets distributed systems written in
Java, the FATEInjector defines REQUIRED TARGETS ALL
and REQUIRED TARGETS ANY accordingly.
class JavaTarget(LanguageTarget):
"""
Represents a Java Runtime Environment.
"""
INDICATING_PACKAGES_ANY = {

re_compile_ci(r’ˆjdk($|[-_][ˆ\s]*$)’),
re_compile_ci(r’ˆjava($|[-_][ˆ\s]*$)’),

}
...

Listing 1. The model JavaTarget defines a list of (regular expressions to
detect) packages that indicate a JRE’s presence.

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-528-9

SERVICE COMPUTATION 2017 : The Ninth International Conferences on Advanced Service Computing

class FATEInjector(AbstractBaseInjector):
"""
FATE aims at a high coverage of failure scenarios
in cloud systems, including multi-fault ones. ...
"""
FRIENDLY_NAME = "FATE"
PUBLICATION_BIBTEX = # ...
WEBSITE_URL = # ...
REQUIRED_TARGETS_ALL = {JavaTarget}
REQUIRED_TARGETS_ANY = {EC2VMTarget,

AzureVMTarget, ...}
...

Listing 2. The model of the FATE fault injector. FATE is potentially
applicable if for example virtual machines in cloud environments and a

JRE are detected.

We further assume actors of a software project wanting to
assess the dependability of their product. To find applicable
injectors effortlessly, they run FIAD on the Playbooks that
exist to deploy the product. FIAD would then, for instance,
find an Ansible task in which a JRE is installed as depicted in
Listing 3. In accordance to the algorithm described in Section
IV, the JavaTarget is detected and assuming the EC2VMTarget
is detected as well, FATE emerges as a potentially promising
injector. Besides suggesting FATE, FIAD can provide addi-
tional information, such as the URL of the injector’s Web site
or the scientific publication which described it initially.

- name: Install Java 1.7
yum: name=java-1.7.0-openjdk state=present

Listing 3. An Ansible task which installs a JRE.

VI. CONCLUSION AND OUTLOOK

The presented tool FIAD provides a knowledge base to
explore applicable injectors. By requiring no pre-existing expe-
riences and by being automated, it can be integrated in software
development processes and thereby raise the awareness of SFI.

The underlying model for cataloging injectors including
their requirements, serves as an extensible framework and
allowed us to efficiently define them as a uniform dataset. We
are currently completing the dataset and hope that maintaining
and updating it becomes an open source community effort.
Research-wise, the dataset and its model may yield findings
on how to formally classify injectors. Reusing information
provided by IaC solutions for the determination of applicable
injectors proved to be a powerful approach. However, further
research is necessary to fully understand its versatility and
possible limitations. For this purpose, an in-depth case study
on OpenStack [24] is planned. By adding a new layer of ab-
straction, other IaC solutions could be additionally integrated,
what would allow for recommendations of increased quality.

The inclusion of fault models and workloads is another
compelling future extension. Filtering by injectors’ fault mod-
els would help users to focus on assessing specific aspects of
infrastructures’ dependability. Through FIAD’s capability of
interacting with hosts, it could automatically apply injection
campaigns and possibly even analyze their effects.

ACKNOWLEDGEMENT & DISCLAIMER

This paper has received funding from the European Union’s
Horizon 2020 research and innovation programme 2014-2018
under grant agreement No. 644866. This paper reflects only the

authors’ views. The European Commission is not responsible
for any use that may be made of the information it contains.

REFERENCES
[1] N. R. Council, D. Jackson, and M. Thomas, Software for Dependable

Systems: Sufficient Evidence? Washington, DC, USA: National
Academy Press, 2007.

[2] H. S. Gunawi, T. Do, J. M. Hellerstein, I. Stoica, D. Borthakur, and
J. Robbins, “Failure as a service (faas): A cloud service for large-
scale, online failure drills,” University of California, Berkeley, Berkeley,
vol. 3, 2011.

[3] H. Madeira and P. Koopman, “Dependability benchmarking: making
choices in an n-dimensional problem space,” in First Workshop on
Evaluating and Architecting System Dependability (EASY), 2001.

[4] M. Hüttermann, Infrastructure as Code. Berkeley, CA: Apress, 2012,
pp. 135–156.

[5] Red Hat Inc., “Ansible is Simple IT Automation,” visited on
2017-02-12. [Online]. Available: https://www.ansible.com

[6] RightScale, Inc., “2016 state of the cloud report,” RightScale, Inc., Tech.
Rep., 2016.

[7] C. C. Evans, “The Official YAML Web Site,” visited on 2017-02-12.
[Online]. Available: http://yaml.org/

[8] S. Ziouani, “Enterprise companies welcoming Ansible IT automation,”
https://www.ansible.com/blog/enterprise-ansible, Oct. 2014, visited on
2017-01-04.

[9] OpenStack, “OpenStackAnsible,” visited on 2017-02-12. [Online].
Available: https://wiki.openstack.org/wiki/OpenStackAnsible

[10] J.-C. Laprie, “Dependable computing and fault-tolerance,” Digest of
Papers FTCS-15, 1985, pp. 2–11.

[11] A. Tseitlin, “The antifragile organization,” Commun. ACM, vol. 56,
no. 8, 2013, pp. 40–44.

[12] T. Limoncelli, J. Robbins, K. Krishnan, and J. Allspaw, “Resilience
engineering: learning to embrace failure,” Commun. ACM, vol. 55,
no. 11, 2012, pp. 40–47.

[13] J. Allspaw, “Fault injection in production,” Commun. ACM, vol. 55,
no. 10, 2012, pp. 48–52.

[14] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek, “Fault
injection experiments using FIAT,” Computers, IEEE Transactions on,
vol. 39, no. 4, 1990, pp. 575–582.

[15] J. Gray, “Why do computers stop and what can be done about it?” in
Symposium on reliability in distributed software and database systems.
Los Angeles, CA, USA, 1986, pp. 3–12.

[16] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?” in USENIX symposium
on internet technologies and systems, vol. 67. Seattle, WA, 2003.

[17] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability
with software fault injection: A survey,” ACM Computing Surveys
(CSUR), vol. 48, no. 3, 2016, p. 44.

[18] A. Pretschner, D. Holling, R. Eschbach, and M. Gemmar, “A generic
fault model for quality assurance,” in Model-Driven Engineering Lan-
guages and Systems. Springer, 2013, pp. 87–103.

[19] G. J. Carrette, “CRASHME: Random input testing,” http://people.
delphiforums.com/gjc/crashme.html, 1996, visited on 2017-01-04.

[20] D. Jones, “Trinity : A Linux system call fuzzer.” visited on 2017-02-12.
[Online]. Available: http://codemonkey.org.uk/projects/trinity/

[21] A. Orso and G. Rothermel, “Software testing: A research travelogue
(2000–2014),” in Proceedings of the on Future of Software Engineering,
ser. FOSE 2014. New York, NY, USA: ACM, 2014, pp. 117–132.

[22] Red Hat Inc., “Variables – Ansible Documentation,” visited on 2017-
02-12. [Online]. Available: https://docs.ansible.com/ansible/playbooks
variables.html#information-discovered-from-systems-facts

[23] H. Ziade, R. A. Ayoubi, R. Velazco et al., “A survey on fault injection
techniques,” Int. Arab J. Inf. Technol., vol. 1, no. 2, 2004, pp. 171–186.

[24] OpenStack, “Open source software for creating private and public
clouds.” visited on 2017-02-12. [Online]. Available: https://www.
openstack.org/

6Copyright (c) IARIA, 2017. ISBN: 978-1-61208-528-9

SERVICE COMPUTATION 2017 : The Ninth International Conferences on Advanced Service Computing

