
On Microservices in Smart Grid Capable pmCHP

Richard Pump Arne Koschel
Department of Computer Science

University of Applied Sciences and Arts
Hannover, Germany

Email: {richard.pump, arne.koschel, volker.ahlers}@hs-hannover.de

Volker Ahlers

Abstract—Portable-micro-Combined-Heat-and-Power-units are a
gateway technology bridging conventional vehicles and Battery
Electric Vehicles (BEV). Being a new technology, new software has
to be created that can be easily adapted to changing requirements.
We propose and evaluate three different architectures based on
three architectural paradigms. Using a scenario-based evaluation,
we conclude that a Service-Oriented Architecture (SOA) using
microservices provides a higher quality solution than a layered
or Event-Driven Complex-Event-Processing (ED-CEP) approach.
Future work will include implementation and simulation-driven
evaluation.

Keywords–Smart Grid; pmCHP; microservices; service-
orientation.

I. INTRODUCTION

The energy grid of the future requires extremely intercon-
nected devices to regulate the amount of energy produced
precisely to the needed amounts. Former tree-like distribu-
tion networks are replaced with small autonomous microgrids
which imitate a peer-to-peer network [1]. To coordinate a
higher amount of generators, each device has to be intelligent.

Not only the energy grid is changing, also the automotive
industry is in turmoil. More and more countries work on
reducing the carbon footprint and greenhouse gases to fight
climate change. Driven by legislation and public conscience
the amount of BEVs is rising. However, low range and comfort
(in comparison to conventional vehicles) keep consumers away.

Combining stationary small scale generation and mobile
usage, the University of Applied Sciences and Arts Hannover
is working on pmCHP. The pmCHP generates heat and elec-
tricity at much higher efficiency than comparable conventional
devices. A novel feature of the pmCHP is the dual usage in
buildings as well as BEV. In buildings, the pmCHP is attached
to a smart grid and helps to cover peak loads, in a BEV
the pmCHP enhances the passengers comfort and extends the
range of the vehicle [2].

This contribution evaluates different software architectures
for the control of the pmCHP, since the use in a con-
stantly evolving Smart Grid requires a well-crafted adaptive
Architecture. We will present three designs using different
architectural paradigms and evaluate them using a scenario-
based procedure. Section II will present related work, showing
there is not much research concentrating on the architecture
of pmCHP-Software. Section III presents the three developed
architectures: SOA, ED-CEP, and layered. In Section IV and
V, we evaluate the architectures using likely scenarios that
the software will encounter over its lifespan. The last section
concludes this work and gives some outlook to future work.

II. RELATED WORK

Regarding software-architectures for the smart grid, mostly
interactions are standardized. For example, the Standards
61968/61970, designed by the International Electrotechnical
Commission (IEC) describe a global domain model of the
smart grid with pre-defined interfaces and messages. The Stan-
dards however do not describe a pre-defined internal software
architecture.

In [3], Reinprecht et. al. describe the IEC Common Infor-
mation Model (CIM) architecture, which is a layered archi-
tecture that ensures Standard compliant implementation over
the different levels of the architecture. The authors describe
multiple SOA-based designs which were created for the Smart
Grid Interoperability test. A comparison or evaluation of the
architectures is not mentioned.

Appelrath et. al. [4] show a reference architecture for
smart grid software. It describes general interfaces for abstract
devices, a real device might be composed of multiple abstract
ones. However, neither a concrete implementation nor an
evaluation of alternatives is presented.

An architecture to operate a pmCHP testbed is presented
in [5]. There is no connection to the smart grid, although
microservices are used to provide high architectural flexibility.

To compare different architectural designs, Kazman et. al.
[6] present a scenario-driven comparison method that provides
the general process used in this work.

The most important quality-aspects of smart grid software
are proposed by the NIST in [7]. Since the Smart Grid is
critical infrastructure one of the most desired qualities is the
availability of the devices. These qualities are considered when
comparing the different designs in section IV.

All considered there is no concrete work on how to
integrate a pmCHP into a smart grid, let alone an evaluation
of suitable software architectures for this purpose, known to
the authors of this paper.

III. ARCHITECTURES

To compare different architectures, a rough sketch of
the desired components is needed, ensuring functional and
conceptual similarity. The goal of the software is to drive the
pmCHP according to different energy requests with regards to
the operational strategy. Energy requests can be accepted from
an external source, like the smart grid or originate from an
internal source. The requests arriving at the software have to
be incorporated into the current operational plan, which defines
the pmCHPs operation.

30Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

Figure 1. Rough sketch of the pmCHP-Software

Figure 1 shows the principal components of the pmCHP
software.

The CONTROLLER coordinates the production of the pm-
CHP with its environment, be it the Smart Grid or the computer
of the BEV. It receives energy requests, validates their security,
and checks if they can be fulfilled. Valid requests are handed
the PLANNING for further processing.

The component STRATEGY provides the framework for the
day-planning, as it decides which operational strategy is used.
The pmCHP can be used in three different modes; electricity-
driven, heat-driven, and combined heat- and electricity-driven.
The electrically-driven mode controls the production of the
pmCHP depending on the needed electricity, heat is seen
as byproduct and will not be produced if no electricity is
needed. In heat-driven mode, the pmCHP uses the heating
requirements as the control value, the combined operation
mode just produces depending on whichever energy is needed
at the time. STRATEGY has to decide which of the three modes
is the most sensible, depending on the operating environment
of the pmCHP.

The component PLANNING is responsible for planning
the day-to-day-operation of the pmCHP, according to the
operational strategy. It uses data about previous operation
and forecasts to create an operational plan which is used by
the DRIVER to control the pmCHP. The Component DRIVER
transforms the operational plan into control-commands, mon-
itors the pmCHP state, and provides this information to other
parts of the software.

The VISUALIZATION component presents the current state
and planned operation to the user of the device. Also errors
and warnings can be shown to the user, so corrective action
can be taken if needed.

To facilitate remote access to the pmCHP in case the
software needs to be updated or other remote action needs to be
taken, the component MAINTENANCE exists. It allows remote
software updates, access to log files and current operational
status of the pmCHP as well as remote control in case the grid
operating company needs to control the pmCHP manually.

Allowing remote access to the pmCHP Software without
any security measures would be grossly negligent, therefore
a component SECURITY needs to take care of authentication
and authorization of all incoming requests.

Other Components like SMART GRID, CURRENT EX-
CHANGE, etc. are beyond the scope of the software and
represent neighboring systems to interact with.

Based on the previously shown rough design, three differ-
ent architectural styles were used to create three architectures:
SOA, ED-CEP and layered.

Figure 2. Overview of the SOA. (Not all services and processes are being
shown to simplify presentation.)

Figure 3. Business process: ’Process energy-request’.

A. Service-oriented Architecture
Service-oriented architectures use loose coupling and high

cohesion in all parts of the software to achieve high flexibility
under changing requirements [8]. They can be used in combi-
nation with microservices to allow for rapid redevelopment of
all parts of the software.

In a SOA, the high level functions of the software are
mapped to business processes which compose the services into
useful processes. The services are responsible for small parts
of functionality which can be reused in different contexts.
Therefore, to create a service-oriented architecture for the
pmCHP the usage scenarios need to be translated into business
processes, which in turn need to be decomposed into small
services, fit for a microservice approach.

Converting the rough sketch of Figure 1 into a SOA can
result in the design shown in Figure 2. There are 13 business
processes using over 20 different services, using the different
Applications.

The most important business process is the processing of
energy requests, arriving from an external source or created by
the software itself, as shown in Figure 3. If a request arrives at
the software at first the authenticity of the requests needs to be
checked. If the request is valid, storage and strategy have to be
checked; maybe the request can be fulfilled just by using the
attached storage or cannot be fulfilled because of the currently
selected operational strategy.

Assuming that a request is correct, another process is
started, which creates an operational plan to fulfill the request,
integrates that plan into the currently executed plan, and then
executes the result using the driver. Requests not always
originate from an external source, sometimes the software
itself creates energy requests to achieve own interests. Internal
requests do not need validation or crosschecking with storage

31Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

Figure 4. Components of the event-driven architecture.

and strategy.
The Services used in the process are rather simple and

only take care of a single functionality. For example, the
service ’Check request’ simply checks the requests validity;
i.e. through using a signature. The services are implemented
in so called applications to keep similar functionalities under
the same name; an application can contain one or multiple
microservices. In general, there is no direct interaction between
the services, for orchestration a workflow-engine is used,
which translates the business processes into service-calls.

B. Event-driven complex-event-processing
An ED-CEP-architecture divides the software into two

major parts. Main controlling logic and business processes
central to the software are mapped to event-processor-chains
in the Event-Processing-Network (EPN), while the surrounding
applications provide services for tasks to be executed [9].

Figures 4 and 5 show the components of the architecture
and the EPN, respectively. There is a notably similarity be-
tween the applications of the ED-CEP and the applications in
the SOA, since the components fulfill similar roles in both
architectural styles.

To ease comparison to the SOA, we will trace the events
responsible to process an energy request from the smart grid
in the EPN. With Figure 5 in mind, any smart grid requests
enter the EPN through the SG-ADAPTER, which creates a
request-event. Request-events in general are processed by the
CONTROLLER, which after some processing creates an oper-
ational plan and wraps it in a plan-event. Using information
from the plan-event the DRIVER creates control -events which
are processed by the PMCHP to control the physical device.
Further notification- and operational data-events are created,
which are used to by different sinks.

C. Layered approach
The layered approach follows the simple principle, that

components of a higher layer might use components of lower
layers but not vice versa [10]. Generally, components will be
divided into five layers, presentation/interface, requirements,
business logic, technical logic, and data/hardware. Figure 6
gives an overview about the components of our layered archi-
tecture.

Figure 5. The Event-Processing-Network of the ED-CEP, showing Events
and their flow from sources to sinks.

The presentation/interface-layer allows access to the func-
tionalities of the software for external actors like other soft-
ware and the user. Of note are the components EMERGENCY
and MAINTENANCE, allowing other systems direct access to
functions of the software.

Below the Access-layer are the three core logic layers of
the software, decreasing in abstractness the further ’down’ the
architecture we traverse.

First is the Request-layer. Three different components
make up the Request-layer, SMART GRID-REQUESTS, RE-
QUESTCREATION CAR, and REQUESTCREATION BUILDING.
While the first handles requests from the smart grid, the
latter two create energy requests according to the operational
strategy.

The second core layer is called the Business Logic, contain-
ing the components PLANNING and STRATEGY responsible
for transforming the different requests into a single operational
plan which can be executed by the lower layers.

Beneath, the third logic layer contains components which
provide technical functionalities not dependent on external
systems while being responsible for essential operations in the
system. For example, the component BOOTER starts the whole
system, initializing the other components.

The lowest layers Data and Adapter connect the software
to other devices and systems, allowing operational data to be
stored and queried, information about surrounding systems to
be collected, and interaction with the pmCHP.

Figure 7 shows how the different components interact when
a energy request arrives at the system. After being passed
through to the AUTHENTICATION, the request is handled by
the component SMART-GRID-REQUESTS where it is converted
into an operational plan that can be executed by the DRIVER.

32Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

Figure 6. Decomposition of the components into layers following a
canonical layered approach.

Figure 7. Interactions of the components required to process an energy
request.

IV. COMPARISON OF ARCHITECTURES

Comparisons of architectures are a useful tool to increase
software quality at an early stage of the development cycle
[11]. Choosing the wrong architecture can decrease the max-
imum achievable quality by forcing bad design. For example,
forcing an EPN into a micro-controller controlling a toaster
will have less performance and increased development cost
over a monolithic software. (Assuming the software is tasked
with just turning the toaster off as soon as a signal is received.
EPNs most likely handle complex scenarios better than mono-
lithic approaches.)

Multiple ways exist to compare different architectures, but
most commonly scenario-based methods are used. Scenario
based methods use scenarios to estimate necessary changes to
the architecture, which in turn can be used as an indicator for
the quality of the architecture. The first step of a comparison
is the definition of the architectures in some form, as already
described in the previous section. In a second step, scenarios
describing possible usages or changes of the architecture are
defined, each providing a measurable way to describe quality.
The scenarios are grouped after the five general aspects of
software quality and use the rough system sketch as a common
baseline for all architectures.

a) Availability: Availability scenarios describe situa-
tions in which the system has to take certain countermeasures
to provide uninterrupted operation. Availability is the most
important quality in an energy providing system [7].

Ava01 The DRIVER crashes due to an error, the system
realizes the failure and immediately switches to a
backup.

Ava02 The DRIVER receives a single incorrect measured
value outside of the defined thresholds for this sensor.
Instead of immediately shutting down the pmCHP the
DRIVER averages values and prevents shutdown due
to measurement errors.

Ava03 The connection between the DRIVER and the pmCHP
is severed and cannot be reestablished. An error is pre-
sented to the user and the pmCHP switches to a safe
operating mode instead of shutting down immediately.

Ava04 A usual high amount of energy requests is received
from the smart grid. After a certain threshold is
reached, the CONTROLLER rejects all further requests
to provide protection against overload-attacks.

b) Security: Security-scenarios describe situations in
which the software is possibly used in a way that it is
not intended and unwanted. In an interconnected network
with access to physical systems, security is one of the most
important qualities the software has to achieve.

Sec01 A different system tries to access a pmCHP-software
functionality, the authenticity of the accessing system
is checked, before access is granted.

Sec02 When the pmCHP is activated, a minimal software
checks the integrity of the pmCHP-software using a
digital signature. If the signature is not correct, an
error is presented to the user, and the software does
not start.

Sec03 A manipulated component tries to access a function of
the DRIVER which it normally would not access and
is not authorized to do so. The component SECURITY
recognizes the unauthorized attempt, prevents it and
produces an error message shown to the user.

c) Safety: In contrast to security, safety-scenarios are
describing potentially dangerous situations in the normal oper-
ation of the pmCHP-software. Again safety is rather important
in operating an energy generating device, as failures can harm
humans and the operating environment.

Saf01 The DRIVER continuously monitors all of the pm-
CHPs sensors and detects dangerous operation. If
a dangerous operation is recognized, the DRIVER
transfers the pmCHP into a safe mode of operations,
possibly even shutting it down.

Saf02 All control-signals are checked by the DRIVER, ignor-
ing signals that might damage the pmCHP.

d) Maintainability: Since the smart grid is not com-
pletely clear at the moment, adaptability and maintainability
is somewhat needed. The following scenarios include likely
changes and developmental processes of the software’s life-
time.

Mai01 After the end of the pmCHP-development a different
developer is tasked to add smart market integration

33Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

to the pmCHP-software. The smart market component
needs to accept requests from the smart grid, overview
their execution, and take care of the billing aspects
according to the energy contract.

Mai02 The emergency shutdown shall be tested intensively;
the required components can be interchanged with
mock-ups without changing the DRIVER.

Mai03 The systems architecture is checked by a software
architect. Similar problems are solved in similar ways
using similar architectural or design patterns.

e) Performance: Performance is not overall important
to the pmCHP-software, only a single scenario is presented.

Per01 A malfunction of the pmCHP requires an emergency
shutdown, the shutdown happens fast enough to pre-
vent damage.

f) Usability: Usability describes the grade at which
the user’s interaction is eased by good interface and software
design. Since there is almost no interaction of the user with
the pmCHP-software, usability is an afterthought.

Usa01 To start or stop the pmCHP, only a single button has
to be pressed by the user.

Usa02 After being started the software presents the momen-
tary state of the pmCHP and can display the current
operational planning.

A. Evaluation

To evaluate the architectures, we trace the necessary
changes to the different architectures when applying the sce-
narios. We differentiate between easy changes, which will
take some hours and difficult changes which will probably
take significantly longer to execute. This provides an estimate
for the loose coupling and functional adequateness of the
architecture; if a functionality change incorporates changing a
lot of components, loose coupling might not be present or the
architecture might not have been designed with the scenario
in mind and does not cover the requirements adequately.

For example, the scenario [Mai01] requires a new business
process and a new service in the SOA, which equates in three
changes to the architecture. To facilitate billing, the process
to process requests has to be extended with service calls to a
new service BILLING. Also the service bus has to be modified
to connect the service to the application containing the logic.

The ED-CEP-architecture however requires a lot of
changes, changing the REQUEST-event to accommodate the
information necessary for the billing requires changes in all
REQUEST-event-processing components. Also new events and
processors for the billing itself have to be created.

Including the smart market into the layered architecture
requires changes to two existing components and a new
component; changing the SG-ADAPTER and the SMART GRID
REQUEST to pass the needed data and oversee the completion
of an order, as well as a new BILLING-adapter connecting to
the appropriate smart market.

For brevity, we skip the evaluation of each architecture
using every mentioned scenario and directly present the results.

TABLE I. COUNT OF CHANGES TO COMPONENTS NECESSARY TO
FULFILL ALL SCENARIOS.

SOA ED-CEP Layers
Component Count Component Count Component Count

Driver (difficult) 2 Driver 3 Driver (difficult) 3
ServiceBus 2 SG-Adapter 2 SG-Adapter 2
WfE 1 Controller 2 Controller 1
process request 1 Driver (difficult) 1 Maintenance 1
Billing* 1 Planning 1 Visualization 1

Emergency
override

1 Smart
Grid-request

1

Monitoring 1 Billing 1
Booter 1 Booter 1
Request 1
Billing-event 1
Billing 1

Total: 7 16 13
of total
- difficult: 2 1 3
- easy: 5 15 10

B. Evaluation results
Table I shows the amount of changes necessary to the archi-

tectures. Overall, the event-driven complex-event-processing-
architecture needs the most number of changes (although most
of them easy), while the layered-architecture needs the most
difficult changes.

The high number of changes to the ED-CEP-architecture
originate from the scenario to integrate the software into the
smart market, since a long chain of interactions had to be
changed to facilitate billing. Also to isolate the DRIVERs
functions from the rest of the architecture, checking access
at every possible place, a lot of changes had to be made. Of
note however is the ease with which changes (e.g. detection of
dangerous operational states) can be done to the DRIVER of
the CEP architecture. The rule-based implementation of logic
provides an easy, powerful way to define actions on detection
of certain states. In contrast, applying the same change to the
service-oriented or the layered architecture requires more work
to incorporate complex condition-action-mechanisms.

There are a lot of difficult changes which need to be applied
to the layered architecture, mostly concerning the DRIVER.
These primarily originate in the scenarios [Sec03], [Saf01],
and [Saf02] each requiring a lot of functionality to be added
to the component, since no other component is be responsible
for the needed functions.

The SOA however requires the least amount of changes.
Adding a smart market integration for example requires the
least amount of changes in the SOA, while more extensive
changes have to be made to the CEP or the layered architecture.
The fine grained nature of the underlying microservices also
helps the maintainability and flexibility of the software.

Assuming difficult changes need a lot more time than easy
ones and a high amount of time needed is a sign of a bad
architecture the following ranking can be created:

1) SOA using microservices
2) ED-CEP
3) Layered architecture

Considering this, we can infer that the SOA provides the
loosest coupling and the highest functional adequateness for
our scenario.

34Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

C. Scenario interactions
After checking loose coupling and functional adequateness,

we need to validate the cohesion of the components, i.e. the
proper separation of functionalities into components. Since
every scenario should concern a single functionality, we can
check the proper separation by looking for components which
interact with more than one scenario.

Table II shows the components which are affected by
multiple scenarios.

TABLE II. COUNT OF SCENARIO INTERACTIONS WHEN APPLYING
THE SCENARIOS TO THE COMPONENTS OF THE DIFFERENT

ARCHITECTURES.

SOA CEP Layers
Component Count Component Count Component Count

Driver 2 Driver 4 Driver 3
ServiceBus 2 SG-Adapter 2 SG-Adapter 2

Planning 2
Controller 2

Under this metric, the CEP-architecture is the worst of
the three. The division of a functionality over a lot of small
components (i.e. events) proves to be a negative factor under
the scenario interaction. This infers an unclear separation of
functionality over the components.

Layers and the SOA seem to be somewhat equal concern-
ing scenario interaction, especially the driver seems to be a
component which needs further refinement.

Under the scenario interaction metric, no clear ranking can
be established, the layered approach and the SOA seem to be
equal, the CEP seems to be the worst.

V. EVALUATION

Considering the previous sections, the SOA can be inferred
to be the best choice for the integration of a pmCHP into the
smart grid.

Especially the loose coupling and ease of change of service
orientation and microservices help to create an architecture
with a high grade of flexibility. In scenarios where a lot of
changes to the other two architectures were necessary, SOA
needed only a small amount of little changes. Considering the
unclear future of the pmCHP-software this high flexibility is
a very desirable property.

The layered architecture however is not a good choice,
since it requires a relatively high amount of difficult changes
to adapt to the scenarios, meaning more work in the long
term. Similarly, the ED-CEP-architecture seems a bad fit for
the problem. This however might be explained by insufficient
design or bad evaluation-metrics. Counting the number of
changes to introduce a new process into an EPN has to result
in a high amount of changes, since a lot of small components
need to be added, resulting in a bad score. If we look at the
EPN as a whole however, only a single component changes in
a lot of scenarios, interaction however grows also. A good way
to handle this might be to split the EPN in smaller function-
specific EPNs.

VI. CONCLUSION AND FUTURE WORK

We designed and evaluated three different designs to inte-
grate pmCHP into a future smart grid. Using a scenario-based

comparison we conclude that the usage of microservices can
result in testable better architectures when a high degree of
flexibility is needed. This is mostly due to the few interactions
between Microservices in a SOA; a business process can
just chain service-calls to achieve its desired result. To make
changes to a certain functionality, services can be changed in-
dependently, new services can be introduced without changing
others.

The results of this paper however only hold for the special
case of integrating a pmCHP into a smart grid, other goals will
likely result in different results.

Also, since all architectures have been developed by the
same person over a short span of time, they likely influence
each other. Especially the CEP and the SOA share some
applications, which can also be explained by similar design
philosophies. Further work combining the two might prove an
even better solution for the smart grid integration of pmCHP.

In future steps, we will implement the SOA and evaluate
the impact of pmCHPs in a smart grid.

ACKNOWLEDGMENT

This work was supported by the VolkswagenStiftung and
the Ministry for Science and Culture of Lower Saxony (project
funding number VWZN2891). We would like to thank all
our colleagues from the research focus Scalability of mobile
Micro-CHP units and the Institute for Engineering Design,
Mechatronics and Electro Mobility (IKME) for their support
and the productive cooperation.

REFERENCES
[1] H. Farhangi, “The path of the smart grid,” Power and energy magazine,

IEEE, vol. 8, no. 1, 2010, pp. 18–28.
[2] C. Schmicke, J. Minnrich, H. Rüscher, and L.-O. Gusig, “Development

of range extenders to mobile micro combined heat and power units
in vehicles and buildings; Weiterentwicklung von Range Extendern zu
mobilem mikro-Blockheizkraftwerken in Fahrzeugen und Gebäuden,”
Techniktagung Kraft-Wärme-Kopplungssysteme, April 2014.

[3] N. Reinprecht, J. Torres, and M. Maia, “IEC CIM architecture for Smart
Grid to achieve interoperability,” International CIM Interop in March
2011, 2011.

[4] H.-J. Appelrath, L. Bischofs, P. Beenken, and M. Uslar, IT-architecture-
development in the Smart Grid; IT-Architekturentwicklung im Smart
Grid. Springer, 2012.

[5] C. Schmicke, J. Minnrich, H. Rüscher, and L.-O. Gusig, “Examination
of mobile micro-chp on testbeds of the University of applied Sci-
ences and Arts Hanover; Untersuchung von mobilen mikro-BHKW an
Prüfständen der Hochschule Hannover,” Ingenieurspiegel, vol. 4, 2015,
pp. 60–61.

[6] R. Kazman, G. Abowd, L. Bass, and P. Clements, “Scenario-based
analysis of software architecture,” IEEE Software, vol. 13, no. 6, Nov
1996, pp. 47–55.

[7] A. Lee and T. Brewer, “Smart grid cyber security strategy and require-
ments,” Draft Interagency Report NISTIR, vol. 7628, 2009.

[8] A. Arsanjani, “Service-oriented modeling and architecture,”
https://www.ibm.com/developerworks/library/ws-soa-design1/
2017.11.01, November 2004.

[9] R. Bruns and J. Dunkel, Event-driven architectures: software ar-
chitecture for event-driven business-processes; Event-driven archi-
tecture: Softwarearchitektur für ereignisgesteuerte Geschäftsprozesse.
Springer-Verlag, 2010.

[10] E. W. Dijkstra, “Structure of an extendable operating system,”
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD275.PDF
2017.11.01, November 1969, circulated privately.

[11] P. Clements, R. Kazman, and M. Klein, Evaluating software architec-
tures. Addison-Wesley Professional, 2003.

35Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

