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Abstract—Both single blind image super-resolution (SBISR) and
blind image deblurring (BID) are ill-posed inverse problems
typically addressed by imposing some form of regularization
(prior knowledge) on the unknown blurs and original images (the
high resolution image and the sharp image for SBISR and BID,
respectively). However, SBISR is more ill-posed than BID due
to the introduce of the downsampling operator in the former,
thus, the latter is usually easier to be solved than the former.
We propose to address the SBISR problem by a BID method
via reformulating it into a BID problem by an interpolation
operator, and then solving the BID problem using the alternating
direction method of multipliers (ADMM). Our approach bridges
the gap between SBISR and BID, taking advantages of existing
BID methods to handle SBISR. Experiments on synthetic and
real blurry images (also on a real sharp image) show that the
proposed method is effective, and competitive in terms of speed
and restoration quality.

Keywords–Image super-resolution; Blind image deblurring;
ADMM.

I. INTRODUCTION

Single image super-resolution (SISR)[1-8] aims at recov-
ering a high-resolution (HR) image x ∈ RNh from a low-
resolution (LR) input image y ∈ RNl which is defined to be
the LR noisy version of the HR image as

y = DBx+ n (1)

where D : RNh → RNl(Nl < Nh) is the downsampling
matrix, B : RNh → RNh is the blurring matrix, and n ∈ RNl is
the additive noise term. The SISR problem is typically severely
ill-posed since DB is rectangular with more columns than
rows, and it is more ill-posed than multi-frame super-resolution
(MFSR) [9][10] and, thus, it can only be solved satisfactorily
via regularization by utilizing an image model or prior. If B
is the identity, then (1) reduces to the image interpolation
problem [11][12] under noise; if B is unknown, then (1)
evolves to single blind image super-resolution (SBISR), which
is more complicated than the SISR one and more realistic,
and is the focus of this paper. However, most SISR methods
assume that B is known, that is, it is usually predefined, such as
Gaussian blur [13], bicubic interpolation [7][8], Gaussian blur
followed by bicubic interpolation [14], simple pixel averaging
[2], and so on. Only a few works have been dedicated to the
SBISR problem. For instance, a parametric Gaussian model
with unknown width was assumed for the blur kernel in
[13][15][16], and its extension to multiple parametric models
was proposed in [17]. A nonparametric model for kernel

recovery was presented in [18] via assuming that the kernel has
a single peak. All these methods have a restrictive assumption
on the blur kernel.

Recently, [19] showed that an accurate blur model is critical
to the success of SISR algorithms, and [20] presented that the
PSF of the camera is the wrong blur kernel to use in SISR
algorithms, and showed how to correct the blur kernel from the
LR image. Both [19] and [20] seek accurate blur kernels based
on existing SISR algorithms (such as [6][7][8] with complex
nature and costly computation), and, thus, their complexities
are even more than those of the SISR ones.

In this paper, we address the SBISR problem via a blind
image deblurring (BID) method, and the rationale behind this
idea is that BID is usually easier to be solved than SBISR. The
proposed method first reformulates the SBISR problem into a
BID one by an interpolation operator, and then handle the
BID by alternating minimization, in which, each sub-problem
is efficiently solved by the alternating direction method of
multipliers (ADMM) [21][22]. Thus, the proposed method
bridges the gap between SBISR and BID, benefitting from that
some BID methods (such as [23-27] and many others omitted
here due to space limiation) are arguably faster and easier
to understand, than state-of-the-art SISR/SBISR methods, and
reaching competitive speed and restoration quality. The paper
is organized as follows: Section II introduces the proposed
approach, Section III reports experimental results, and Section
IV ends the paper with the conclusion.

II. PROPOSED APPROACH

This section introduces how to reformulate a SBISR prob-
lem into a BID one and how to solve the resulting BID
problem.

A. Problem formulation
Based on the notations in (1), we first introduce the BID

problem, which aims at estimating an image x from a single
observed blurry image z ∈ RNh satisfying a convolutional
degradation model

z = Bx+ s (2)

where s ∈ RNh is the additive noise. BID is also a severely
ill-posed problem since the image x, the blurring matrix B and
the noise s are all unknown. In order to build the relationship
between the problems of BID and SBISR, inserting (2) into
(1) yields

y = D(z− s) + n = Dz+ (n−Ds) (3)
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which indicates that the SBISR is more ill-posed than the BID,
since both aim to recover x from y and z, respectively, with
unknown B, but the former has fewer known samples than
the latter due to the introduce of D (namely, the length of
y is less than that of z). This inspires that we can solve the
SBISR problem in an easier way via reformulating it into a
BID problem. The idea is to first interpolate the LR image y
as

u = Uy = UDBx+Un (4)

where U is the interpolation operator (for instance, the bicubic
or bilinear interpolation operators, or other advanced interpo-
lation operators [11][12]), u ∈ RNh is the interpolation of y.
Then we can rewrite (4) as

u = Kx+ e = Xk+ e (5)

where K = UDB ∈ RNh × RNh is the new blurring matrix
corresponding to a blur filter k ∈ RNh , and X ∈ RNh ×RNh

is the square matrix representing the convolution of image x
with the filter k, and e = Un is the interpolation of n.

Thus, instead of super-resolving x from y (see (1)), the
HR image can be obtained via bind deblurring of x from u
(see (5), which becomes the new focus of this paper):

(x̂, k̂) = argmin
x,k

λ
2 ‖Kx− u‖22 + φGTV(x) + ιS(k) (6)

where λ is a positive parameter, φGTV a generalized total
variation (GTV) regularizer given by

φGTV(x) = ‖Dhx‖pp + ‖Dvx‖pp =
∑

i
|[Dhx]i|p + |[Dvx]i|p

where Dh and Dv denote the horizontal and vertical derivative
partial operator, respectively. Since the distribution of gradients
of natural images is more heavy-tailed than Laplace distribu-
tion (see [28]), we set 0 ≤ p ≤ 1. ιS is the indicator function
of the set S which is the probability simplex

S = {k : k � 0, ‖k‖1 = 1}. (7)

B. Proposed algorithm framework
Alternatively minimizing (6) with respect to x and k, while

increasing the parameter λ, yields the following framework:

Algorithm Proposed algorithmic framework
1. Input: Observed LR image y, λ and α > 1.
2. Step I: Interpolate y via u = Uy.
3. Step II: Blind estimation of blur filter k from u, by

alternative loop over coarse-to-fine levels:
4. I Update the image estimate

x̂← argmin
x

λ
2 ‖K̂x− u‖22 + φGTV(x) (8)

where K̂ is the convolution matrix constructed by k̂
obtained from the blur filter estimation below.

5. I Update the blur filter estimate

k̂← argmin
k

λ
2 ‖X̂k− u‖22 + ιS(k) (9)

where X̂ is the convolution matrix constructed by x̂
obtained from the image estimation above.

6. I Increase the parameter λ

λ← αλ. (10)

7. Step III: Non-blind estimation of HR image x∗ from u
through solving (8) with final ĥ (obtained by Step II).

8. Output: the HR image x∗ and the blur estimate ĥ.

To avoid getting trapped in a local minimum, above algorith-
mic framework is implemented in a coarse-to-fine fashion as
[26][29][30][31]. The sub-problems (8) and (9) can be solved
by many existing methods, and next we show how these two
sub-problems can be efficiently solved by the ADMM.

C. The ADMM
Before proceeding, we first introduce the ADMM [21][22],

which has been as a popular tool to solve imaging inverse
problems (see [27][32] and references therein), and is well
suited for addressing the general unconstrained minimization
problem composed of J sub-functions:

min
x

J∑
j

gj(B
(j)x) (11)

where B(j) are arbitrary matrices and gj are functions. The
ADMM to solve (11) takes the following form (see [32]):

Algorithm ADMM for solving (11)
1. Set k = 0, β > 0, v(1)

0 , · · · ,v(J)
0 , d(1)

0 , · · · ,d(J)
0 .

2. repeat
3. rk =

∑J
j=1(B

(j))T (v
(j)
k + d

(j)
k )

4. xk+1 =
[∑J

j=1(B
(j))TB(j)

]−1
rk

5. for j = 1, · · · , J
6. v

(j)
k+1 = Proxgj/τ

(
B(j)xk+1 − d

(j)
k

)
7. d

(j)
k+1 = d

(j)
k − (B(j)xk+1 − v

(j)
k+1)

8. end for
9. k ← k + 1
10. until some stopping criterion is satisfied.

In line 6 of above algorithm, the proximity operator of
gj/τ : Proxgj/τ is defined as

Proxgj/τ (v) = argmin
x

(
gj (x) +

τ

2
‖x− v‖2

)
. (12)

Next, we tackle the sub-problems (8) and (9) using the
ADMM.

D. x update using the ADMM
The sub-problem (8) can be written in the form (11), with

g1(·) = λ
2 ‖· − u‖22 , g2(·) = g3(·) = ‖·‖pp , (13)

B(1) = K̂, B(2) = Dh, B(3) = Dv (14)

then solving (8) using the ADMM yields the following algo-
rithm:

Algorithm ADMM for solving (8)
1. Initialize k = 0, τ1 > 0, v(1)

0 ,v
(2)
0 ,v

(3)
0 , d(1)

0 ,d
(2)
0 ,d

(3)
0 .

2. repeat
3. z

(1)
k = v

(1)
k + d

(1)
k

4. z
(2)
k = v

(2)
k + d

(2)
k

5. z
(3)
k = v

(3)
k + d

(3)
k

6. rk = K̂T z
(1)
k +DT

h z
(2)
k +DT

h z
(3)
k

7. xk+1 =
[
K̂T K̂+DT

hDh +DT
vDv

]−1
rk
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Figure 1. Estimated HR images (size: 512 × 512), PSFs and PSNRs. (a) are input LR blurry image (size: 256 × 256, obtained by (1)) and one of the eight
PSFs (corresponding to B); (b) and (c) are estimated HR images, PSFs (corresponding to K) and PSNRs by the proposed method with the bicubic and

bilinear interpolation operators, respectively.

Figure 2. Other seven PSFs and their corresponding estimated PSFs and PSNRs by the proposed method with the bicubic and bilinear operators, respectively.

8. v
(1)
k+1 = Proxg1/τ1

(
K̂xk+1 − d

(1)
k

)
9. d

(1)
k+1 = d

(1)
k − (K̂xk+1 − v

(1)
k+1)

10. v
(2)
k+1 = Proxg2/τ1

(
Dhxk+1 − d

(2)
k

)
11. d

(2)
k+1 = d

(2)
k − (Dhxk+1 − v

(2)
k+1)

12. v
(3)
k+1 = Proxg3/τ1

(
Dvxk+1 − d

(3)
k

)
13. d

(3)
k+1 = d

(3)
k − (Dvxk+1 − v

(3)
k+1)

14. k ← k + 1
15. until some stopping criterion is satisfied.

In above algorithm, line 7 is involved by the inversion of the
matrix K̂T K̂ + DT

hDh + DT
vDv , which is block-circulant.

Thus, it can be digonalzied by 2D discrete Fourier transform
(DFT) with O(n log n) cost, and the inversion of the resulting
diagonal matrix can be computed with O(n) cost. Line 8 is
the proximity operator of g1/τ1, which can be obtained in a
closed-form:

v
(1)
k+1 =

λu+ τ1(K̂xk+1 − d
(1)
k )

λ+ τ1
; (15)

line 10 and 12 are the proximity operators of the `p (0 ≤
p ≤ 1) norm, and they have closed-form solutions for p ∈
{0, 12 ,

2
3 , 1,

4
3 ,

3
2 , 2} (see [33]). For other general p, no closed-

form solution exists, but it can be pre-computed numerically
and used in the form of lookup table as that in [28].

E. k update using the ADMM
In the same vein as above, the sub-problem (9) can be

written in the form (11), with

g1(·) = λ
2 ‖· − u‖22 , g2(·) = ιS(·), (16)

B(1) = X̂, B(2) = I, (17)

yielding the following algorithm:

Algorithm ADMM for solving (9)
1. Initialize k = 0, τ2 > 0, v(1)

0 ,v
(2)
0 , d(1)

0 ,d
(2)
0 .

2. repeat
3. z

(1)
k = v

(1)
k + d

(1)
k

4. z
(2)
k = v

(2)
k + d

(2)
k

5. rk = X̂T z
(1)
k + z

(2)
k

6. kk+1 =
[
X̂T X̂+ I

]−1
rk

7. v
(1)
k+1 = Proxg1/τ2

(
X̂kk+1 − d

(1)
k

)
8. d

(1)
k+1 = d

(1)
k − (X̂kk+1 − v

(1)
k+1)

9. v
(2)
k+1 = Proxg2/τ2

(
kk+1 − d

(2)
k

)
10. d

(2)
k+1 = d

(2)
k − (kk+1 − v

(2)
k+1)

11. k ← k + 1
12. until some stopping criterion is satisfied.

In line 6, the matrix X̂T X̂+I can also be diagonalized by DFT
with O(n log n) cost. Line 7 can be evaluated in a closed-form
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Figure 3. Results on a real LR blurry image, where the LR image size is 900 × 540 and the HR image size is 1800 × 1080.

Figure 4. Results on a real LR image, where the LR image size is 324 × 464 and the HR image size is 648 × 928.

as (15). Line 9 is the projection onto the probability simplex
S (see (7)), which has been already addressed in [34].

III. EXPERIMENTS

In this section, we report detailed results of the proposed
method. All the experiments were performed using MATLAB
on a 64-bit Windows 10 personal computer with an Intel Core
i7 2.5 GHz processor and 6.0 GB of RAM. The parameters of
proposed method are set as λ = 1, α = 1.5, τ1 = τ2 = 0.15
and p = 0.5, and the setups of involved state-of-the-art meth-
ods remain unchanged as their original ones. The BID flow for
a color image is: (1) first, convert the image from RGB color
space to YCbCr color space, (2) BID of the luminance channel,
and (3) convert the image back to the RGB color space. The
stopping criterion is chose as ||f̂k+1 − f̂k||/||f̂k+1|| ≤ 0.0001

where f̂k is the image estimate or kernel estimate at the k-th
iteration. Other parameters are set by following those in [27].
Other details are shown as follows:

A. On synthetic blurry images
In this sub-section, we tested our algorithm on the Baby

image (size: 512× 512) blurred by eight PSFs of true motion
blur provided by [35]. In the algorithm, the operator U has
two options: the bicubic and bilinear interpolation operators.
For saving space, we only show the results on the image
blurred by one PSF in Fig. 1, and the results with other seven
PSFs are shown in Fig. 2. Notice that PSNR is defined as
20 log10(255/

√
MSE) where MSE is the mean squared-error

between the luminance channel of the original Baby image
and the restored HR one. Fig. 1 and 2 verify the rationality of
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reformulating SBISR into BID (see (5)).

B. On real images
We also tested our algorithm (only with the bilinear

interpolation operator due to space limitation) on real images,
comparing with state-of-the-art SISR methods: ScSR [8] and
SRCNN [36]. Since we currently cannot get access to any
SBISR code, we add the proposed BID algorithm as a post-
process of the two SISR methods on a real LR blurry image,
and the results are shown in Fig. 3. For the sake of fair
comparison, we further run the proposed method and the SISR
methods on a LR image (not blurry), and the results are shown
in Fig. 4. From Fig. 3 and 4, we can see the competitiveness
of the proposed method, both in terms of speed and restoration
quality, on LR blurry and non-blurry images.

IV. CONCLUSION

We have proposed a new approach for single blind image
super-resolution (SBISR) via a blind image deblurring (BID)
method, bridging the gap between SBISR and BID. Exper-
iments on synthetic and real blurry images (also on a real
sharp image) show that the effectiveness and competitiveness
of the proposed method. Future work will involve exploiting
the influence of using advanced interpolation operators on the
proposed method.
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