
FPGA-aware Transformations of LLVM-IR

Franz Richter-Gottfried, Sebastian Hain, and Dietmar Fey
Chair of Computer Science 3 (Computer Architecture)

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
91058 Erlangen, Germany

email: {franz.richter-gottfried, sebastian.hain, dietmar.fey}@fau.de

Abstract—The paper presents hardware-aware optimizations of
the assembly language used by LLVM to optimize resource usage
when an algorithm written in the Open Computing Language
(OpenCL) is translated into a design for a field programmable
gate array (FPGA) by the tool OCLAcc. In signal processing,
latency and throughput of a solution are important, but also
its efficiency. FPGAs offers high performance and low energy
consumption for many applications, at the cost of a complex
development. With high-level synthesis (HLS) the design process
can be simplified significantly. We introduce our transformation
of the control flow and how we minimize the bitwidth of data
and operations performed. In contrast to existing work, we focus
on the applicability for FPGAs and HLS from OpenCL. Both
optimizations allow the generation of simpler hardware. We
present metrics to rate the results with estimations of FPGA
resources needed and demonstrate them using the Sobel operator,
which is part of many image processing applications. Our results
show that we can completely eliminate branches and reduce the
total amount of bits by 16 % for a typical input configuration.

Keywords–OpenCL; LLVM; high-level synthesis; FPGA; if-
conversion; bitwidth reduction

I. INTRODUCTION

Modern FPGAs are popular for fast signal processing,
because they offer a high degree of parallelism and low power
consumption. This is proven, e.g., by integrated DSP blocks
or hardwired floating point units on newer devices. However,
it is more complex to create a custom hardware design than to
optimize an algorithm for a fixed CPU. High-level synthesis
(HLS) promises to fill this gap by deriving a hardware design
from an algorithmic description. Inherently parallel source
languages like OpenCL have the advantage that the mapping
to FPGA resources is easier, compared to sequential languages
like C, leading to more efficient designs. We first give a short
introduction to OpenCL and the HLS-tool OCLAcc.

OpenCL: is a freely available standard created and sup-
ported by Apple, Intel and other companies. Its purpose is to
describe a parallel problem and solve it on a variety of devices,
managed by a host, which is usually a normal CPU. Common
devices include CPUs and GPUs, but due to abstraction, host
and device may even be the same physical CPU.

OpenCL defines a library interface for the host to con-
trol devices. The algorithm itself, referred to as kernel in
the following, is written in the C-style language OpenCL-C.
Devices offer compute units (CU), and each of them consists
of processing elements (PE) to execute the kernel in parallel.
Work is distributed among the PEs according to the OpenCL
execution model. A work item, which is an entity in the
problem space (NDRange) represents a single instance of the
kernel (see Figure 1). Multiple work items share the same work
group, which allows synchronization and data exchange using

NDRange
size y

NDRange size x

work group
size y

work group size x
work group

work
item

...

...

...

......

work
item

work
item

work
item

Figure 1. OpenCL Execution Model

fast local memory. In contrast, communication among work
groups does not allow synchronization and relies on slower
global memory, as there is no guarantee, when and on which
CU work groups are scheduled.

LLVM-IR/SPIR: is a machine independent pseudo assem-
bly language generated from the OpenCL kernel by Clang,
a C-frontend for LLVM [1]. Standard Portable Intermediate
Representation (SPIR) is a standardized version of LLVM-
IR. Though our transformations presented target SPIR, they
can also be used to optimize LLVM-IR. LLVM itself includes
several passes to analyze and modify IR, e.g., alias analysis
or vectorization, but most of them cannot be directly used to
optimize IR for hardware generation.

OCLAcc: derives an FPGA design from OpenCL-C [2].
Figure 2 shows the steps of the transformation. Before running
OCLAcc, the OpenCL kernel is translated to SPIR by a
modified version of Clang maintained by the Khronos-Group.
Translation in OCLAcc happens in two steps. First, SPIR is
used to generate OCLAccHW, an internal representation of
the data flow, optimized to derive hardware from. It works on
basic blocks, which are instruction sequences always executed
sequentially from the first to the last instruction. Inputs and
outputs are analyzed to identify ports of the later design and
streams from and to memory with their static and dynamic
indices. Furthermore, the OpenCL standard includes built-in
functions callable by a kernel, including functions for organi-
zation, synchronization and data access, which are mapped to
specific components and control inputs. OCLAccHW also is
used for hardware-specific optimization. HWMap, the second
step in OCLAcc, depends on the actual hardware used, i.e.,
vendor and type of FPGA boards. OCLAcc either directly
instantiates components, generates IP-cores, or relies on infer-
ence by the vendor tools. Scheduling of components is tightly
coupled with their generation, because for many parts of the
system, parameters like latency or maximum clock frequency
are only available when they have been implemented and
cannot be used for optimization before. Instead, metrics are

15Copyright (c) IARIA, 2016. ISBN: 978-1-61208-487-9

SIGNAL 2016 : The First International Conference on Advances in Signal, Image and Video Processing

HDL
VHDL

Graph
Dot

Clang/LLVM

Kernel
OpenCL-C

Vendor Tools

OCLAcc

Application Developer

AST
C++-Classes

SPIR
LLVM-IR/

C++-Classes

OCLAccHW
C++-Classes

Bitstream
Binary

Hostcode
C/C++

Synthesis

Figure 2. Components of OCLAcc

used (see Section IV). Clock synchronization of components
is only done inside of basic blocks, while between blocks,
each input and output carries an additional valid-bit. Blocks
have to wait for their inputs to become valid before they can
start computations. This minimizes synchronization overhead
for the block scheduler.

Hardware generation issues: LLVM-IR is designed to be
translated into code that will be executed on common CPUs
or similar platforms, but an FPGA does not provide any of
the capabilities of those platforms: branches cannot be directly
mapped to an FPGA as there is no program counter or memory
to load instructions from. Instead, the data flow defined by
an instruction sequence is translated into functional units. As
branches result in several basic blocks they lead to an increased
synchronization overhead in form of additional registers and
valid bits between those units.

OpenCL does not offer data types with variable bitwidth
but only allows conventional types like char or int. In
LLVM-IR and SPIR, types are mapped to integers of arbi-
trary bitwidth (i1 for bool, i32) or floating point numbers
(float), but Clang only uses those representing common
types. This is a drawback since it is not possible to exploit
the flexibility of an FPGA.

The remaining paper is structured as follows. In Section II,
we present similar optimizations already published. We then
introduce the example application in Section III. Sections IV
and V present the transformations used to simplify the control
flow and minimize the bitwidth of data paths and discuss their
impact, respectively. Section VI summarizes the paper.

II. RELATED WORK

This section gives several examples of control flow opti-
mizations, however, most of them are designed to minimize
instructions executed by a CPU. In [3] superblocks are intro-
duced: a superblock consists of several basic blocks to enable
the compiler to create code with a higher instruction level
parallelism. Therefore, a sequence of basic blocks expected
to be often executed forms a superblock. Then, during tail
duplication, the superblock is cloned and each branch leaving
and reentering the original superblock is redirected to target the
cloned superblock instead. The new superblock now only has
a single entry at its root to simplify scheduling inside the block
and to exploit ILP. The problem for hardware generation is the
process of tail duplication: copies of basic blocks increase the
hardware consumption on the FPGA and have to be avoided.

The authors of [4] combine superblocks with if-conversion
whereby each instruction is predicated and only executed if

that condition is true. They call these blocks hyperblocks.
Hyperblocks can be larger than superblocks, allowing more
efficient instruction scheduling and a reduction of branches
to avoid performance penalties of branching overhead and
misprediction. Besides the problems of tail duplication, this
approach assumes that the target architecture is able to handle
predicats and can skip instructions with violated predicates. As
predicates are only available at runtime, a hardware design has
to implement all instructions, leading to a waste of resources.

Allen et al. [5] present a transformation that converts much
more control flow dependencies to data flow dependencies and
creates a kind of predicated execution. Branches are catego-
rized either as forward branch, exit branch or backward branch.
The first are eliminated, and during this process condition
variables are introduced for each statement. If such a variable is
true, the associated instruction will be executed. This simplifies
the control flow graph (CFG) and control dependencies are
converted into data dependencies. In [6], another algorithm for
if-conversion is presented that tries to assign predicates as early
as possible. Furthermore, some optimizations are presented to
keep those predicates simple. Both approaches assume that
predicated instructions have an advantage at runtime, which
cannot be applied to hardware generation.

The authors of [7] briefly mention if-conversion for FPGAs
by using multiplexers and predicates, which is in general
the preferred way in hardware design. However, they do not
explain or discuss when it is possible or feasible, nor do they
describe the transformation in detail.

LLVM itself already provides optimization passes for if-
conversion, but those work on a machine-instruction level
instead of IR. This means, they operate on a hardware-
specific level and depend on details of the target architec-
ture. As OCLAcc transforms LLVM-IR code into a hardware
description and does not use any machine-instructions, those
optimizers cannot be used. The only integrated if-conversion
optimizer working on IR-level is too conservative and does not
detect all the cases of our solution.

There are also several publications explaining approaches
to minimize the bitwidth of integer data paths, including
software-based approaches like FRIDGE [8], which simulates
the execution to get run-time values. The user constrains the
range of input values to allow an interpolation of the needed
bitwidth for other operations and intermediate values.

Lee et al. [9] present MiniBit, a static bitwidth optimizer
based on range and precision analysis. Like for FRIDGE,
the range of the input values is supplied by the user. Range
analysis is performed with Affine Arithmetic, while they use
an error function to calculate the required fraction bitwidth.
The authors demonstrate the results for different algorithms
on a Xilinx Virtex-4 FPGA.

Our requirements to optimize bitwidths differ from the
solutions available as we only can use the information provided
by the author of an OpenCL kernel, and it must not break
compatibility with the OpenCL standard. We use a static
approach, because it cannot be assumed that the programmer
of an OpenCL kernel has run-time information.

III. REFERENCE CODE

To demonstrate our transformations, we use the Sobel oper-
ator, a simple convolution algorithm often used to preprocess

16Copyright (c) IARIA, 2016. ISBN: 978-1-61208-487-9

SIGNAL 2016 : The First International Conference on Advances in Signal, Image and Video Processing

void kernel Sobel(global int *a, global int *b) {
int idx = get_global_id(0), idy = get_global_id(1);
int sx = get_global_size(0), sy = get_global_size(1);
int v, c = a[idy * sx + idx];
if (idx!=0 && idx!=sx-1 && idy!=0 && idy!=sy-1) {

int nw = a[(idy-1) * sx + idx - 1];
int n = a[(idy-1) * sx + idx];
int ne = a[(idy-1) * sx + idx + 1];
int w = a[idy * sx + idx - 1];
int e = a[idy * sx + idx + 1];
int sw = a[(idy+1) * sx + idx - 1];
int s = a[(idy+1) * sx + idx];
int se = a[(idy+1) * sx + idx + 1];
int vx = nw - ne + 2*w - 2*e + sw - se;
int vy = nw + 2*n + ne - sw - 2*s - sw;
v = (int) sqrt((float)(vx*vx + vy*vy));

} else v = c;
b[idy * sx + idx] = v;

}

Figure 3. Sobel Operator

images in computer vision. It consists of two separate filter
kernels, and the combination of both gives the magnitude of
the gradient.

Each iteration loads eight values from memory to produce
a single result. Updated values are stored in a separate image,
so synchronization is only needed at the end. Since the
kernel performs a single update, there is no need to explicitly
synchronize at all. To update the whole image, no loop inside
of the kernel is used, but instead each work item takes care
of updating a single cell. Values at the border are preserved
and copied into the new image. This diverging control flow
is generated by an if-statement. Figure 3 shows the OpenCL
kernel implementation of the Sobel operator.

Clang translates the if-statement into branches to different
basic blocks, depending on which condition is met. For a CPU,
this reduces the amount of instructions executed if one of the
first conditions is false and the then-clause can be skipped.
However, for reasonably large images, this is not the default
case and the then-branch is executed far more often than the
else-branch. After the if-statement, the diverged control flow
is unified in IR by a PHI instruction in the last basic block. Its
purpose is to select a single value from a list, depending on the
block from which it was reached. This is common for single
static assignment code (SSA), when the value of a variable
depends on a condition, because reassigning is not allowed.
See Figure 4 for the relevant parts of the generated LLVM-IR
code.

IV. IF-CONVERSION

This section presents our transformations of the control
flow to eliminate branches and enlarge basic blocks. To sim-
plify the control flow, all values are computed speculatively
instead of jumping to different blocks. PHI-nodes are replaced
by select-instructions, which choose one of two values, de-
pending on a condition variable.

Our transformation recognizes the if-patterns shown in
Figure 5, and switch-patterns which are not covered by this
paper. In all examples a condition variable is computed in the
head block and evaluated by a conditional branch at its end.
That branch then jumps to the proper block. After the then–
or else-clause, the tail block merges the control flow again. It

define cc75 void @Sobel(i32 addrspace(1)* noalias ←↩
nocapture readonly %a, i32 addrspace(1)* noalias ←↩
nocapture %b) #0 {

%1 = tail call cc75 i32 @_Z13get_global_idj(i32 0)
...
%8 = icmp eq i32 %1, 0
br i1 %8, label %62, label %9

; <label>:9 ; preds = %0
...
%or.cond3 = or i1 %or.cond.not, %13
br i1 %or.cond3, label %62, label %14

; <label>:14 ; preds = %9
...
br label %62

; <label>:62 ; preds = %0, %9, %14
%v.0 = phi i32 [%61, %14], [%7, %9], [%7, %0]
%63 = getelementptr i32 addrspace(1)* %b,i32 %5
store i32 %v.0, i32 addrspace(1)* %63, align 4
ret void

}

Figure 4. PHI Node Insertion

%br.cmp = icmp %1 i32 %1, 0
br i1 %br.cmp, TBB, Tail

Head

%2 = . . .TBB

%4 = phi [%1,Head][%2,TBB]
Tail

(a) Triangle for if-then

%br.cmp = icmp %1 i32 %1, 0
br i1 %br.cmp, TBB, FBB

Head

%2 = . . .TBB %3 = . . . FBB

%4 = phi [%2,TBB][%3,FBB]
Tail

(b) Diamond for if-then-else

Figure 5. Supported patterns for if-conversion

usually contains one or more PHI-nodes to select the correct
results of the branch blocks.

The goal of the transformation is to convert the shown
patterns into a single basic block. Therefore, the head is
merged with the branch blocks of the if-pattern (then– and else-
clause) and the branch is substituted by an unconditional jump
to the tail. The moved code now is always executed. It has to be
ensured that the code still computes the same results, i.e., the
moved instructions must not have any side-effects. Now, the
PHI-nodes in the tail are adapted. Previously, they selected the
results from either the then– or the else-block, depending on
the if-condition. After the transformation, all possible values
are defined in the head, and the PHI-nodes can be eliminated.
Select-instructions are inserted to decide between the results
of the then– and else-block, depending on the same condition
of the former if-statement. As a final step, tail and head can be

17Copyright (c) IARIA, 2016. ISBN: 978-1-61208-487-9

SIGNAL 2016 : The First International Conference on Advances in Signal, Image and Video Processing

define spir_func void @Sobel(i32 addrspace(1)* noalias ←↩
nocapture readonly %a, i32 addrspace(1)* noalias ←↩
nocapture %b) #0 {

%1 = tail call spir_func i32 @_Z13get_global_idj(i32 0)
...
%7 = load i32 addrspace(1)* %6, align 4
%8 = icmp eq i32 %1, 0
...
%or.cond3 = or i1 %or.cond.not, %12
...
%60 = fptosi float %59 to i32
%61 = select i1 %or.cond3, i32 %7, i32 %60
%62 = select i1 %8, i32 %7, i32 %61
%63 = getelementptr i32 addrspace(1)* %b, i32 %5
store i32 %62, i32 addrspace(1)* %63, align 4
ret void

}

Figure 6. Transformation of the Sobel kernel

merged into a single block and the control flow is successfully
converted into a data flow using select-instructions.

Figure 6 shows the transformed Sobel kernel. All branches
are eliminated and the PHI-node is replaced by two select-
instructions using the conditions of the former if-statements.
This also demonstrates that the transformation correctly han-
dles nested if-patterns, because it is applied iteratively. The
following section covers the implementation of the transfor-
mation in detail.

Implementation: First we find supported patterns in the
CFG: they consist of the head that is always executed and that
contains the compare-instructions to compute the condition of
the if-statement. The condition variable is used by conditional
jumps to one of the successors. Note that the head must have
exactly two successors. For if-then-else-statements, the two
successors are the basic blocks for then and else. We call such
a pattern a diamond (Figure 5(b)). If the statement does not
contain code to be executed when the condition is not met,
i.e., it has no else branch, only the then-successor remains and
the other one is directly the tail block. We call those patterns
a triangle (Figure 5(a)). The next step in finding appropriate
patterns is to investigate the branch blocks: a diamond has
two branch blocks, then (TBB) and else (FBB). Both must
have the head as their single predecessor and the tail as their
single successor. A triangle only contains the TBB. Compiler
optimizations may result in an inverted condition and thus
switched TBB and FBB. This can especially be the case for
negated if-conditions. Our implementation takes care of that
but it is not discussed here. The final part of a pattern is
the tail that merges the control flow from the branch blocks
and contains the PHI-nodes that select the proper results
depending on the run-time control flow. The tail may have
other predecessors than the branch blocks. Successors of the
tail block are irrelevant for the transformation.

If a pattern is detected, further checks have to be performed
to make sure that the transformation does not change the
semantics of the blocks by executing instructions with side-
effects. Especially store– and synchronization-instructions are
forbidden. For example, a store inside of the then-block of
an if-statement may only be executed if the if-condition is
true. With merging the block into head, the store-instruction
is always executed, likely leading to wrong results.

As the memory-bandwidth of FPGA boards even is a

stronger performance bottleneck compared to GPUs, load-
instructions can be seen to have light side-effects, as we call
instructions not influencing correctness but performance. By
not transforming blocks with loads, performance or resource
usage may also suffer as explained above, as it leads to more
and shorter basic blocks. Furthermore, appropriate caches can
minimize the performance penalty of speculatively executed
loads. For the Sobel kernel, we do not take light side effects
into account, though it is possible by the implementation.
Loads are thus moved into the head and the transformed kernel
consists of a single large block instead of four smaller ones. If
all tests are passed, the transformation is performed. First, the
instructions of the branch blocks are moved into the head, right
before the final branch. The branches inside of the blocks are
omitted. At this point it becomes clear, why the branch blocks
must not have any other successors than the tail. Otherwise,
their final instruction would be a conditional branch to reach
other blocks. That branch would also have to be transferred
into the head, but as branch-instructions may have side-effects
they are not allowed to be executed speculatively. Therefore,
the branch instruction must not be moved into the head, and as
after the transformation the single successor of the head block
has to be the tail block, the branch block must also have the
tail as its single successor to preserve semantics.

In the next step, we determine if the tail block has other
predecessors than the branch blocks. For a diamond the pre-
decessors must include TBB and FBB. Then, the input values
to the PHI-node for those two blocks are extracted. Now, as
these values are moved from TBB and FBB to head, they both
are already available. In those cases the usage of the operands
is said to be dominated by their definitions. This also is the
reason why the branch blocks must have the head as their
single predecessor: instructions in the branch blocks might
need operands that were computed in preceding blocks. If a
branch block now has other predecessors than the head, some
operands may come from those other predecessors via a PHI-
node. As the branch block is now merged into the head, it is not
guaranteed that the definition of the operand also dominates
the head block, which means that the needed operands might
not be available in the head block, leading to an invalid data
flow. This issue can be solved by tail duplication as mentioned
in [3] by cloning the branch block and several predecessors.
The head block is modified to branch to the copied branch
block and like this the branch block has the head as its single
predecessor. The main disadvantage is the increased hardware
consumption for the copies. Therefore, we do not convert those
patterns.

Now, a select-instruction is created: input operands are the
previously extracted values from the PHI-node and the condi-
tion variable is the former if-condition. The new instruction is
inserted into the head block before the final branch and uses of
the PHI-node are replaced by that select-instruction. The PHI-
node can then be removed from the tail block. If a triangle is
processed then the input values for the new select-instruction
come from the head block (if the if-condition is false) and the
block for the then-part. The other steps are equal to those of
processing a diamond. After the transformation, PHI-nodes in
the tail are eliminated.

If the tail block has other predecessors than the branch
blocks, the PHI-node cannot be eliminated. As the tail block
can be reached via other control paths that do not contain

18Copyright (c) IARIA, 2016. ISBN: 978-1-61208-487-9

SIGNAL 2016 : The First International Conference on Advances in Signal, Image and Video Processing

%cmp = icmp i32 %1, 0
br i1 %cmp, TBB, FBB

Head

%2 = . . .
Other

%3 = . . .
TBB

%4 = . . .
FBB

%5 = phi [%2, Other][%3,TBB][%4,FBB]
Tail

(a) Original

%cmp = icmp i32 %1, 0
%5 = select i1 %cmp,. . .

Head

%2 = . . .
Other

%6 = phi [%2,Other][%5,Head]
Tail

(b) Transformed

Figure 7. Control Flow Transformation of Diamond Pattern

the if-statement, the PHI-nodes have input values for other
blocks as well. As a select instruction would just be able to
choose between the values from the two paths of the currently
processed if-statement, the PHI-node is still needed to choose
between that preselected value and those values for the other
predecessors not under control of the processed if-statement.
This is the case for a nested if-statement. Nevertheless, in
this case, the number of input values to the PHI-node can
be reduced.

In a last step, the final branch of the head is replaced by an
unconditional branch to the tail. It is tested if the tail can be
merged into the head block: if the tail has the head as its single
predecessor, head and tail can be merged, which eliminates the
branch.

Figure 7(a) shows a diamond, where the PHI-nodes cannot
be completely replaced. During the transformation the code
from TBB and FBB is merged into the head block. Then, for
each PHI-node in the tail block, a select instruction is created
with the former if-condition (%cmp). The input values for the
select instruction are extracted from the PHI-node. But as the
tail block has other predecessors than TBB and FBB, the PHI-
node cannot be replaced (Figure 7(b)).

The transformation is repeated until no more patterns are
found. By that, nested if-statements can also be converted.
Figure 8 shows the CFG corresponding to Figure 3 containing
two triangles: the first triangle consists of BB9 as head, BB62
as tail and BB14 as branch. BB14 is merged into BB9 in
the way described above: a select-instruction is inserted into
BB62 to either select %7 or %60 depending on the value of
%or.cond3. As BB62 has other predecessors than BB9 and
BB14, the PHI-node is not removed but the input operands
for BB9 and BB14 are replaced by the result of the created
select instruction (the result is stored in %61). Now the next
triangle gets visible consisting of the entry block, BB62 as
tail and the merged block BB9/BB14. This new pattern can

%8 = icmp eq i32 %1, 0
br i1 %8, label %62, label %9

entry

%13 = icmp eq i32 %2, %12
%or.cond3 = or i1 %or.cond.not, %13
br i1 %or.cond3, label %62, label %14

BB9

br label %62BB14

%v.0 = phi i32 [%61,%14], [%7,%9], [%7,%0]
BB62

Figure 8. CFG of Sobel

now be transformed, too: again a select instruction is inserted
using the new input values of the PHI-node: %7 and %61. As
condition variable %8 (defined in the entry block) is used. But
as now the PHI-node does not have any other predecessors than
BB9/BB14 and entry, it can be removed and all instructions
using its result will use the result of this second select. Finally,
Figure 6 shows the fully transformed code using the created
select-instructions.

Metrics: The implementation is able to consider certain ad-
ditional soft constraints. Those are used to determine whether
the transformation is useful to reduce hardware resources. Cur-
rently, the block size can be used to prevent the transformation
to take place. This is useful if the critical path of the new
block is very long. As one block can execute a single work
item, a long critical path may degrade performance. More
elaborate metrics take FPGA resources like LUTs, registers
and BlockRAM into account.

A first indicator for those numbers is the amount of
instructions in a block. All instructions are weighted equally,
ignoring their operation or number and size of their operands.
This of course is only a very rough estimation, but it can be
computed very fast and it does not need any knowledge of the
target device. For the Sobel kernel, we can replace four basic
blocks with 72 instructions in total and different length to a
single block with only 70 instructions. On the other hand, if
the current kernel computes a border value, the same work has
to be done instead of only 13 instructions.

To take the differing complexity of operations into account,
instructions can be weighted by an instruction-specific factor.
A bitwise shift operation is far cheaper than a division,
represented by a smaller coefficient. Furthermore, number and
size of operands give an additional weight.

More accurate metrics need knowledge of the targeted
FPGA. Depending on the available resources, instructions can
be mapped to different hardware, e.g., DSP blocks or IP
cores. Prototypes of the instructions are synthesized by the
backend of OCLAcc and the results of the vendor tools give the
hardware consumption. This gives the most precise estimation
of the resources needed. In fact, it even overestimates them
as global hardware optimizations performed by the synthesis
tool are not available when each component is separately
synthesized. However, the estimation may take a very long
time.

V. MINIMIZE BITWIDTH

As already mentioned, OpenCL does not support custom
data types, which is one of the key advantages of an FPGA

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-487-9

SIGNAL 2016 : The First International Conference on Advances in Signal, Image and Video Processing

design. This cannot be circumvented by adding keywords to
the OpenCL frontend, because this would invalidate the kernel
for other OpenCL platforms. The optimization presented works
for integer values, which of course may also be a fixed point
representation. This is often used in hardware design to save
resources for integer but not for floating point values, because
of the requirements of IEEE 754.

Similar to Altera’s SDK for OpenCL, our transformation
requires user input to statically reduce bitwidths in the form
of bitmasks applied to variables. Typically, constrains are set
for inputs and output, and all operations and values in between
are derived from them. For the example in Figure 3, each load
from image a may be replaced with 0xFFFFFF & a[...]
if only 3 Byte per pixel are to be processed. Constant values,
which have no dedicated bitwidth in LLVM-IR, are stored with
the minimum of bits. Though these optimizations may seem
trivial, many cases have to be respected as explained in the
following.

Implementation: We have to differentiate between values
and constants. A value, starting with a % in LLVM-IR, has a
fixed type (i32 for 32 bit integer, float), but integer values
are signless. However, a constant (true, -1, 1.5) does not
have a fixed bitwidth but it depends on the type of the operation
using it, e.g., %29 = add nsw i32 %5, -1 assigns the
sum of value %5 and the constant -1 to %29 without declaring
the constant’s bitwidth.

For values and constant operands, the bitwidth of the type
and the minimum bitwidth are stored, as well as flags to
indicate whether no extension (next), sign-extension (sext),
zero-extension (zext) or one-extension (oext) has to be used.
To gather the minimum bitwidth, the transformation is split
into two phases: a forward propagation (FP) for each value,
starting at the first instruction of the first basic block to get
the minimum based on input width and the operation and a
backward propagation (BP) in reverse to determine the actual
bitwidth used, depending on the output.

In the forward step, we predict the required bitwidth based
on its operands. If there is at least one zext operand, the output
is as wide as the smallest of them. This is safe since all
leading zeros of the operand eliminate possible ones of others,
independent of their length. If all inputs are sext the required
bitwidth is as wide as the output’s width because sign-bits
cannot be determined statically. For example, if all sign-bits
of the operands are one, the result also is one-extended. On
the other hand, we cannot just use the sext-flag as one input
may be positive with a zero sign-bit, resulting in an output
value being zero from that bit on.

For BP, we start with the bitwidth from FP. If any of
the instruction’s operands is a constant, its width delimits the
instruction’s, and all other operands’ bitwidth. This is true even
if FP resulted in a wider operation. If we have no requirements
from FP, we use the width of the smallest operand to be
propagated to it’s predecessors.

In general, the bitwidth of constants can only be determined
based on an operation using it. The constant −1 can be
encoded using a single bit in two’s complement, which works
with signed operations like integer multiplication. For bitwise
operations and operations being the same operation for signed
and unsigned values (e.g., add), its width has to fit the other
operands’ to prevent wrong results.

By these steps, we first learn how wide a value may become
because of the operations performed to compute it, and then
reduce its size to a minimum based on the width of its users.

Results: The exact number of bits saved depends on the
application, precisely the exact width of input and output val-
ues. The results demonstrate the effects of our optimization for
the Sobel operator, but will be different for other applications.
For the kernel in Figure 3, we save 414 bits of 2528 or around
16% for operations and 496 bits for constants if we limit input
and output to 24 bit by using bitmasks, and the complexity
of operations and thus the resource usage on an FPGA is
significantly reduced.

VI. CONCLUSION

In this paper, we presented an algorithm to simplify the
control flow of a given OpenCL kernel by transforming several
blocks of if– or switch-statements into a single basic block.
The new block’s instructions coming from different branches
are executed speculatively and the correct value is chosen
depending on the if-condition by a select-instruction. We also
presented a static method to reduce the bitwidth of instructions
and constants, based on user-provided bitmasks. Both enable
OCLAcc to produce more efficient and less complex hardware
designs, inevitable for fast and efficient FPGA designs of
signal processing applications.

REFERENCES
[1] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong

program analysis and transformation,” San Jose, CA, USA, Mar 2004,
pp. 75–88.

[2] F. Richter-Gottfried and D. Fey, “OCLAcc: An open-source generator
for configurable logic block based accelerators,” in Embedded World
Conference Proceedings, Feb 2014.

[3] W. M. W. Hwu et al., “The superblock: An effective technique for vliw
and superscalar compilation,” The Journal of Supercomputing, vol. 7,
no. 1, pp. 229–248.

[4] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-
mann, “Effective compiler support for predicated execution using the
hyperblock,” SIGMICRO Newsl., vol. 23, no. 1-2, Dec. 1992, pp. 45–
54.

[5] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of
control dependence to data dependence,” in Proceedings of the 10th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, ser. POPL ’83. New York, NY, USA: ACM, 1983, pp.
177–189.

[6] J. Z. Fang, “Compiler algorithms on if-conversion, speculative predicates
assignment and predicated code optimizations,” in Proceedings of the
9th International Workshop on Languages and Compilers for Parallel
Computing, ser. LCPC ’96. London, UK, UK: Springer-Verlag, 1997,
pp. 135–153.

[7] S. Hauck and A. DeHon, Reconfigurable Computing: The Theory and
Practice of FPGA-Based Computation. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2007, pp. 158–159.

[8] M. Willems, V. Bursgens, T. Grotker, and H. Meyr, “Fridge: an interactive
code generation environment for hw/sw codesign,” in Acoustics, Speech,
and Signal Processing, 1997. ICASSP-97., 1997 IEEE International
Conference on, vol. 1, Apr 1997, pp. 287–290 vol.1.

[9] D. Lee et al., “Accuracy-guaranteed bit-width optimization,” IEEE
Trans. on CAD of Integrated Circuits and Systems, vol. 25, no. 10,
2006, pp. 1990–2000. [Online]. Available: http://dx.doi.org/10.1109/
TCAD.2006.873887

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-487-9

SIGNAL 2016 : The First International Conference on Advances in Signal, Image and Video Processing

http://dx.doi.org/10.1109/TCAD.2006.873887
http://dx.doi.org/10.1109/TCAD.2006.873887

	Introduction
	Related Work
	Reference code
	If-Conversion
	Minimize Bitwidth
	Conclusion
	References

