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Abstract—High amplitude artifacts represent a problem during
EEG recordings in neuroscience research. Taking this into ac-
count, this paper proposes a method to identify high amplitude
artifacts with no requirement for visual inspection, electrooculo-
gram (EOG) reference channel or user assigned parameters. A
potential solution to the high amplitude artifacts (HAA) elimina-
tion is presented based on the blind source separation technique.
The assumption underlying the selection of components is that
HAA are independent of the EEG signal and different HAA can
be generated during the EEG recordings. Therefore, the number
of components related to HAA is variable and depends on the
processed signal, which means that the method is adaptable to the
input signal. The results demonstrate that the proposed method
preferably removes the signal associated to the delta band and
maintains the EEG signal information in other bands with a high
relative precision, thus improving the quality of the EEG signal. A
case study with EEG signals obtained during performance on the
Halstead Category Test (HCT) is presented. After HAA removal,
data analysis revealed an error-related frontal ERP wave: the
feedback-related negativity (FRN) in response to feedbackstimuli.
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I. I NTRODUCTION

The electroencephalogram (EEG) signals measured by
placing electrodes over the scalp represent the bioelectrical
brain activity which may be used, amongst different appli-
cations, in neuroscience studies. During the recordings, the
EEG signal is, unfortunately, often contaminated with differ-
ent physiological factors independent of the cerebral activity,
which are typically not of interest - assigned artifacts. The
artifacts elimination is an important issue in EEG signal pro-
cessing and is in many studies a prerequisite for the subsequent
signal analysis. In many applications, such as brain computer
interface (BCI), the features of the EEG signals are used as a
command to control devices and the presence of such artifacts
can degrade the performance of the system.

There are several EEG waveforms that differ from back-
ground EEG rhythms and may be of interest for particular
research and clinical assessment aims. A relevant type of
waveform that is studied independently from background EEG
activity is the event-related potential (ERP). ERPs are deter-
ministic signals, i.e., they are elicited by specific stimuli or
events, and not spontaneous like the rhythms, being a transient
form of brain activity generated in the brain structures.
Recent studies show that ERP waves can be used for non-
muscular BCI control. There are advantages and drawbacks of
using ERPs in BCI. The two main advantages are that 1) ERPs
are naturally occuring brain responses, which the user produces
without any particular training; 2) ERPs occur at short laten-
cies, which is a beneficial property for the throughput of a

BCI. However, these advantages are counterbalanced by some
drawbacks. Firstly there are large inter-individual differences
in ERP latencies and waveforms, requiring the system to be
trained to recognize the ERP of a given individual. Another
drawback is that ERP waves have so small amplitudes and are
dominated by background activity, that makes them difficult
to detect to the human eye. Several methods exist to extract
the ERP signal from the EEG background. Simple signal
processing techniques including averaging over consecutive
trials can reveal their shape and allow their analysis if the
EEG signal is not corrupted by artifacts, mainly high amplitude
artifacts.
The high amplitude artifacts that derive from eye blinking,
eye movements and patient movements affect the scalp EEG
channels differently. The frontal scalp channels are impacted
the most by these kinds of artifacts. Furthermore, these artifacts
have a more significant impact on the temporal correlation with
frontal scalp signals than the remaining channels. The higham-
plitude artifact correction can be regarded as a preprocessing
method to clean the EEG signal. There are three main ways
of dealing with high amplitude artifacts.

1) Prevention:
Minimize the occurrence of ocular artifacts and pa-
tient movements by giving proper instructions to
participants. However the ocular artifacts are spon-
taneous and involuntary, so this is often unavoidable.

2) Epoch Rejection - Manual Method:
This is a very simple method to eliminate the artifacts
in EEG signals. If an artifact exists in an epoch, then
the corrupted epoch is removed. Important data will
be lost during the removal process, particularly when
limited amount of data is available or when a lot of
artifacts exist in EEG signals.

3) Elimination of artifacts:
Different denoising techniques can be used to elim-
inate artifacts from the EEG signal. This is the best
approach for cleaning the EEG because the number
of epochs is preserved.

Techniques of Blind Source Separation (BSS) like Independent
Components Analysis (ICA) are promising approaches to
decompose the EEG signal in independent components able
to identify the artifacts. Although there are several proposals
in the literature for an automatic selection of components,all
of which require free input parameters, a visual inspectionby
the user or the EOG reference signal is needed.

The methods used to reject sources with high amplitude can
be highlighted: with sparsity greater than some threshold [1],
[2], the extreme values in amplitude, the probability measure
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using the kurtosis value [3], the mutual information and the
spectral pattern [1]. In [1], a subsystem to identify artefactual
sources is used based in computing ten statistical measures.
These measures are computed for each source and some of
them involve the EOG signal reference. In [4], a method to
find the ICs representing the muscle artifacts is described.The
ICs are classified in a descending order according to their re-
spective auto-correlation values and afterwards some decisions
to reject sources are made. As the auto-correlation of muscle
artifacts is relatively low with respect to that of the EEG
signal, the ICs representing the muscle artifacts are expected
to be among the last components. In [5] each IC derived by
SOBI is then band-pass filtered between1 − 10 Hz to create
filtered ICs. The Pearson correlation is calculated betweenthe
ICs filtered and the accelerometer signal and a threshold is
used to eliminate the components with high correlation value.
Different EEGLAB plug-ins were also developed to automatic
select the artifact components, such as ADJUST [6], FASTER
[7] and AAR [3] based in source probability and in kurtosis
values.

The component selection based in the correlation based
index (CBI) described in [8] and based in radial frontocentral
topographic scalp distribution [9] is used in this study. Such
approach is able to identify high amplitude artifacts in a fully
automatic way without requiring visual inspection, the EOG
reference channel or free parameters as input. This study
presents a potential solution to the high amplitude artifacts
(HAA) elimination. The assumption underlying the selection
method is that HAA are independent of the EEG signal and
different HAA can be generated during the EEG recordings.
Therefore, the number of components related to HAA is
variable and dependent on the processed signal, which means
that the method is adaptive to the signal. The proposed method
reduces the influence of high amplitude artifacts and improves
the quality of the EEG allowing to find different ERP waves.

A study case with the Halstead Category Test (HCT)
[10] is presented in this paper. Based on the literature, the
aim is to find larger negative amplitudes measured maxi-
mally at midline fronto-central electrodes - the feedback-
related negativity (FRN) wave [11]. The FRN occurs when
the feedback does not conform to the user’s expectations after
the feedback stimuli. It has been established for years that
the brain produces specific evoked responses in case of errors.
Along that line, a couple of recent studies have proposed to
use error-related brain signals in BCI applications [12]. The
use of Error Potentials in BCI arises from the observation that
this additional information provided automatically by theuser
could be used to improve the BCI performance, [13]. The
results demonstrate the existence of EEG activity recorded
in central scalp locations that is related to error processing,
namely the FRN. Specifically, the preprocessing data analysis
described revealed an FRN wave during performance on the
HCT, a well-established neuropsychological measure of non-
verbal reasoning, abstract concept formation and cognitive
flexibility, which are aspects of the cognitive executive func-
tion. Therefore, this preprocessing method shows potential to
be used in improving the quality of the EEG signal used in
neuroscience studies. In particular, the results can be useful in
BCI applications to clean high amplitude artifacts as well as
in detection of FRN waves.

This paper is organized as follows. In section II, the
blind source separation technique is described and in section

III, the new source selection methodology is presented. The
experimental procedure is described in section IV and some
metrics for algorithm validations are discussed in sectionV.
Finally, results and conclusions are presented in section VI
and VII, respectively.

II. B LIND SOURCE SEPARATION

The effectiveness of the BSS technique depends on some
assumptions, according to the studied problem, such as: inde-
pendence, linearity, uncorrelatedness, non-gaussianity, among
others described in the literature. The more closely the hy-
potheses advanced by a certain algorithm are satisfied, the
better the method is meant to separate the components. Success
hence critically depends on good source separation and on
correct identification of sources as brain activity or artifact
components. In the literature, BSS is considered to be the best
approach for artifacts of high signal to noise ratio (SNR), i.e.,
high amplitude artifacts [14]. Linear Blind Source Separation
models can be expressed algebraically as

X = AS (1)

where the sensored EEG data is organized into aC×N matrix
X, representingC the number of channels andN the number
of time points;A is theC×C mixing matrix andS is aC×N
matrix of unknown sources or independent components. The
goal of BSS or ICA algorithms is to determine the sources and
the separation matrixB given the measured/ sensored signals
X. So, the separation equation reads

S = BX (2)

whereB can be defined as the pseudo-inverse of the mixing
matrix, i.e.,B = A

†.
Most of BSS/ICA algorithms follow a two step procedure to
estimate the separation (or de-mixing) matrix [4]. The first
step is based on Principal Component Analysis or Singular
Value Decomposition (SVD) of the data matrixX [15]. For
the second step different approaches have been proposed [15].
The separation matrixB is estimated as the product of matrices
computed in both steps. For convenience, these steps are
reviewed for the Second Order Blind Identification (SOBI)
[16].

• With the SVD of the original dataX, two C × C
matrices are computed: the eigenvector matrixV and
the diagonal singular value matrixD. Note that a
dimension reduction can be performed by reducing
the number of singular values and eigenvectors in the
corresponding matrices.

• After whitening the original data, i.e.,Z =
D

−1
V

T
X, L time-delayed correlation matrices are

estimated. The approximate join diagonalization of
these set of matrices gives an orthogonal matrixU.

The separation matrix is defined asB = U
T
D

−1
V

T and
its pseudo-inverse asA = VDU. The mandatory parameter
of this algorithm isL, the number of matrices of second step.
Eventually, the user can decide to perform dimension reduction
after the first step by discarding the smallest singular values
and corresponding eigenvectors. In this work, the dimension
was maintained equal to the number of sensors (channels), i.
e. C, and theL is assigned to100 and the default value of
the energy of the components, i.e., the rows of the matrix
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S, is equal to one. Therefore, the coefficients of the mixing
matrix can be used to decide the relevance of the sources in
the respective linearly mixed signal.

III. SOURCE SELECTION

Source selection, in BSS applications, is the most widely
problem reported in the literature [4]. Existing methods for
artifact rejection can be separated into hand-optimized, semi-
automatic and fully automatic approaches. Semi-automatic
approaches require user interaction for ambiguous or outlier
components, while fully automated methods were proposed
for the classification of artifacts. Whatever is the case, different
metrics have been applied directly to the mixing matrixA or
to the sourcesS in order to select artifact related components.
In this study, as the sources have energy one, the columns
of the mixing matrix determines the power distribution of the
reconstructed sources over scalp. Given, the mixing matrixA

A =







a11 a12 . . . a1C
a21 a22 . . . a2C
. . . . . . . . .
aC1 aC2 . . . aCC






(3)

whereaij , (1 ≤ i, j ≤ C) is the transfer coefficient fromj−th
source to thei − th observed channel signal. Each column
vector of the matrixA reflects the power propagating across
all scalp channels of the corresponding row ofS (one source).
In this work it is proposed a two-step fully automatic source
selection procedure. The first step measures the influence, over
all scalp, of each source by estimating the following coefficient

CBI(j) =
C
∑

i=1

|aij |
√

a2i1 + a2i2 + · · ·+ a2iC
(4)

Experimentally it was verified that the plot ofCBI values,
ordered by decreasing order of magnitude, shows an abrupt
decrease on the first five values and then stabilizes. So, the
five largestCBI values are initially identified as candidate
columns of the matrixA associated to the high amplitude
artifacts. For the sake of simplicity, from now on assume that
the columns ofA and the rows ofS are ordered according
to the values of the coefficientCBI. Re-writing the mixing
model as a sum of outer products

X̃ = AS = A∗1S1∗ +A∗2S2∗ + . . .+A∗CSC∗ (5)

where the first term on the right side of the equation 5
corresponds to the source spreading, over the scalp,with largest
energy; the second term corresponds to the source spreading
with the second largest energy and so on. As referred before,
the graphical representation the columns ofA is often used by
experts to identify visually the artifacts. The second stepof the
selection procedure is an application of one of the rules used in
this context. To find out if a certain source is an artifact related
component it is foreseen that it contributes mostly in the frontal
region. To confirm if the five selected candidate columns with
highestCBI are related to the high amplitude artifact, the
power distribution for all selectedj columns should verify
the condition |aij > |akj | , ∀i ∈ L1 and k ∈ L2 where
L1 = [Fp1;Fpz;FP2] andL2 = [F7;F3;Fz;F4;F8] Note
after the selection of the artefact related sources the original

signal is decomposed into the artefact related signal and the
clean signal. The reconstructed signal is then obtained without
high amplitude artifacts. By the explanation above it is clear
that the EEG signal can be expressed as:

X = (A1 +A2)S (6)

whereA1 (C × C) is the matrix with columns associated to
the EEG activity (Clean Data) andA2 (C ×C) is the matrix
with j ≤ 5 non null columns associated to the high amplitude
artifacts activity (HAA Data).

IV. EXPERIMENTAL PROCEDURE

A. Participants and Task

Fifty eight EEG signals belonging to58 participants with
208 trials each were collected with a Neuroscan SynAmps2
amplifier through an Easy-Cap with26 channels and recorded
with the software Scan 4.3 (Neuroscan Systems). EEG was
continuously recorded with Ag-AgCl sintered electrodes which
were located according to the10−20 system. A computerized
version of the Halstead Category Test (HCT) was used to
assess cognitive executive frontal lobe function. This test
is used to measure a person’s ability to formulate abstract
principles based on receiving feedback after each specific test
item. Visual feedback is provided after each trial, to indicate
if the participant responded wrong or right.

B. Dataset

For signal analysis, each EEG trial was epoched from
6000 ms prior to response onset to3000 ms after, leading
to a dataset with208 trials for each of the58 participants.
Note that after1500 ms of response onset the feedback was
provided and the dataset for each participant can be divided
considering the conditions wrong and right.

In this study, the Raw Data signal is the filtered EEG
between [1 − 40] Hz in frequency, trial by trial, for each
participant; the Clean Data signal is the processed Raw Data
by SOBI algorithm with full automatic criteria to select the
sources associated with the high amplitude artifacts; and the
HAA Data is the reconstructed signal with the automatically
rejected sources.

C. Algorithm Performance

As mentioned above, the SOBI algorithm is employed to
decompose all epochs into two datasets: Clean and HAA Data.
The selection of components is fully automatic, adaptable to
each epoch allowing the identification of HAA signal. The
number of selected components is variable between0 and
5. Although almost all epochs in the present dataset were
corrupted with high amplitude artifacts, there were occasion-
ally epochs without artifact. In epochs without artifacts,no
components are selected. In these datasets≈ 97% of the
trials were corrupted with artifacts and the number of selected
components in all trials ranged in average between1.85±0.98.
To demonstrate the algorithm performance two distinct cases
are discussed: Case 1 - An epoch without artifacts and Case
2 - An epoch with artifacts.

• Case 1: Epoch without artifact Figure 1 (a) repre-
sents an example of an epoch without artifact (only1
second is represented). In this case, the algorithm did
not select any component. Considering the maximum
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peak of the channelFp1, an average head topography
centered in the100 ms window around the peak was
constructed, Figure 1 (b), to illustrate that there are no
high-amplitude components in this epoch.

Time (seconds)
0 1

O2
Oz
O1

PO8
PO7

P8
P4
Pz
P3
P7
T8
C4
Cz
C3
T7

Fc4
Fcz
Fc3
F8
F4
Fz
F3
F7

Fp2
Fpz
Fp1

(a) Raw Data

-5

0

5

10

(b) Topogram of the
Raw Data

Figure 1. Case 1: (a) Original Epoch - Raw Data (b) Head topography of the
corresponding Raw Data considering an average window of100 ms

centered in maximum peak of theFp1 channel.

• Case 2: Epoch with artifact In Figure 2 (a) is
represented an example of an epoch with an artifact
(only 1 second is represented) . In this case, the
algorithm selected4 components (S∗1, S∗3, S∗4 and
S∗5) of the 5 with the largest spread on the scalp.
As shown in the head topographies, Figure 2 (d), all
components selected by the algorithm have a strong
power energy in frontal channels. It should be noted
that, although the first component has the highest
energy in the frontal channels, the selection is not
sufficient to remove the HAA signal, as described in
[8] .

V. M ETRICS FOR ALGORITHM VALIDATION

The efficiency of the automatic method of selection of com-
ponents was validated using different metrics to compare the
Raw Data, the Clean Data and the HAA Data in time and fre-
quency domains in each epoch for all participants. Firstly,the
datasets (Raw, Clean and HAA signals) were grouped accord-
ing to the region of the scalp where the electrodes are located.
To account for spatial differences in amplitude distribution,
channels were grouped into6 regions,R1: prefrontal channels
(Fp1, Fp2, Fpz), R2: frontal channels(F7, F3, F z, F4, F8),
R3: frontocentral channels(FC3, FCz, FC4, C3, Cz, C4),
R4: parietal channels(P7, P3, P z, P4, P8), R5: parieto-
occipital channels(PO7, PO8, O1, Oz,O2) andR6: temporal
channels(T 7, T 8).

The three datasets in each region(R1−R6) were band-pass

Time (seconds)
0 1

O2
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PO8
PO7

P8
P4
Pz
P3
P7
T8
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C3
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F4
Fz
F3
F7

Fp2
Fpz
Fp1

(a) Raw Data
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C3
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F4
Fz
F3
F7

Fp2
Fpz
Fp1

(b) Clean Data
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(c) Topograms of the selected IC’s.

Figure 2. Case2: (a) Original Epoch - Raw Data (b) Clean Data after HAA
signal removed by the automatic proposed method to select the ICs (c)

Independent Components obtained by SOBI algorithm (d) Headtopography
of the selected ICs associated to HAA signal.

filtered (6th order Butterworth) , with a zero-phase strategy,
into delta:[1 4] Hz; theta:[4 7] Hz; alpha:[7 13] Hz and beta:
[13 30] frequency bands. For all epochs and for all partici-
pants, the following metrics were then calculated per band in
each region and were performed in three ways: (1) correlation
coefficient in time for all signals between: Clean/Raw data;
Clean/HAA Data; Raw/HAA Data; (2) coherence of average
signal between Clean/Raw Data and Raw/HAA Data and (3)
Mean Power to compute relative power between the Clean and
Raw Data.

The correlation coefficient was calculated between the
Clean/Raw Data, the Clean/HAA Data and the Raw/HAA Data
for all bands in all regions, but only regionR5 is represented
in Figure 3. The results show that the Clean/Raw Data has an
high correlation in beta, alpha and theta bands and, in turn,
Raw/HAA Data presents high correlation in the delta band.
Thus, the proposed method reduces the influence of signals
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associated to the delta band. Figure 4 presents the results

1 2 3

0

0.5

1

(a) Delta

1 2 3

0

0.5

1

(b) Theta

1 2 3

0

0.5

1

(c) Alpha

1 2 3

0

0.5

1

(d) Beta

Figure 3. Correlation Coefficient between (1) - Clean/Raw Data ; (2) -
Clean/HAA Data ; (3) - Raw/HAA Data in each band for regionR5

of the computation of the coherence magnitude between the
Raw/Clean Data and Raw/HAA Data in regionsR3 andR5.
RegionR5 is less corrupted with artifacts than regionR3 and
because of this the main difference between the results is in
delta band values, where the coherence is less than0.5 in
regionR3 and over0.5 in regionR5. In the theta, alpha and
beta bands the coherence value for the two datasets is similar
in the two regions. These results confirm that the selected
components are correlated to the delta bandwidth by ensuring
that the remaining frequency bands are unaffected, especially
alpha and beta bands. To measure the relation in each band
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(a) R3
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(b) R5

Figure 4. Coherence Magnitude inR3 (a) andR5 (b) region between the
Raw/Clean Data (dash line) and between Raw/HAA Data (solid line).

between the Clean and Raw Data, the relative energy power
(RP ) for each region was computed as:

RP =

∑

58

i=1

∑

9000

n=1
xci(n)

2

∑58

i=1

∑9000

n=1
xri(n)2

(7)

wherexci is the Clean Data andxri is the Raw Data in each
band computed for each region and for all participantsi =
1 : 58. The results are consistent with the results described
above considering the different metrics. The relative power

between Clean/Raw Data in regionR3 is presented in Figure
5. Once again, it can be seen that the band with greater loss
of information is the delta band with some40% and that the
alpha and beta bands exhibit residual losses,≈ 10%.

Delta Theta Alpha Beta

%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Figure 5. Relative Power between Clean/Raw Data in regionR3.

VI. EVENT-RELATED POTENTIALS

The aim of the current study was to show a new automatic
selection algorithm for ICA decompositions to remove high
amplitude artifacts in EEG signals. The data used in this study
was highly corrupted with artifacts and hence compromises
the interpretation of many psychophysiological correlates. In
this particular case, the detection of ERP waves associatedto
performance in the HCT was nearly impossible. To show the
impact of the application of this method and its ability to clean
the high amplitude artifacts in the signal, the grand average
signal of all participants in an average window between
[200 300] ms after the feedback is used, this is depicted in
Figure 6 (a). The grand average of the HAA and Clean Data
in the same window is also considered, Figures 6 (b) and (c),
respectively. The head topographies of the raw data show an
high amplitude signal in the frontal channels that mask any
ERP wave present. After applying the SOBI algorithm and
the automatic component selection, the Clean Data presentsa
negativity in the central area, that is not evident in the Raw
data.

-5

0

5

10

(a)

-5

0

5

10

(b)

-5

0

5

10

(c)

Figure 6. Head topography of the grand average waveforms forall
participants considering an average window between[200 300] ms after

the feedback. (a) Raw Data ; (b) HAA Data and (c) Clean Data

A. Feedback-related negativity wave

According to the neuroscience literature, the feedback-
related negativity (FRN) is an ERP component recorded in
fronto-central areas of the scalp, which originates in the
Anterior Cingulate Cortex (ACC) [17]. In this work, all regions
were processed but only regionR3 was chosen to be discussed,
because the FRN effects were the strongest on it, in agreement
with the existing literature. Figure 7 displays the grand-average
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waveforms of individual ERPs for theR3 region considering
the two subsets of trials corresponding to the Right (ERPr) and
Wrong (ERPw) answers, time-locked to the feedback. Thus,
the value0 ms corresponds to the moment when the feedback
occurred. In the displayed waveforms, we can observe large
negative peaks after the feedback, peaking around250 ms,
which are consistent with the feedback-related negativity. As
can be observed, the FRN wave in the wrong subset (dash
line) is more prominent than in the right subset (solid line).
Furthermore, an apparent difference between the Wrong and
Right conditions is observed, with more negative amplitudes
for the Wrong trials, Figure 7 (b),(c).

Time (seconds)
0 100 200 300

-6

-5

-4

-3

-2

-1

0

1

(a) FRN

-6
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-3

-2

-1

0

1

(b) ERPw

-6

-5

-4

-3

-2

-1

0

1

(c) ERPr

Figure 7. FRN analysis: (a) Grand-average waveforms of individual ERPs in
regionR3 considering two subsets (ERPr and ERPw): Wrong response

(dash line) and Right response (solid line). Head topography of the
grand-average waveforms considering an average window between

[240 260] ms after the feedback: (b) Wrong subset and (c) Right subset

VII. C ONCLUSION

The aim of the component selection method described
in this paper is to remove high amplitude artifacts resulting
from eye movements, patient movements, etc. It should be
noted that this selection method is an alternative to those
described in the literature as it is fully automatic and requires
no input parameters to work. It is important to highlight the
need to reduce the influence of high amplitude artifacts in
EEG signals, not only to allow detection of ERP waves in
neuroscience studies, but also for use of the EEG in BCI
applications. Without doing so, one cannot be sure that the
peaks observed in the signal reflect real brain processing and
are not confounded with artifacts. After the preprocessingstep,
the data analysis revealed a frontocentral ERP wave related
to error-processing: the feedback-related negativity (FRN),
peaking around250 ms, after feedback during performance on
the HCT. As expected, errors elicited more negative amplitudes
on that potential than correct responses.

Furthermore, results suggest that this error potential, FRN,
might provide an adequate method for detecting errors that
requires no additional processing time and could thereby
improve the speed and accuracy of EEG-based communica-
tion with devices using BCI applications. The use of Error
Potentials in BCI applications arises from the observationthat
this additional information provided automatically by theuser
could be used to improve the BCI performance.
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