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Abstract—High amplitude artifacts represent a problem during
EEG recordings in neuroscience research. Taking this into &
count, this paper proposes a method to identify high amplitale
artifacts with no requirement for visual inspection, electooculo-

gram (EOG) reference channel or user assigned parameters. A

potential solution to the high amplitude artifacts (HAA) elimina-
tion is presented based on the blind source separation teckque.
The assumption underlying the selection of components is #t
HAA are independent of the EEG signal and different HAA can
be generated during the EEG recordings. Therefore, the numér

of components related to HAA is variable and depends on the

processed signal, which means that the method is adaptable the
input signal. The results demonstrate that the proposed méiod
preferably removes the signal associated to the delta bandnd
maintains the EEG signal information in other bands with a high
relative precision, thus improving the quality of the EEG signal. A
case study with EEG signals obtained during performance onhe
Halstead Category Test (HCT) is presented. After HAA remové
data analysis revealed an error-related frontal ERP wave: he
feedback-related negativity (FRN) in response to feedbacstimuli.
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BCI. However, these advantages are counterbalanced by some
drawbacks. Firstly there are large inter-individual diffieces

in ERP latencies and waveforms, requiring the system to be
trained to recognize the ERP of a given individual. Another
drawback is that ERP waves have so small amplitudes and are
dominated by background activity, that makes them difficult
to detect to the human eye. Several methods exist to extract
the ERP signal from the EEG background. Simple signal
processing techniques including averaging over consexuti
trials can reveal their shape and allow their analysis if the
EEG signal is not corrupted by artifacts, mainly high anyalé
artifacts.

The high amplitude artifacts that derive from eye blinking,
eye movements and patient movements affect the scalp EEG
channels differently. The frontal scalp channels are irtgzhc
the most by these kinds of artifacts. Furthermore, the factis
have a more significant impact on the temporal correlatidgh wi
frontal scalp signals than the remaining channels. The &igh
plitude artifact correction can be regarded as a preprowess
method to clean the EEG signal. There are three main ways
of dealing with high amplitude artifacts.

1) Prevention:

The electroencephalogram (EEG) signals measured by

Minimize the occurrence of ocular artifacts and pa-

placing electrodes over the scalp represent the bioatattri

brain activity which may be used, amongst different appli-
cations, in neuroscience studies. During the recordings, t

EEG signal is, unfortunately, often contaminated with efiff 2)
ent physiological factors independent of the cerebralvigti

which are typically not of interest - assigned artifactseTh
artifacts elimination is an important issue in EEG signal-pr
cessing and is in many studies a prerequisite for the sulbséqu
signal analysis. In many applications, such as brain coerput
interface (BCI), the features of the EEG signals are used as a
command to control devices and the presence of such astifact 3)
can degrade the performance of the system.

There are several EEG waveforms that differ from back-
ground EEG rhythms and may be of interest for particular
research and clinical assessment aims. A relevant type of
waveform that is studied independently from background EEG
activity is the event-related potential (ERP). ERPs areret Techniques of Blind Source Separation (BSS) like Independe
ministic signals, i.e., they are elicited by specific stimml =~ Components Analysis (ICA) are promising approaches to
events, and not spontaneous like the rhythms, being a ¢rainsi decompose the EEG signal in independent components able
form of brain activity generated in the brain structures. to identify the artifacts. Although there are several pisgie
Recent studies show that ERP waves can be used for nom the literature for an automatic selection of componealls,
muscular BCI control. There are advantages and drawbacks of which require free input parameters, a visual inspechign
using ERPs in BCI. The two main advantages are that 1) ERPthe user or the EOG reference signal is needed.
are naturally occuring brain responses, which the usenmexl The methods used to reject sources with high amplitude can
without any particular training; 2) ERPs occur at shortriate be highlighted: with sparsity greater than some threshb]d [
cies, which is a beneficial property for the throughput of a[2], the extreme values in amplitude, the probability measu

tient movements by giving proper instructions to
participants. However the ocular artifacts are spon-
taneous and involuntary, so this is often unavoidable.
Epoch Rejection - Manual Method:

This is a very simple method to eliminate the artifacts
in EEG signals. If an artifact exists in an epoch, then
the corrupted epoch is removed. Important data will
be lost during the removal process, particularly when
limited amount of data is available or when a lot of
artifacts exist in EEG signals.

Elimination of artifacts:

Different denoising techniques can be used to elim-
inate artifacts from the EEG signal. This is the best
approach for cleaning the EEG because the number
of epochs is preserved.
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using the kurtosis value [3], the mutual information and thelll, the new source selection methodology is presented. The
spectral pattern [1]. In [1], a subsystem to identify antéfial  experimental procedure is described in section IV and some
sources is used based in computing ten statistical measureretrics for algorithm validations are discussed in sectibn
These measures are computed for each source and someFafally, results and conclusions are presented in sectibn V
them involve the EOG signal reference. In [4], a method toand VII, respectively.

find the ICs representing the muscle artifacts is describkd.

ICs are classified in a descending order according to their re [I. BLIND SOURCE SEPARATION

spective auto-correlation values and afterwards someidesi The effectiveness of the BSS technique depends on some
to reject sources are made. As the auto-correlation of ruschssumptions, according to the studied problem, such as: ind
artifacts is I’elatlvely low with reSpect to that of the EEG pendence’ |inearity’ uncorre'atedneSS, non_gauss’iam?ng
signal, the ICs representing the muscle artifacts are é&flec others described in the literature. The more closely the hy-
to be among the last components. In [5] each IC derived byotheses advanced by a certain algorithm are satisfied, the
SOBI is then band-pass filtered betweker 10 Hz to create  petter the method is meant to separate the components.sSucce
flltere_d ICs. The Pearson correlation |_S calculated betvieen _hence Critica”y depends on good source Separation and on
ICs filtered and the accelerometer signal and a threshold igorrect identification of sources as brain activity or autf
used to eliminate the components with high correlation@alu components. In the literature, BSS is considered to be the be
Different EEGLAB plUg-inS were also developed to automatiCapproach for artifacts of h|gh Signa| to noise ratio (SN@,,l

select the artifact components, such as ADJUST [6], FASTERyigh amplitude artifacts [14]. Linear Blind Source Sepiarat
[7] and AAR [3] based in source probablllty and in kurtosis models can be expressed a|gebraica||y as

values.

The component selection based in the correlation based X =AS 1)
index (C BI) described in [8] and based in radial frontocentral
topographic scalp distribution [9] is used in this studyclsu
approach is able to identify high amplitude artifacts in Hyfu : N o : .
automatic way without requiring visual inspection, the EOGOlc time points;A is theC' x C' mixing matrix andS is aC’x N

; : atrix of unknown sources or independent components. The
reference channel or free parameters as input. This stu : . .

. ; . . . oal of BSS or ICA algorithms is to determine the sources and
presents a potential solution to the high amplitude artsfac

(HAA) elimination. The assumption underlying the seleatio the separation matri8 given the measured/ sensored signals

method is that HAA are independent of the EEG signal an(f(' So, the separation equation reads

different HAA can be generated during the EEG recordings. S = BX 2)

Therefore, the number of components related to HAA is ] ] o

variable and dependent on the processed signal, which meap§ereB can be defined as the pseudo-inverse of the mixing

that the method is adaptive to the signal. The proposed rdethdnatrix, i.e.,B = AT, )

reduces the influence of high amplitude artifacts and impsov Most of BSS/ICA algorithms follow a two step procedure to

the quality of the EEG allowing to find different ERP waves. estimate the separation (or de-mixing) matrix [4]. The first
A study case with the Halstead Category Test (HCT)Step is based on Principal Component Analysis or Singular

[10] is presented in this paper. Based on the literature, th¥alue Decomposition (SVD) of the data matrk [15]. For

aim is to find larger negative amplitudes measured maxithe second step different approaches have been proposded [15

mally at midline fronto-central electrodes - the feedback-The separation matriB is estimated as the product of matrices

related negativity (FRN) wave [11]. The FRN occurs whencomputed in both steps. For convenience, these steps are

the feedback does not conform to the user’s expectatioas aftreviewed for the Second Order Blind Identification (SOBI)

the feedback stimuli. It has been established for years thdd6l-

the brain produces specific evoked responses in case o§error o \with the SVD of the original dataX, two C x C

where the sensored EEG data is organized infbaV matrix
X, representing’ the number of channels and the number

Along that line, a couple of recent studies have proposed to matrices are computed: the eigenvector ma¥fiand
use error-related brain signals in BCI applications [12peT the diagonal singular value matri®. Note that a
use of Error Potentials in BCI arises from the observatiat th dimension reduction can be performed by reducing
this additional information provided automatically by theer the number of singular values and eigenvectors in the
could be used to improve the BCI performance, [13]. The corresponding matrices.

results demonstrate the existence of EEG activity recorded
in central scalp locations that is related to error processi
namely the FRN. Specifically, the preprocessing data aisalys
described revealed an FRN wave during performance on the
HCT, a well-established neuropsychological measure of non
verbal reasoning, abstract concept formation and cognitivThe separation matrix is defined & = U’D~'VT and
flexibility, which are aspects of the cognitive executiveadu  its pseudo-inverse aA = VDU. The mandatory parameter
tion. Therefore, this preprocessing method shows poteatia of this algorithm isL, the number of matrices of second step.
be used in improving the quality of the EEG signal used inEventually, the user can decide to perform dimension regict
neuroscience studies. In particular, the results can bielllise  after the first step by discarding the smallest singulareslu
BCI applications to clean high amplitude artifacts as well a and corresponding eigenvectors. In this work, the dimensio
in detection of FRN waves. was maintained equal to the number of sensors (channels), i.
This paper is organized as follows. In section Il, thee. C, and theL is assigned tal00 and the default value of
blind source separation technique is described and inogecti the energy of the components, i.e., the rows of the matrix

After whitening the original data, i.e.Z =
D-'VTX, L time-delayed correlation matrices are
estimated. The approximate join diagonalization of
these set of matrices gives an orthogonal makfix
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S, is equal to one. Therefore, the coefficients of the mixingsignal is decomposed into the artefact related signal aed th
matrix can be used to decide the relevance of the sources tlean signal. The reconstructed signal is then obtaineuaowtt
the respective linearly mixed signal. high amplitude artifacts. By the explanation above it isacle
that the EEG signal can be expressed as:
I1l.  SOURCESELECTION

Source selection, in BSS applications, is the most widely X =(A1+A2)8 ©)
problem reported in the literature [4]. Existing methods fo where A; (C x (') is the matrix with columns associated to
artifact rejection can be separated into hand-optimizethis  the EEG activity (Clean Data) andl, (C x C) is the matrix
automatic and fully automatic approaches. Semi-automatigith j < 5 non null columns associated to the high amplitude
approaches require user interaction for ambiguous oresutli artifacts activity (HAA Data).
components, while fully automated methods were proposed
for the classification of artifacts. Whatever is the cas#ertint IV. EXPERIMENTAL PROCEDURE
metrics have been applied directly to the mixing matixor 5 Participants and Task

to the source$® in order to select artifact related components. i ) i . . .
In this study, as the sources have energy one, the columns Fifty eight EEG signals belonging %8 participants with

of the mixing matrix determines the power distribution of th 208 trials each were collected with a Neuroscan SynAmps2

reconstructed sources over scalp. Given, the mixing matrix amplifier through an Easy-Cap witté channels and recorded
with the software Scan 4.3 (Neuroscan Systems). EEG was

ai; a2 ... aic continuously recorded with Ag-AgCl sintered electrodesolvh
A= | G a2 ... ax 3) were located according to th® — 20 system. A computerized

version of the Halstead Category Test (HCT) was used to

aci acz2 ... Gcc assess cognitive executive frontal lobe function. Thig tes

is used to measure a person’s ability to formulate abstract
principles based on receiving feedback after each speesic t
item. Visual feedback is provided after each trial, to iradéc

if the participant responded wrong or right.

wherea;;, (1 <1i,5 < C) is the transfer coefficient froph—th

source to thei — th observed channel signal. Each column

vector of the matrixA reflects the power propagating across

all scalp channels of the corresponding rowSofone source).

In this work it is proposed a two-step fully automatic source
. . , B. Dataset

selection procedure. The first step measures the influenee, o

all scalp, of each source by estimating the following coiffit For signal analysis, each EEG trial was epoched from
6000 ms prior to response onset 8000 ms after, leading

c to a dataset witl208 trials for each of thes8 participants.
CBI(j) = Z |aij] (4)  Note that afterl500 ms of response onset the feedback was
— ah +ah+ - +als provided and the dataset for each participant can be divided
considering the conditions wrong and right.
Experimentally it was verified that the plot éf B/ values, In this study, the Raw Data signal is the filtered EEG

ordered by decreasing order of magnitude, shows an abrupetween[l — 40] Hz in frequency, trial by trial, for each
decrease on the first five values and then stabilizes. So, thgarticipant; the Clean Data signal is the processed Raw Data
five largestCBI values are initially identified as candidate by SOBI algorithm with full automatic criteria to select the
columns of the matrixA associated to the high amplitude sources associated with the high amplitude artifacts; aed t
artifacts. For the sake of simplicity, from now on assume thaHAA Data is the reconstructed signal with the automatically
the columns ofA and the rows ofS are ordered according rejected sources.

to the values of the coefficiet® BI. Re-writing the mixing

model as a sum of outer products C. Algorithm Performance

As mentioned above, the SOBI algorithm is employed to
decompose all epochs into two datasets: Clean and HAA Data.
The selection of components is fully automatic, adaptable t
each epoch allowing the identification of HAA signal. The
number of selected components is variable betweesand

X=AS=A, S, +AS: +...+A.cSc. (5)

where the first term on the right side of the equation 5
corresponds to the source spreading, over the scalp,wgas ?5| Although almost all epochs in the present dataset were

energy; the second term corresponds to the source spreadi . . i : ;
with the second largest energy and so on. As referred beforggrrlthGd with high amplitude artifacts, there were oamasi

the graphical representation the columnsdois often used by c2¥n egﬁggfs Vg:gogélggt';%m'l rI]n tﬁggg hj a\t’;';g?g;;rtgf‘ﬁ
experts to identify visually the artifacts. The second stbfhe trialspwere corrupted with értifacts and the numbeor of delkc
selection procedure is an application of one of the ruled irse b

this context. To find out if a certain source is an artifacated %gné%%fr?;frg : Itlrfga;T roarrilt?fnd me?f\c/)er;r? gr? cge;[\\/,vvged?siti(r){gt%case
component it is foreseen that it contributes mostly in tloafal 9 P

region. To confirm if the five selected candidate columns withgm_a gésguf)i?‘d\;vgﬁz?t#aét?n epoch without artifacts and Case
highestCBI are related to the high amplitude artifact, the P :

power distribution for all selected columns should verify e Case 1: Epoch without artifact Figure 1 (a) repre-
the condition|a;; > |ax,;| , Vi € L, andk € L, where sents an example of an epoch without artifact (ohly
L, = [Fpl; Fpz; FP2) and Ly = [F7; F'3; Fz; F4; F8] Note second is represented). In this case, the algorithm did
after the selection of the artefact related sources thenadig not select any component. Considering the maximum
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peak of the channdl’pl, an average head topography
centered in the 00 ms window around the peak was
constructed, Figure 1 (b), to illustrate that there are no

high-amplitude components in this epoch. ?;W e ———
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Figure 1. Case 1: (a) Original Epoch - Raw Data (b) Head tagaigyr of the 500

corresponding Raw Data considering an average window06fms
centered in maximum peak of thépl channel.

e Case 2: Epoch with artifact In Figure 2 (a) is 500

represented an example of an epoch with an artifac.

(only 1 second is represented) . In this case, the (c) Topograms of the selected IC's.

algorithm selectedl components .1, S.3, Sx4 and

S.s) of the 5 with the largest spread on the scalp.

As shown in the head topographies, Figure 2 (d), all Figure 2. Case2: (a) Original Epoch - Raw Data (b) Clean Dfita HAA
components selected by the algorithm have a stron signal removed by the automatic proposed method to selectGs (c)
power energy in frontal channels. It should be noteddependent Components oéjtfc'”ed by SO8! f'gHORtAhm. () IHeadgraphy
that, although the first component has the highest of fhe selecied T assoniated o signat

energy in the frontal channels, the selection is not

sufficient to remove the HAA signal, as described in

[8] . filtered (Gth order Butterworth) , with a zero-phase strategy,
into delta:[1 4] Hz; theta:[4 7] Hz; alpha:[7 13] Hz and beta:
V. METRICS FOR ALGORITHM VALIDATION [13 30] frequency bands. For all epochs and for all partici-

The efficiency of the automatic method of selection of com-pants, the following metrics were then calculated per band i
ponents was validated using different metrics to compage theach region and were performed in three ways: (1) correlatio
Raw Data, the Clean Data and the HAA Data in time and frecoefficient in time for all signals between: Clean/Raw data;
guency domains in each epoch for all participants. Firgtlg, Clean/HAA Data; Raw/HAA Data; (2) coherence of average
datasets (Raw, Clean and HAA signals) were grouped accordgignal between Clean/Raw Data and Raw/HAA Data and (3)
ing to the region of the scalp where the electrodes are Idcate Mean Power to compute relative power between the Clean and
To account for spatial differences in amplitude distribnti Raw Data.
channels were grouped inéoregions,R1: prefrontal channels The correlation coefficient was calculated between the
(Fpl, Fp2, Fpz), R2: frontal channel§F'7, F3, Fz, F4, F8), Clean/Raw Data, the Clean/HAA Data and the Raw/HAA Data
R3: frontocentral channel§FC3, FCz, FC4,C3,Cz,C4), for all bands in all regions, but only regiaR5 is represented
R4: parietal channels(P7, P3, Pz, P4, P8), R5: parieto- in Figure 3. The results show that the Clean/Raw Data has an
occipital channel$ PO7, POS8, 01,0z, 02) andR6: temporal  high correlation in beta, alpha and theta bands and, in turn,
channelgT'7,T8). Raw/HAA Data presents high correlation in the delta band.

The three datasets in each reg{dtl — R6) were band-pass Thus, the proposed method reduces the influence of signals
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associated to the delta band. Figure 4 presents the resultetween Clean/Raw Data in regidtB is presented in Figure

5. Once again, it can be seen that the band with greater loss
i — —— — of information is the delta band with som®% and that the
| . E E 1 alpha and beta bands exhibit residual losse$0%.
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os] ) E e . E Figure 5. Relative Power between Clean/Raw Data in re@én
B = 5 ' ; s VI. EVENT-RELATED POTENTIALS

(c) Alpha (d) Beta Th_e aim of @he current study was to .s.how a new automatic
selection algorithm for ICA decompositions to remove high
amplitude artifacts in EEG signals. The data used in thidystu

Figure 3. Correlation Coefficient between (1) - Clean/RawaDa(2) - was highly corrupted with artifacts and hence compromises

Clean/HAA Data ; (3) - Raw/HAA Data in each band for regif¥ the interpretation of many psychophysiological corredate

this particular case, the detection of ERP waves associated
of the computation of the coherence magnitude between thgerformance in the HCT was nearly impossible. To show the
Raw/Clean Data and Raw/HAA Data in regioR$ and R5.  impact of the application of this method and its ability teanh
RegionR5 is less corrupted with artifacts than regi®3 and  the high amplitude artifacts in the signal, the grand averag
because of this the main difference between the results is isignal of all participants in an average window between
delta band values, where the coherence is less tharin  [200 300] ms after the feedback is used, this is depicted in
region 3 and over0.5 in region R5. In the theta, alpha and Figure 6 (a). The grand average of the HAA and Clean Data
beta bands the coherence value for the two datasets is isimili the same window is also considered, Figures 6 (b) and (c),
in the two regions. These results confirm that the selectegespectively. The head topographies of the raw data show an
components are correlated to the delta bandwidth by ergurirhigh amplitude signal in the frontal channels that mask any
that the remaining frequency bands are unaffected, edlyecia ERP wave present. After applying the SOBI algorithm and
alpha and beta bands. To measure the relation in each bagige automatic component selection, the Clean Data preaents
negativity in the central area, that is not evident in the Raw

1 - data.

1

YA
\ PR

'

N
an!

0.5

Coherence
Coherence
o
(6,1

0 10 20 30 0 10 20 30 ’ ’ s
Frequency (Hz Frequency (Hz) (a) (b) ( )
c
(a) R3 (b) R5
. ) ) Figure 6. Head topography of the grand average waveformallfor
Figure 4. Coherence Magnitude #3 (a) andR5 (b) region between the participants considering an average window betwg80 300] ms after
Raw/Clean Data (dash line) and between Raw/HAA Data (soie).| the feedback. (a) Raw Data ; (b) HAA Data and (c) Clean Data

between the Clean and Raw Data, the relative energy power
(RP) for each region was computed as: A. Feedback-related negativity wave

Ef’f §:90f0x (n)? According to the neuroscience literature, the feedback-

RP = =1 n=1"¢i (7) L N !

= 258 Zgooox (n)? related negativity (FRN) is an ERP component recorded in
i=1 n=1 Tt

fronto-central areas of the scalp, which originates in the
wherez,, is the Clean Data and,, is the Raw Data in each Anterior Cingulate Cortex (ACC) [17]. In this work, all remis
band computed for each region and for all participants  were processed but only regidt8 was chosen to be discussed,
1 : 58. The results are consistent with the results describetbecause the FRN effects were the strongest on it, in agréemen
above considering the different metrics. The relative powewith the existing literature. Figure 7 displays the grandrage
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waveforms of individual ERPs for th&3 region considering

the two subsets of trials corresponding to the Right (ERRd) a [1]
Wrong (ERPw) answers, time-locked to the feedback. Thus,
the value0 ms corresponds to the moment when the feedback
occurred. In the displayed waveforms, we can observe large
negative peaks after the feedback, peaking aro2fid m.s,
which are consistent with the feedback-related negatiity

can be observed, the FRN wave in the wrong subset (dash
line) is more prominent than in the right subset (solid line) [3]
Furthermore, an apparent difference between the Wrong and
Right conditions is observed, with more negative amplitude

for the Wrong trials, Figure 7 (b),(c). (4]
(5]
(6]
a) FRN
@ -

Figure 7. FRN analysis: (a) Grand-average waveforms o¥iddal ERPs in
region R3 considering two subsets (ERPr and ERPw): Wrong response  [8]
(dash line) and Right response (solid line). Head topogragtthe
grand-average waveforms considering an average windoweket
[240 260] ms after the feedback: (b) Wrong subset and (c) Right subset [9]

VII. CONCLUSION [10]

The aim of the component selection method describeflll]
in this paper is to remove high amplitude artifacts resgltin
from eye movements, patient movements, etc. It should be
noted that this selection method is an alternative to thosg2)
described in the literature as it is fully automatic and iesgi
no input parameters to work. It is important to highlight the
need to reduce the influence of high amplitude artifacts ir13l
EEG signals, not only to allow detection of ERP waves in
neuroscience studies, but also for use of the EEG in BC
applications. Without doing so, one cannot be sure that th
peaks observed in the signal reflect real brain processidg an
are not confounded with artifacts. After the preprocessieg, [15]
the data analysis revealed a frontocentral ERP wave related
to error-processing: the feedback-related negativity NFR
peaking aroun@50 ms, after feedback during performance on

14]

the HCT. As expected, errors elicited more negative anyfitu [16]
on that potential than correct responses. [17]
Furthermore, results suggest that this error potentiaN,FR

might provide an adequate method for detecting errors that
requires no additional processing time and could thereby
improve the speed and accuracy of EEG-based communica-
tion with devices using BCI applications. The use of Error
Potentials in BCI applications arises from the observatiiat

this additional information provided automatically by thser
could be used to improve the BCI performance.
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