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Abstract—Emotional content in speech has been so far charac-
terized by features based on linear source-filter models. However,
the presence of nonlinear and chaotic phenomena in speech
generation have been widely proven in literature. In this work,
a novel framework has been developed to explore recurrence
properties of vowels and describe nonlinear dynamics of speech.
Experiments using a database of short spoken sentences emitted
in the six basic emotions (anger, boredom, fear, happiness,
neutral, sadness) show preliminary results of the approach.

Keywords–Speech Emotion Recognition; Recurrence Plot; Re-
currence Quantitative Analysis.

I. INTRODUCTION

Speech Emotion Recognition (SER) is a recent field of
research that aims at identifying the emotional state of a
speaker through a collection of machine learning and pattern
recognition techniques [1].

As a classification problem, a SER system needs a set
of features able to optimally reflect the emotional content
in speech. According to the existing literature, it is possible
to distinguish three main categories of features: prosodic,
spectral, and quality-based [2]. Prosodic features such as the
fundamental frequency (pitch), the energy of the signal and
the rhythm/articulation rate, have been combined with spec-
tral measures (Mel Frequency Cepstral Coefficients (MFCC),
Linear Predictor Cepstral Coefficients (LPCC) and formants)
in different ways to improve the performances of the classifier
[3]. The third category includes acoustic cues related to the
shape of glottal pulse signal, its amplitude variation (shimmer)
and frequency variation (jitter) [4].

Although such features have been extensively used for the
development of SER systems, they are based on a source-filter
model [5], which represents a simplification of the process
of voice production that ignores more complex physiological
mechanisms. In fact, in the last two decades, nonlinear tools
for speech signal processing have spread out after new findings
concerning the occurrence of nonlinear phenomena during
voice production [6]. In particular, the evidence of the chaotic
behavior of certain processes involved in the speech generation
(e.g., turbulent airflow) [7], made the Chaos Theory a favored
approach for the study of nonlinear dynamics in the system
voice.

To describe these dynamics it is necessary to find the set
of the possible states that the system can take (to reconstruct
the phase space). This approach assumes that the speech signal
represents a projection of a higher-dimensional nonlinear dy-
namical system evolving in time, with unknown characteristics.
Embedding techniques can be employed to reconstruct the
attractor of the system in the phase space and provide a

representation of its trajectories. Afterward, it is possible to
describe the dynamic behavior of the system by studying the
properties of the embedded attractor: chaotic measures such as
Lyapunov exponents, correlation dimension and entropy, have
been successfully applied to the analysis of vocal pathologies
and speech nonlinearities [8] [9].

The behavior of the trajectories of a system in the phase
space can also be modeled through the recurrence, a property
that quantifies the tendency of a system to return to a state
close to the initial one. A Recurrence Plot (RP) is a graphic
tool that shows the recurrent behavior of the trajectories
of a system even with high-dimensional phase space [10].
Recurrence Quantitative Analysis (RQA) has been introduced
later to objectively evaluate the structures contained in a RP
through nonlinear measurements. RQA has found extensive
applications in many scientific fields, thanks to its effectiveness
in the presence of short and non-stationary data [11] [12].

In this work, we have developed a framework to explore
the recurrence properties of vowel segments taken from a set
of spoken sentences of a publicly available database, for six
categories of basic emotions (anger, boredom, fear, happiness,
neutral, sadness). An automatic vowel extraction module has
been built up to extract vowel segments from each sentence;
then, their time evolutions have been analyzed by means of
the RQA measures. To test the ability of these measures to
characterize the different emotional contents, they have been
grouped according to the emotion which they belong to and
statistical tests have been performed to compare the six groups.

The rest of the paper is divided in four sections: the
theoretical background is provided in Section II, the general
framework of the approach is explained in Section III, results
and conclusions are reported in Section IV and Section V,
respectively.

II. THEORETICAL BACKGROUND

This section provides a general overview of the basic con-
cepts related to the state space reconstruction of a dynamical
system and of the main tools used for the analysis of its
recurrence properties.

A. The Embedding Theorem
The state of a dynamical system is determined by the values

of the variables that describe it at a given time.
However, in a real scenario, not all the variables of the

system can be inferred and often only a time series {ui}Ni=1
is available as an output of the system.

Takens demonstrated that it is possible to use time delayed
versions of the signal at the output of the system to reconstruct
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a phase space topologically equivalent to the original one.
According to Takens’ embedding theorem [13], a state in the
reconstructed phase space is given by a m-dimensional time
delay embedded vector:

x⃗i =
(
ui, ui+τ , . . . , ui+(m−1)τ

)
(1)

where m is the embedding dimension and τ is the time delay.
For the embedded parameters estimation, several techniques
have been proposed. As an example, the First Local Minimum
of Average Mutual Information algorithm [14] can be used to
determine the time delay, while the False Nearest-Neighbors
algorithm [15] is usually employed to estimate the minimum
embedding dimension.

B. Recurrence Plots
A Recurrence Plot is a graphical tool that provides a rep-

resentation of recurrent states of a dynamical system through
a square matrix:

Ri,j(ϵ) = Θ (ϵ− ||−→xi −−→xj ||) , i, j = 1, ..., N (2)

with −→xi ,
−→xj the system state at times i, j, Θ the Heaviside func-

tion, ϵ a threshold for closeness, N the number of considered
states and || · || a norm function.

An entry of the matrix is set equal to one if the distance
between the corresponding pair of neighboring states is below
the threshold ϵ and zero elsewhere.

The resulting plot is symmetric and always exhibits the
main diagonal, called line of identity (LOI). Apart for the
general RP structure, it is often possible to distinguish small
scale structures, which show local (temporal) relationships of
the segments of the system trajectory (for a visual reference,
see Figure 3). In details:

• single isolated points are related to rare states;
• diagonal lines parallel to the LOI indicate that the

evolution of states is similar at different times;
• vertical lines mark time intervals in which states do

not change.

C. Recurrence Quantitative Analysis
Several measures of complexity (RQA) have been proposed

to obtain an objective quantification of the patterns in a
Recurrence Plot [11] [12].

RQA can be divided into three major classes:

1) Measures based on recurrence density. Among these,
the simplest measure is the recurrence rate (RR)
defined as:

RR(ϵ) =
1

N2

N∑
i,j=1

Ri,j(ϵ) (3)

It is a measure of the density of the recurrence points
in the RP.

2) Measures based on the distribution P (l) of lengths l
of the diagonal lines. Among these, the determinism
(DET ) is the ratio of the recurrence points that form
diagonal structures to all recurrence points and it is
an index of the predictability of a system:

DET =

∑N
l=lmin

lP (l)∑N
l=1 lP (l)

(4)

The RATIO, defined as the ratio between DET
and RR, combines the advantages of the these two
categories of measures: it has been proven that it is
able to detect some types of transitions in particular
dynamics.

3) Measures based on the distribution P (v) of vertical
line lengths v. This distribution is used to quantify
laminar phases during which the states of a system
change very slowly or do not change at all. The ratio
of recurrence points forming vertical structures to
all recurrence points of the RP is called laminarity
(LAM):

LAM =

∑N
v=vmin

vP (v)∑N
l=1 vP (v)

(5)

From a Recurrence Plot, it is possible to extrapolate the
recurrence times. The recurrence times of second type are:{

T
(2)
k = j′k+1 − j′k

}
k∈N

(6)

The set of T (2) measure the time distance between the begin-
ning of subsequent recurrence structures in the RP along the
vertical direction and they can be considered as an estimate of
the average of the lengths of white vertical lines in a column
of the plot [12].

A great advantage offered by this analysis is that the
calculation of the RQA measures for moving windows along
the RP allows to identify the transitions of dynamical systems.

III. GENERAL FRAMEWORK

The algorithm block scheme is represented in Figure 1.
Since the voice has a non-stationary nature, we perform a
short term analysis with a frame size of 40 ms and an overlap
of 50%. Given an input track, an automatic vowel extraction
module is used to detect and retain only the vowel frames and
for each of them the optimal parameters (m and τ ) for state
space reconstruction are found. Then, RPs are generated using
the time delay method, and some RQA measures extracted to
describe RPs quantitatively. Since a set of RQA measures can
be extracted, in principle, for each frame, statistics on these
measures may be collected to give a general description of the
emotional content of the input sentence.

Each step of the adopted framework is detailed in the
following sections.

A. Database
The German Berlin Emotional Speech Database (EmoDB)

[16] has been employed for all the experiments carried out in
this work. The database contains ten sentences pronounced by
ten actors (five males and five females) in 7 different emotional
states: neutral, anger, fear, happiness, sadness, disgust and
boredom. The audio tracks were sampled as mono signals
at 16 KHz, with 8 bit/sample. Most of the sentences were
recorded several times in different versions and the resulting
corpus was subjected to a perception test where the degree of
recognition of emotions and their naturalness were evaluated
by a group of listeners. Utterances with an emotion recognition
rate better than 80% and a naturalness score greater than 60%
were included in the final database. As shown in Table I,
among the 535 available sentences, some emotions prevail over
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Figure 1. The algorithm block scheme for an example input sentence.

the others. The emotion disgust has been excluded from our
analysis because of the too low number of tracks belonging to
this group.

TABLE I. NUMBER OF UTTERANCES IN EMODB

Emotion # of utterances
Anger 127
Boredom 81
Disgust 46
Fear 69
Happiness 71
Neutral 79
Sadness 62

B. Automatic Vowel Extraction
The vocal tract acts as a resonator filter which has its

own resonance frequencies known as formants: by varying
the shape of the vocal tract to produce different sounds, the
formant frequencies of the filter change too [5]. Therefore,
lots of characteristics of speech sounds can be detected by
analyzing the spectral content of their waveforms. In detail,
vowels, unlike consonants, show quasi-periodic waveforms and
this can be proved by differences in the first three formant
frequencies [5].

For these reasons, the estimation of the vowel segments
has been carried on by extracting spectral features from the
formant frequencies estimated from the power spectral density
of the audio track. Then, the features have been used to train
a classifier that automatically detects vowel segments in the
signal.

Supposing each frame the output of a stationary process,
an autoregressive model (AR) has been used to estimate the
power spectral density. First, the order of the model has been
identified with the Akaike’s Information Criterion (AIC) [17]
to avoid splitting line and spurious peaks in the final spectrum.
Subsequently, the Burg’s method [18] has been employed to
find the parameters of the AR model. This technique has been
preferred over the simple linear prediction analysis as the for-
mer identifies the optimal set of parameters by minimizing the
sums of squares of the forward and backward prediction errors
while the latter uses only the backward errors. Furthermore, as

compared with other parametric methods, the Burg’s algorithm
ensures more stable models and a higher frequency resolution
[19].

The peaks of the power spectral density are in correspon-
dence of the formants position. The first three peaks have been
identified in the estimated spectrum and for each of them the
following characteristics have been collected:

• the frequency at which they occur;
• the amplitude of the peak;
• the area under the spectral envelope within the −3dB

bandwidth.

To distinguish the vowel sounds from all other types of
phonemes (including silence intervals) a one-class classifica-
tion approach has been adopted. This method was introduced
by Schölkopf [20] as a variant of the two-class SVM to identify
a set of outliers amongst examples of the single class under
consideration. Thus, according to this approach, the outlier
data are examples of the negative class (in this case, the not-
vowels frames). A kernel function is used to map the data into
a feature space F in which the origin is the representative point
of the negative class. So, the SVM returns a function f that
assigns the value +1 in a subspace in which the most of the
data points are located and the opposite value −1 elsewhere,
in order to separate the examples of the class of interest from
the origin of the feature space with the maximum margin.

Formally, let us consider x1,x2, . . . ,xl, l training vectors
of the one class X , where X is a compact subset of RN . Let
Φ : X → F be a a kernel function that map the training vectors
into another space F . Separating the data set from the origin
is equivalent to solving the following quadratic problem:

min
w∈F,ξ∈Rl,ρ∈R

1

2
||w||2 1

νl

l∑
i=1

ξi − ρ (7)

subject to
(w · Φ(xi)) ≥ ρ− ξi, ξi ≥ 0 (8)

where ν ∈ (0; 1] is a parameter that controls the decision
boundary of the classification problem, ξi are the nonzero slack
variables, w a weight vector and ρ an offset that parametrizes
a hyperplane in the feature space associated with the kernel.
If w and ρ solve for this problem, then the decision function:

f(x) = sign(w · Φ(x)− ρ) (9)

will be positive for the most of the examples xi contained in
the training set.

Of course, the type of kernel function, the operating param-
eters of the kernel and the correct value of ν must be estimated
to build the one-class SVM classifier. As suggested by the
author, we have chosen a Gaussian kernel with Sequential
Minimal Optimization (SMO) algorithm to train the classifier,
since the data are always separable from the origin in the
feature space. For generic patterns x and y, a Gaussian kernel
is expressed as:

k(x,y) = exp
( ||x− y||2

c

)
(10)

where the parameter c is the kernel scale that controls the
tradeoff between the over-fitting and under-fitting loss in the
feature space F .
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Regarding the choice of the value ν, it should be taken into
account that it represents an upper bound on the fraction of
outliers and, at the same time, a lower bound on the fraction
of support vectors. It is then necessary to find a value that
on the one hand is able to to describe the whole dataset for
training and on the other hand avoids the over-training of such
data. Results on the tuning of the parameters on real data and
classification performances are in Section IV-A.

C. RP/RQA
In this work, the dynamics of each vowel were treated

as local descriptions of the overall process of expression
of a particular emotion. Therefore, after extraction of vowel
segments from a sentence, a frame-level analysis is applied
to monitor such dynamics. First, time delays and embedding
dimensions are estimated to allow a correct reconstruction
of the dynamics in the phase space. Hence the Recurrence
Plots are obtained and the Recurrence Quantitative Analysis
is performed on RPs. In order to explore the time depen-
dent behavior of the recurrence measures, the computation is
performed using sliding windows of length W (less than the
duration of a frame) with an offset of Ws samples along the
main diagonal of the RP of each vowel frame. The values
of these two parameters are calculated accounting for the
scale of the dynamics to be investigated (local/global) and
for the temporal resolution to be achieved. The overall trend
of each RQA measure is finally reconstructed considering the
various vowel segments neatly placed in the sentence. For an
experimental dataset of sentences, the trends of each RQA
measures are grouped by emotion and some statistics are
computed to explore the general characteristics of the emotions
expressed in the sentences.

IV. RESULTS

The following sections report the performances achieved
by the one-class SVM classifier and both qualitative and
quantitative results of the recurrence analysis.

A. Automatic Vowel Extraction
To train the one class SVM classifier, a dataset was used

of 128 segments of German vowels of duration equal to 40
ms, extracted from several sentences spoken by four people
(two men and two women) for the six emotions. In order to
identify the optimal values for the parameters c and ν, the
classifier was trained and validated several times. In particular,
due to the nature of the classification problem, an holdout
validation scheme has been adopted. So, another set of 83
speech segments including vowels, consonants and pauses, has
been used to tune the parameters and identify the most effective
model. Keeping fixed the value of ν, the classifier was retrained
by varying the value of the kernel scale in a predetermined
range. For each model obtained, the performances on the
validation set were evaluated in terms of accuracy, sensitivity
(or true positive rate), specificity (or true negative rate) and
false positive rate. The curves that illustrate the behavior of
such measures for three values of ν and by varying the kernel
scale from 0 to 2.7 are shown in Figure 2.

In Figure 2b and 2c only one point can be identified to
guarantee high performances of the classifier, since the values
of accuracy, sensitivity and specificity are high (around 0.7),
while the false positive rate remains low. For kernel scale

(a)

(b)

(c)

Figure 2. Accuracy, sensitivity, specificity and false positive rate of the one
class SVM classifier in function of the kernel scale c for the fixed parameter

(a) ν = 0.1 (b) ν = 0.5 (c) ν = 0.9.

values greater than this optimum, specificity and accuracy de-
crease rapidly, while sensitivity and false positive rate increase.
These results suggest that there is a rapid growth of the number
of false positives, i.e., the percentage of the not-vowels frames
incorrectly predicted as vowels by the classifier increases.

For our purposes, the system critically depends on the
percentage of false positives, since the classifier acts properly
if it is capable of rejecting the greatest amount of not-vowel
frames. Therefore, even at the expense of a lower number
of true positives and higher percentage of false negatives
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Figure 3. RPs of vowel /a/ in the track 08a02 for emotions: (a) happiness, (b) anger, (c) fear, (d) neutral, (e) boredom, (f) sadness; ϵ is setting to 10% of
maximum space diameter with a maximum norm.

(vowel frames incorrectly rejected), we have preferred to set
ν = 0.1 and consequently chosen the value of c at which the
classifier returns high values of accuracy and specificity, while
maintaining a false positive rate less than 15% (see Figure 2a).

To assess the performances of the one class SVM with
the chosen parameter settings (ν = 0.1 and c = 1.75),
we performed a final test on a set of 40 speech segments
independent of both the training and the validation sets. The
confusion matrix is shown in Table II. As it can be seen, the
low rate of false positives (not-vowels incorrectly predicted
as vowel frames) confirms the validity of the model for the
selected parameters (represented in Figure 2a for ν = 0.1 and
c = 1.75).

TABLE II. CONFUSION MATRIX OF THE ONE CLASS SVM ON THE TEST
SET COMPOSED OF 20 VOWEL AND 20 NOT-VOWEL FRAMES.

Predicted condition
Vowels Not-vowels

True conditions Vowels 9 11
Not-vowels 4 16

Figure 4. Median and iqr values of RATIO and T (2) measures for the six
groups of emotions.

B. Qualitative and quantitative results: RP-RQA

The patterns in RPs can reveal typical behaviors of the
system and so they can be used to provide a general description
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of the time evolution of the dynamic trajectories. Figure 3
shows the RPs of the vowel /a/ extracted in the same sentence
and approximately in the same position, pronounced by a
female subject for different emotions. As it can be seen, all
RPs have a topology with periodic patterns that are regularly
repeated, with the exception of the emotion fear in which
there are discontinuities and white bands that indicate the
presence of abrupt changes in the dynamics of the system.
Another distinctive feature is the length of the diagonal lines:
the RPs of boredom and neutral, besides being very similar
each other, have the longest diagonal lines; on the other hand,
anger and fear show very short diagonal lines. Moreover, a
drift can be noted in the emotion sadness: the RP fades away
from LOI indicating that the system varies very slowly. The
examples show that certain measures are most distinctive for
some emotions and that certainly the density of points in the
RPs, the length of the lines present in them and measures that
are able to differentiate the different kinds of time periodicity
(such as T (2)), can effectively distinguish among different
emotional levels.

On the basis of such considerations we performed the
analysis described in Section III-C on a set of tracks in EmoDB
(obtained by excluding from the entire set of tracks in the
database, those used to train the one class SVM), to extract
the collection of RATIO and T (2) values along time. The
measures were then grouped by emotions for the same RQA,
obtaining 2 sets of measures (each set consists of 6 groups
of data, one for each emotion). The non-parametric Kruskal-
Wallis test was employed for testing whether the 6 different
data groups of each RQA measure originate from the same
distribution (null hypothesis), at a significance level α = 0.05.
Both tests returned a p-value < 0.0001, so the null hypothesis
was rejected.

In order to better appreciate the possible differences among
populations, median and interquartile range (iqr) values of the
2 RQA measures for all the groups of emotions were computed
and are reported in Figure 4. It is noteworthy that boredom
and neutral exhibit very similar values and that there is a
relationship between the position of the emotion (based on the
median values) on the 2D plot and their levels of activation
(the so called arousal).

V. CONCLUSIONS

In this work, we have investigated the dynamic behavior
of vowels taken from a set of spoken sentences of the EmoDB
database, for the six emotions anger, boredom, fear, happiness,
neutral and sadness.

To extract only the vowel frames, an automatic vowel
extraction module was implemented. It consists essentially in
a one class SVM classifier that processes the not-vowels frame
as outliers. The tuning of the parameters of the classifier and
an accurate validation step allowed us to identify a model able
to achieve the 79% of accuracy.

Supposing that the expression of a particular emotional
content in a spoken sentence is a gradual complex process, we
exploited some properties of the local dynamics of the vowels
in it to understand certain aspects of the overall process. The
behavior of the trajectories of vowels dynamics was explored
by means of RPs. Two kinds of RQA measures were extracted
to describe RPs quantitatively. Statistical tests confirm that the

considered RQA measures result statistically significant for
discriminating the six groups of emotions.

In conclusion, it can be observed that certain RQA mea-
sures can better discriminate among the basic emotions exa-
mined. However, a further development could include a multi-
variate analysis to identify a specific subset of measures that
perform a better and more complete characterization of the
different emotional levels.
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