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Abstract—The paper deals with discrete-time systems defined by
difference equations whose transfer functions may have poles on
the unit circle. Contrarily to the regular cases the eigenfunctions
of these systems are no longer the exponentials. It is shown that
if the input is a product of a falling factorial by an exponential
the output is a linear combination of this kind of functions. In
particular, the very useful and well-known ARIMA case is studied
and exemplified.
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I. INTRODUCTION

The constant coefficient ordinary difference equations have
a long tradition in applied sciences and have a large amount
of enginnering applications, mainly in Signal Processing [1],
[3], [4], [10] where they are referred as ARMA (Autoregre-
sive Moving Average) models. In these fields the difference
equations are written in the general format

N
∑

k=0

aky(n− k) =

M
∑

k=0

bkx(n− k) (1)

wkere n,M,N ∈ Z and the coefficients ak, k = 0, 1, . . . , N
and bk, k = 0, 1, . . . ,M are real constants. Although we could
consider fractional delays as in [5], we will not do it here.
In the regular case the response of these systems to a sinusoid
is also a sinusoid with the same frequency [9], [10] which
leads to introduce the frequency response that is another way
of describing the system. In a general formulation we can say
that the exponentials βn, n ∈ Zβ ∈ C are the eigenfunctions
of these systems.
The situation is not so simple in the singular case that we
will study in this paper. However and as we will show the
role of the exponentials is played by functions defined as the
product of a falling factorial by an exponential. Let (n)k =
n(n − 1)(n − 2) . . . (n − k + 1) be the Pochammer symbol
for the falling factorial. We will assume that the input, x(n),
is the product of a falling factorial and an exponential defined
on Z:

x(n) = (n)Kβn (2)

where β is any complex number. This function does not
have either Z transform or Fourier transform [10]. As we
will show, these functions are not eigenfunctions, but we
can state: when the input of the system is a function of
the type (2) the output is a linear combination of several
similar functions. This statement is valid for any regular or
irregular system although we will pay a special attention to the
irregular cases, mainly the Autoregresive Integrated Moving
Average (ARIMA) models. So the frequency responses of

these systems loose the normal interpretation. This problem
was never considered with generality.
The procedure presented here is formally similar to the one
followed in [6]–[8] for dealing with systems defined by dif-
ferential equations.
We will start by introducing the eigenfunctions of difference
equations and compute the corresponding eigenvalues. These
are used to obtain the particular solutions we are looking for.
Several examples are presented to illustrate the behaviour of
the approach.
The objective of this paper is the study of singular cases corre-
sponding to the situations where the transfer function becomes
infinite; such situations are treated with all the generality. The
important ARIMA model is a particular case with a pole at 1.
We will show how to compute the output for these cases.
The paper outline is as follows. In section II, we will introduce
the exponentials as eigenfunctions of the ARMA systems. The
generalisation for the input as in (2) is done in section III. The
singular cases are treated in section IV where the particular
ARIMA. At last, we will present some conclusions.

II. THE EXPONENTIALS AS EIGENFUNCTIONS

The discrete convolution is defined by:

x(n) ∗ y(n) =

∞
∑

k=−∞

x(k)y(n− k), n ∈ Z (3)

This operation has several interesting properties, but we
will study only those interesting for the development we intend
to do.

1) Let the Kronecker delta be defined by

δ(n) =

{

1 for n = 0
0 for n 6= 0

(4)

As it is easy to verify, this function is the neutral
element of the convolution

x(n) = δ(n) ∗ x(n)

2) The convolution is commutative
In fact

x(n) ∗ y(n) = y(n) ∗ x(n)

as it is easily verified with the substitution m = n−k
in (3).

3) A shift in one factor produces the same shift in the
convolution. Let z(n) = x(n) ∗ y(n). Then

x(n− n0) ∗ y(n) = z(n− n0)
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and using the commutativity

y(n− n0) ∗ x(n) = x(n− n0) ∗ y(n)

For proof we start from (3)

x(n − n0) ∗ y(n) =

∞
∑

k=−∞

x(k − n0)y(n− k)

and substitute m for k − n0 to get

x(n− n0) ∗ y(n) =

∞
∑

m=−∞

x(m)y(n− n0 − k)

With these properties at hand we return to our objective of
computing the eigenfunction for equation (1).
Consider a particular input x(n) = δ(n) and let the corre-
sponding solution be h(n) that we will call Impulse Response.
So, this is the solution of

N
∑

k=0

akh(n− k) =

M
∑

k=0

bkδ(n− k) (5)

Now convolve both sides in (5) with x(n).

N
∑

k=0

akh(n− k) ∗ x(n) =

M
∑

k=0

bkδ(n− k) ∗ x(n)

Using the above properties of the convolution we can write

N
∑

k=0

ak [h(n− k) ∗ x(n)] =
M
∑

k=0

bkx(n− k)

A comparison of this equation with (1) allows us to conclude
that its solution is given by

y(n) = h(n) ∗ x(n) (6)

This means that the solution of (1) is the convolution of x(n)
with the impulse response.

Theorem 2.1: - The particular solution of the difference
equation (1) when x(n) = zn, z ∈ C, n ∈ Z is given by

y(n) = H(z)zn (7)

provided that H(z) exists.

This theorem shows that the exponentials are the eigenfunc-
tions of the constant coefficient ordinary difference equations.

Proof: Insert x(n) = zn into (6) and use (3) to get

y(n) =

∞
∑

k=−∞

h(k)zn−k =

∞
∑

k=−∞

h(k)z−kzn

with

H(z) =

∞
∑

k=−∞

h(k)z−k (8)

we obtain (7). H(z) is called Transfer Function of the system
defined by the difference equation (1) and is the Z transform
of the impulse response.

Inserting (7) into (1) we conclude immediately that

H(z) =
B(z)

A(z)
=

M
∑

k=0

bkz
−k

N
∑

k=0

akz−k

(9)

In the following we will consider that the characteristic
polynomial in the denominator is not zero for the particular
value of z at hand. Later we will consider the cases where
the characteristic polynomial is zero (z is a pole).

Example 1

Let x(n) = 2n and consider the equation

y(n) = x(n) + x(n− 1)

We have H(z) = 1 + z−1. So the particular solution is given
by y(n) = H(2)2n = 3

2 .2
n Let now x(n) = (−1)n. We have

y(n) = H(−1)(−1)n ≡ 0

Example 2

Consider the difference equation

y(n) + y(n− 1)− 4y(n− 2)+ 2y(n− 3) = x(n) + 2x(n− 1)

Let x(n) = (1/2)n. The solution is given by:

y(n) =
1 + 2(1/2)−1

1 + (1/2)−1 − 4(1/2)−2 + 2(1/2)−3
(1/2)n =

5

3
(1/2)n

The sinusoidal case: – In a particular setting, put z =
eiω0 . We obain immediately

y(n) = H(eiω0)eiω0n

Example 3

Consider the difference equation

y(n) + y(n− 1)− 4y(n− 2) + y(n− 3) = x(n)

Let x(n) = ei
π

2
n. The solution is given by:

y(n) =
1

1 + i−1 − 4i−2 + i−3
ei

π

2
n =

1

5
ei

π

2
n

This is very interesting since it allows us to compute easily
the solution when x(n) = cos(ωot) or x(n) = sin(ωot).
Consider the first case; the second is similar. We have

x(n) = cos(ωot) =
1

2
eiω0n +

1

2
e−iω0n

that leads to

y(n) = H(eiω0)
1

2
eiω0n +H(e−iω0)

1

2
e−iω0n

The function H(eiω) =
∣

∣H(eiω)
∣

∣ eiϕ(eiω) is called frequency

response in engineering applications. The function
∣

∣H(eiω)
∣

∣ is

the amplitude spectrum and is an even function, while ϕ(eiω)
is the phase spectrum and is an odd function, if the coefficients
in (1) are real.

Theorem 2.2: - The particular solution of the difference
equation (1) when x(n) = cos(ωon) is given by

y(n) =
∣

∣H(eiω0)
∣

∣ cos
[

ωon+ ϕ(eiω0)
]

(10)
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Proof: According to what we said above,
∣

∣H(e−iω)
∣

∣ =
∣

∣H(eiω)
∣

∣ and ϕ(e−iω) = −ϕ(eiω) which leads to

y(n) =
∣

∣H(eiω0)
∣

∣

1

2

[

eiω0neiϕ(eiω) + e−iω0ne−iϕ(eiω)
]

that leads immediately to the result.

It is important to remark that when H(eiω0) = 0, y(n) is
identically null. This is the reason why we call filters the
systems described by linear difference equations. This theorem
states clearly the importance of the frequency response of a
system.

Example 4

Consider again the above equation, but change the second
member:

y(n)+ y(n− 1)− 4y(n− 2)+ y(n− 3) = 3x(n)− 4x(n− 1)

and assume that x(n) = sin
(

π
2n

)

. Then

H(z) =
3− 4z−1

1 + z−1 − 4e−2 + z−3

and

y(n) =
1

2i

3− 4e−iπ/2

1 + e−iπ/2 − 4e−iπ + e−i3π/2
ei

π

2
n

−
1

2i

3− 4eiπ/2

1 + eiπ/2 − 4eiπ + e3π/2
e−iπ

2
n

leading to

y(n) = sin
(π

2
n+ ϕ

)

with ϕ = arctan (4/3)

III. FUNCTIONS EQUAL TO THE PRODUCT OF A FALLING

FACTORIAL BY AN EXPONENTIAL

To go further we are going to consider the case x(n) =
(n)Kβn, n ∈ Z,K ∈ N0. Although not so important as
the previous case, it constitutes a simple generalization that is
interesting from analytical point of view. It is not difficult to

see that we can write x(n) = βK lim
z→β

dK

dzK zn. Return to (6)

and particularise for our case to obtain:

y(n) =

∞
∑

k=−∞

h(k)(n− k)Kzn−k =

∞
∑

k=−∞

h(k)
dK

dzK
zn−k

For z in the region of convergence of the Z transform the
series converges uniformly and we can commute the derivative
and summation operations. This procedure leads to the next
theorem.

Theorem 3.1: - The particular solution of the difference
equation (1) when x(n) = (n)Kβn is given by

y(n) = βK lim
z→β

dK [H(z)zn]

dzK
(11)

Using the Leibniz rule we can obtain another expression
for y(n) stated in as follows.

Theorem 3.2: - The particular solution of the difference
equation (1) when x(n) = (n)Kβn is given by:

y(n) =

K
∑

j=0

(

K

j

)

H(j)(β)(n)K−jβ
n (12)

provided that β is not a pole of the transfer function.

In particular, when x(n) = (n)K the solution is given by:

y(n) =
K
∑

j=0

(

K

j

)

H(j)(1)(n)K−j (13)

For K = 0, x(n) = 1 and y(n) = H(1).

Example 5

Return back to the above example y(n)+y(n−1)−4y(n−
2) + y(n − 3) = 3x(n) − 4x(n − 1) and put x(n) = n. We
obtain immediately

y(n) =

1
∑

j=0

(

1

j

)

H(j)(1)(n)1−j

As H(z) = 3−4z−1

1+z−1−4e−2+z−3 , H(1) = 1 and H ′(1) = 0 the
solution is

y(n) = n

IV. THE SINGULAR CASE - ARIMA

Consider now the situation where the characteristic poly-
nomial in the denominator has an mth order root for z = β.
To look for a solution assume that x(n) = w(n)βn and

y(n) = v(n).βn (14)

Insert x(n) and y(n) into (1) to obtain a new equation

N
∑

k=0

akβ
−kv(n− k) =

M
∑

k=0

bkβ
−kw(n− k) (15)

with transfer function H(βz). In fact we moved the root of
A(z) from z = β to z = 1. This means that we have a mth

order pole at z = 1. We can say that we transformed the
singular system into an ARIMA system that appears frequently
in enonometric studies. In terms of the variable n we have a
mth order differentiation at the output. This is equivalent to do
an anti-difference on the input. Now perform a new substitution
u(n) = Dmv(n) where D means the differencing operation
Dv(n) = v(n)− v(n− 1) to obtain

N−m
∑

k=0

āku(n− k) =

M
∑

k=0

b̄kw(n− k) (16)

where āk, k = 0, 1, . . . , N−m are the coefficients of the new

characteristic polynomial Ā(z) = A(βz)
(1−z−1)m and numerator

polynomial B̄(z) = B(βz).

For the particular case we are interested in, w(n) = (n)K
we can use (13). Let D−1 represent the anti-difference –
D−1Df(n) = DD−1f(n) = f(n) – essentially the mth

order primitive without primitivation constants. So v(n) =
D−mu(n), allowing to obtain the following result.
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Theorem 4.1: - The particular solution of the difference
equation (1) when x(n) = (n)Kβn with A(β) = 0 is given
by

y(n) = βnD−m





K
∑

j=0

(

K

j

)

H̄(j)(1)(n)K−j



 (17)

with

H̄(z) =
B̄(z)

Ā(z)
=

(1− z−1)mB(βz)

A(βz)

It is not difficult to show that (17) can be written as

y(n) = βn





K
∑

j=0

(

K

j

)

H̄(j)(1)
(K − j)!

(K +m− j)!
(n)K+m−j





(18)
where we used the following recursively obtained result

D−m(n)K =
K!

(K +m)!
(n)K+m (19)

If K = 0 (pure exponential input), we obtain:

y(n) = βnH̄(1)
1

m!
(n)m (20)

If we make β = eiω0n we are led to conclude that the response
of the ARIMA model to a pure sinusoid is never a pure
sinusoid: the amplitude increases with time. This is the reason
why this model is used for modeling non-stationary situations.

Example 6

Consider the following equation with x(n) = n(−1)n

y(n)− y(n− 1)− 4y(n− 2)− 2y(n− 3) = x(n)

The point z = −1 is a pole of the transfer function,
A(−1) = 0, of order m = 1. On the other hand,

H̄(z) = 1+z−1

1−z−1−4z−2−2z−3 = 1
1−2z−1−2z−2 and H̄ ′(z) =

− −2z−2
−4z−3

(1−2z−1−2z−2)2 , leading to H̄(−1) = 1 and H̄ ′(−1) = 2.

The solution is y(n) = [1/2(n)2 + 2n] (−1)n.

Example 7

Consider the following ARIMA equation with x(n) = 1

y(n)− 2y(n− 1) + 3y(n− 2)− 2y(n− 3) = x(n)

The point z = 1 is a pole of the transfer function, A(1) = 0,
of order m = 1. On the other hand,

H̄(z) =
1

1− z−1 + 2z−2

leading to H̄(1) = 1/2. The solution is y(n) = n/2.

Example 8

The oscillator is a very interesting system that can be
defined by the equation

y(n)−2 cos(ω0)y(n−1)+y(n−2) = x(n)−cos(ω0)x(n−1)

Now, let x(n) = eiω0n. The system has two simple (m = 1)
poles at e±iω0n. So, H̄(eiω0) = 1/2 and the output is easily
obtained

y(n) =
1

2
neiω0n

As we said above, it is a non-stationary model.

V. CONCLUSIONS

The singular steady-state output in discrete-time linear
systems was studied using an eigenfunction approach to the
computation of the steady-state output. Products of falling
factorial and exponentials were used as inputs and the corre-
sponding outputs computed in a simple way. Some examples
were used to illustrate the procedure, in particular the ARIMA
case was considered.
This formulation can be used to study the autocorrelation
function of the output when the input is a stationary stochastic
process.
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