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Abstract—Active contour models are designed to evolve an initial
curve, called level set, to extract the desired object(s) in an image.
Various models are used, such as Chan-Vese (CV) model. The
CV model has the global segmentation property to segment all
objects in an image. The problem with this model is the high time
computing. In order to reduce it, our contribution in this work
is the association of a semi-implicit Additive Operator Splitting
(AOS) technique with the CV model in biphase and multiphase
cases. In this paper, we present the new association in biphase
and multiphase cases with simulations showing the efficiency of
the proposed method.

Keywords–Image segmentation; actives contours; Chan Vese;
AOS scheme.

I. INTRODUCTION

Image segmentation is the task of partitioning an image
into multiple regions. The most known region based method
has been proposed by Mumford Shah [1] who have introduced
a general optimization framework. To determine desired curves
or surfaces, this method uses an energy functional based on
regional geometric properties such as the area of the region, its
contour length and the variation of individual pixel intensities
inside and outside the region. However, the Mumford Shah
[2] model cannot be easily implemented. The CV method [2]
is a special implementation of Mumford Shah using a level
set function for the case of two phases with two piecewise
constants. The basic idea of CV model is to minimize energy
functional by solving the Euler-Lagrange equation. This min-
imisation takes enough time in image segmentation.

To reduce the time of segmentation, Weickert et al. [3]
provide a fast algorithm using the semi-implicit AOS scheme.
The basic idea behind the AOS schemes is to decompose a
multi-dimensional problem into one-dimensional ones that can
be solved very efficiently. Then the final multi-dimensional
solution is approximated by averaging the one-dimensional
solutions. In [4], the authors present a combination of the
semi-implicite AOS scheme and a narrow-band technique
which is associated to the geodesic active contours. This
association requires re-initialization for each iteration which
is the weakness of the method. As solution, Kuhne et al. [5]
provide a fast algorithm using an semi-implicit AOS scheme
technique which is suitable both for the geometric and the
geodesic active contour model. In [6], the authors propose
a new selective segmentation model, combining ideas from
global segmentation, that can be reformulated in a convex
way such that a global minimizer can be found independently
of initialization. They present the Convex Distance Selective
Segmentation (CDSS) functional (based on CV model) which

is associated with the semi-implicite AOS scheme. In our work,
we use a level set representation of the CV model with the
semi-implicite AOS scheme in order to improve the speed of
the segmentation in biphase and multiphase cases.

This paper is organized as follows. Section 2 contains a
review of level set method and the CV model for biphase and
multiphase cases. In Section 3, we present the semi-implicite
AOS scheme. Then, we present the CV model with the semi-
implicite AOS scheme in biphase and multiphase cases in
Section 4. Experimental results are given in Section 5.

II. ACTIVE CONTOUR MODELS

In this section, we shall first provide an overview of level
set theory before we get into the details of the CV model.

A. Level set method
A level set method is a numerical technique, which helps

with tracking moving fronts to interfaces and shapes. This
technique was first introduced by Osher et al. in [7], where the
boundaries are given by level sets of a function φ(x), naming
it as the level set method. This method is very successful due
to a very easy way of following shapes that change topology.
For a given interface Γ = ∂Ω as shown in Figure 1, the level
set is independent of the parametrisation of the contour and
can be used to represent the interface evolution. The idea of
the level set method is to implicitly represent an interface Γ
as the level set of a function φ. The level set function φ of the
closed front Γ is defined as follows:{

φ(x) > 0 inside Γ
φ(x) < 0 outside Γ,
φ(x) = 0 on Γ.

Where x ∈ R2.
The adjusting contour at time t is denoted by φ(x(t); t){

φ(x(t); t) > 0 inside Γ
φ(x(t); t) < 0 outside Γ,
φ(x(t); t) = 0 on Γ.

The level set value of a point on the contour with motion
must always be 0.

φ(x(t); t) = 0 (1)

A derivation of (1) with respect to t and after some
manipulation, yields PDE equation:

∂φ

∂t
+ F |∇φ| = 0 (2)
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Figure 1. Representation of the interface Γ.

Where F stands for the speed in which the contour propa-
gates in normal direction with an initial condition φ(x, t = 0)
(the initial drawn curve).

B. The CV model

1) biphase case: In [2], the authors present a special
implementation of the CV method based on the use of the
level set method to minimize the piecewise constant two phases
Mumford Shah functional [1]. The advantage of this imple-
mentation is the possibility to detect objects whose boundaries
are not necessarily defined by gradient and overcame the
problematic tracking of Γ. For a given image u0 in domain
Ω, the CV model is formulated by minimizing the following
energy functional :

FCV = µ

∫
Ω

δ(φ)|∇φ|dxdy + ν

∫
Ω

H(φ)dxdy +

λ1

∫
Ω

|u0(x, y)− c1|2H(φ(x, y))dxdy + (3)

λ2

∫
Ω

|u0(x, y)− c2|2(1−H(φ(x, y)))dxdy

Where µ, λ1 and λ2 are positive parameters, φ is a level
set function, H(φ) is the Heaviside function and δ(φ) is the
Dirac function. Generally, the regularized versions are selected
as follows: {

Hε(φ) = 1
2

(
1 + 2

π arctan
(
φ
ε

))
,

δε(φ) = 1
π

ε
φ2+ε2 .

(4)

The two piecewise constants c1 and c2 are defined as

c1 =

∫
Ω
u0(x, y)Hε(φ(x, y))dxdy∫

Ω
Hε(φ(x, y))dxdy

, (5)

c2 =

∫
Ω
u0(x, y)(1−Hε(φ(x, y)))dxdy∫

Ω
(1−Hε(φ(x, y)))dxdy

, (6)

The evolution equation is given by :

∂φ

∂t
= δε(φ)[µ∇.( ∇φ

|∇φ|
)−ν−λ1(u0−c1)2+λ2(u0−c2)2] (7)

2) multiphase case: The CV model for multiphase piece-
wise constant (we use two level set functions φ1 and φ2) is
formulated by minimizing the following energy functional [8]:

Fε,4 =

∫
Ω

(u0 − c11)
2
Hε (φ1)Hε (φ2) dxdy

+

∫
Ω

(u0 − c10)
2
Hε (φ1) (1−Hε (φ2)) dxdy

+

∫
Ω

(u0 − c01)
2

(1−Hε (φ1))Hε (φ2) dxdy

+

∫
Ω

(u0 − c00)
2

(1−Hε (φ1)) (1−Hε (φ2)) dxdy

+µ

∫
Ω

|∇Hε (φ1)|+ µ

∫
Ω

|∇Hε (φ2)| (8)

Where

c11(φ) =

∫
Ω
u0Hε(φ1)Hε(φ2)dxdy∫

Ω
Hε(φ1)Hε(φ2)dxdy

, (9)

c10(φ) =

∫
Ω
u0Hε(φ1)(1−Hε(φ2))dxdy∫

Ω
Hε(φ1)(1−Hε(φ2))dxdy

, (10)

c01(φ) =

∫
Ω
u0(1−Hε(φ1))Hε(φ2)dxdy∫
Ω

(1−Hε(φ1))Hε(φ2)dxdy
, (11)

c00(φ) =

∫
Ω
u0(1−Hε(φ1))(1−Hε(φ2))dxdy∫
Ω

(1−Hε(φ1))(1−Hε(φ2))dxdy
, (12)

Evolution equations of φ1 and φ2 are given by:

∂φ1

∂t
= δε(φ1){µdiv(

∇φ1

|∇φ1|
)

−[((u0 − c11)2 − (u0 − c01)2)(Hε(φ2)) (13)
+((u0 − c10)2 − (u0 − c00)2)(1−Hε(φ2))]}

∂φ2

∂t
= δε(φ2){µdiv(

∇φ2

|∇φ2|
)

−[((u0 − c11)2 − (u0 − c10)2)(Hε(φ1)) (14)
+((u0 − c01)2 − (u0 − c00)2)(1−Hε(φ1))]}

III. AOS SCHEME

The AOS method is proposed by Tai et al. in [9] and
Weickert et al. in [3]. The AOS scheme guarantees equal
treatment of all coordinate axes and is stable for big time
steps. The scheme presents the semi-implicit algorithm based
on a discrete non-linear diffusion scale-space framework. This
scheme is applied to the m-dimensional diffusion equation and
it is given in the following form:

∂φ

∂t
= div(g∇φ) + f(x, φ). (15)

∂φ

∂t
=

m∑
j=1

∂

∂xj
(gj(φ)

∂φ

∂xj
) + f(x, φ). (16)

Where [0, T ] × Ω ⊂ Rm. The initial and boundary condi-
tions are:

φ(0, .) = φ0 and
∂φ

∂n
= 0 on ∂Ω,
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We consider discrete times tk = k∆t, where k ∈ N0 and
∆t a semi-implicit discretization of the diffusion equation.

φk+1 =

(
I −∆t

m∑
l=1

Al(φ)

)−1

φ̂k, k = 1, 2, ... (17)

Where φ̂k = φk + ∆tf .

We may consider AOS variant (for m=2)

φk+1 =
1

2

2∑
l=1

(
I − 2∆tAl(φ

k)
)−1

φ̂k, k = 1, 2, ... (18)

The AOS scheme offers one important advantage [10] : the
operators Bl(uk) = I − 2∆tAl(φ

k) lead to strictly diagonally
dominant tridiagonal linear systems, which can be solved very
efficiently with Thomas algorithm. This algorithm has a linear
complexity and can be implemented very easily.

To implement equation (18), we proceed in three steps [10]:

1) Evolution in x direction with step size 2∆t:
Solve the tridiagonal system(
I − 2∆tAx(φk)

)
υk+1 = φ̂k for υk+1.

2) Evolution in y direction with step size 2∆t:
Solve the tridiagonal system(
I − 2∆tAy(φk)

)
ωk+1 = φ̂k for ωk+1.

3) Averaging:
Compute φk+1 := 0.5(υk+1 + ωk+1).

IV. THE CV MODEL WITH THE SEMI-IMPLICITE AOS
SCHEME

In this section, we present the CV model with the semi-
implicite AOS scheme in biphase and multiphase cases.

A. Biphase case

From equation (7), we denote:

f = δε(φ){−[λ1(u0 − c1)2 − λ2

(u0 − c2)2]− ν}. (19)

To avoid singularities, we replace the term |∇φ| with
|∇φ|β =

√
φ2
x + φ2

y + β and denote W = frac1|∇φ|β .

Discretizing (7) by employing the AOS scheme, we get the
following equation:

φn+1 =
1

2

∑
l=1

2(I − 2∆tAl(φ
n))−1φ̂n (20)

The matrices Al, for l = 1, 2, are tridiagonal matrices
derived using finite differences [11] and φ̂n = φn + ∆tf .
One modification is introduced on the AOS equation is in A1

and A1, where we add the term µδε(φ
n) because we work

directly with the level set function φ.

(A1(φn)φn+1)i,j = µδε(φ
n)
Eni+1,j + Eni,j

2h2
x

(φn+1
i+1,j − φ

n+1
i,j )

−µδε(φn)
Eni,j + Eni−1,j

2h2
x

(φn+1
i,j − φ

n+1
i−1,j)

(A2(φn)φn+1)i,j = µδε(φ
n)
Eni,j+1 + Eni,j

2h2
y

(φn+1
i,j+1 − φ

n+1
i,j )

−µδε(φn)
Eni,j + Eni,j−1

2h2
y

(φn+1
i,j − φ

n+1
i,j−1)

The algorithm of the CV model with the semi-implicit AOS
in biphase case is:

1) Initialize φ0 by φ0, k=0.
2) compute f from equation (19),
3) Compute c1(φk) and c2(φk) by (5) and (6).
4) Compute φ(k) using (20).
5) Check whether the solution is stationary. If not, repeat

2-5

B. multiphase case

From equation (13), we denote :

f1 = δε(φ1){−[((u0 − c11)2 − (u0 − c01)2)

(Hε(φ2)) + ((u0 − c10)2 (21)
−(u0 − c00)2)(1−Hε(φ2))]}

From equation (14), we denote :

f2 = δε(φ2){−[((u0 − c11)2 − (u0 − c10)2)

(Hε(φ1)) + ((u0 − c01)2 (22)
−(u0 − c00)2)(1−Hε(φ1))]}

To avoid singularities, we replace the term |∇φ1| with
|∇φ1|β =

√
φ2

1x + φ2
1y + β and |∇φ2| with |∇φ2|β =√

φ2
2x + φ2

2y + β

The algorithm of the CV model with the semi-implicit AOS
in multiphase case is:

1) Initialize φ0
1 and φ0

2 by φ10
and φ20

, k=0.
2) compute c11(φk), c10(φk), c01(φk) et c00(φk)
3) compute f1 and f2 by equation (21) and (22).
4) Compute φ(k)

1 using (20) and φ(k)
2 using (20)

5) Check whether the solution is stationary. If not, repeat
2-5
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Figure 2. Segmentation by CV model (biphase case) of boat.

Figure 3. Segmentation by CV model (biphase case) of MR image of knee.

Figure 4. Segmentation by the CV model with semi-implicite AOS scheme
(biphase case) of boat.

Figure 5. Segmentation by the CV model with semi-implicite AOS scheme
(biphase case) of MR image of knee.

Figure 6. Segmentation by CV model (multiphase case) of boat.

Figure 7. Segmentation by CV model (multiphase case) of MR image of
knee.

Figure 8. Segmentation by the CV model with semi-implicite AOS scheme
(multiphase case) of boat.

Figure 9. Segmentation by the CV model with semi-implicite AOS scheme
(multiphase case) of MR image of knee.

V. EXPERIMENTAL RESULTS

In the biphase case, the constants are given as follow
ν = 0, ∆t = 1 and λ1 = λ2 = 1. In Figures 2 and 3, we
illustrate the segmentation by the CV model for boat and MR
of knee images. In Figures 4 and 5, we show the segmentation
by the CV model with semi-implicite AOS scheme for the
same images. The segmentation illustrates the two phases and
the results are almost similar for the two methods. For the
multiphase case, the constants are given as follow ν = 0 and
λ1 = λ2 = 1. In Figures 6 and 7, we illustrate the segmentation
by the CV model for boat and MR of knee images, but in
Figures 8 and 9 we show the segmentation by the CV model
with the semi-implicite AOS scheme for the same images. The
two methods give exactly the same segmentation where we
can see the four phases. The comparison study relative to time
computing is summarized in Tables I and II; we deduce that
the CV model with semi-implicite AOS scheme reduces the
time computing of the segmentation by half.
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TABLE I. COMPARISON BETWEEN THE CV MODEL AND THE CV
MODEL WITH THE SEMI-IMPLICITE AOS SCHEME IN BIPHASE

CASE.

Image Boat MR image of knee
Method CV CV-AOS CV CV-AOS

CPU time (s) 110.6671 56.7532 s 51.9639 22.1521

TABLE II. COMPARISON BETWEEN THE CV MODEL AND THE CV
MODEL WITH THE SEMI-IMPLICITE AOS SCHEME IN

MULTIPHASE CASE.

Image Boat MR image of knee
Method CV CV-AOS CV CV-AOS

CPU time (s) 158.2630 71.0429 70.3253 s 28.1270

VI. CONCLUSION

In this paper, we have used the advantages of the semi-
implicit AOS technique in order to fast the CV model for
image segmentation in biphase and multiphase cases. The
experimental results show that the segmentation is done in the
two cases, with the the superiority of the CV model with the
semi-implicite scheme compared to the CV model concerning
the time computing. As future work, we plan to associate the
semi-implicit AOS technique with other active contour models.
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