
Real Time Hyperspectral Imaging using High Frame Rate Video Camera and

GPGPU Processing

Enagnon Aguénounon, Manon Schmidt, Foudil Dadouche, Wilfried Uhring, Sylvain Gioux

ICube, UMR 7357, Université de Strasbourg and CNRS, 300 bd Sébastien Brant - CS 10413 - F-67412 Illkirch Cedex,

France

Email: wilfried.uhring@unistra.fr

Abstract—This paper presents a new method to get real time

hyperspectral images using time modulation of light and

demodulation by means of General-Purpose computing on

Graphics Processing Units (GPGPU). Three different Compute

Unified Device Architecture (CUDA) implementations of real

time hyperspectral images demodulation are presented. These

methods are compared using a numerical simulation. The

results show an execution time as low as 18 µs per wavelength

and per frame for the Custom-made proposed implementation

for a 512x512 pixels frame.

Keywords-hyperspectral imaging; GPGPU; C CUDA; real

time, FFT.

I. INTRODUCTION

The purpose of hyperspectral imaging is to obtain more

information on the scene (objects, samples) by adding a

spectral dimension. This additional information may be

useful in many applications ranging from microscopy [1] to

astronomy. Among these applications we can quote

geosciences [2][3], medical applications [1][4], food quality

and safety [5], art work [6] and many others. To address the

specific constraints of those applications, from the infinitely

small to the infinitely large, several methods have been

developed over time. In terms of instrumentation, these

methods are commonly classified in 3 main categories [7]:

(1) methods based on the dispersive elements (grating,

prism, grism) which deviates the light differently according

to the wavelength, (2) the methods based on filter elements

that allow to get one wavelength or a spectral band at a time

makes use of a filter wheels or tunable filters to get all

spectral information and (3) interferometer systems based

methods. Alternatively, it is possible to classify the methods

in 3 other categories depending of the field of view:

whiskbroom, pushbroom and framing [7]. The whiskbroom

category refers to a point system using one of the

aforementioned instrumentation methods and that requires

to scan the entire scene to get the hyperspectral data. The

pushbroom category is usually composed of several

whiskbrooms that each acquires a line by scanning the scene

in the opposite direction. Finally, the framing category, built

around a whiskbroom or a pushbroom, is able to scan an

entire scene at a time. It may use filters to acquire spectral

information over time or be designed by stacked detectors,

sensitive to different incident radiation spectrum. Most of

these techniques are nowadays integrated into systems and

many manufacturers offer both sensors technology and

hyperspectral cameras.

In this article, we propose a new method to get real time

hyperspectral images using time modulation of light and

GPGPU processing. The proposed method allows using a

classic monochrome camera to acquire several wavelengths

simultaneously. It is robust to noise, does not require a

complex optical or mechanical system and offers at the

same time a very high spectral and spatial resolution.

The details of this method are described in the following

sections. First, the operating principle of the hyperspectral

method is introduced in Section II. Section III presents the

Graphics Processing Units (GPU) implementation of the

wavelengths extraction algorithm. The testing methods are

reported in Section IV and the obtained results are presented

in Section V where the advantages and current limitations of

the proposed method are also discussed. Section VI

provides some final observations, as well as future work

required to improve reliability, robustness, efficiency and

practicality of this hyperspectral imaging method.

II. PROPOSED METHOD

A. Principle

The principle of the method is inspired from amplitude

modulation and demodulation used in telecommunication

[8]. As shown in the block diagram “Figure 1”, the typical

system is composed of a camera, several modulated laser

sources, a projection system, a high speed acquisition frame

grabber and a GPU.

The approach is composed of two consecutive steps. The

first one consists of time modulation of k laser sources with

different wavelengths k in a sinusoidal manner at different

frequencies Fk. The chosen frequencies are exact

frequencies in the discrete Fourier domain given by the

formula (1): they depend on the camera framerate (fps), the

number of images (N), which will be used later for the

demodulation and the spectrum position (k) in Fourier

domain. In a case where a modulation frequency does not

match an exact discrete Fourier frequency, it will spread its

energy on the two adjacent modulation frequencies, leading

to possible crosstalk, as illustrated in “Figure 2”.

(1)

Fk =
k × fps

N

50Copyright (c) IARIA, 2018. ISBN: 978-1-61208-638-5

SIGNAL 2018 : The Third International Conference on Advances in Signal, Image and Video Processing

In the second step, the spectral contribution of each

wavelength can be isolated by using discrete Fourier

transform during a demodulation process on a computer. In

order, to keep a high framerate at the end of the process the

temporal demodulation is performed by using a GPU

processing.

...

Subject

Projector Camera

Laser source

modulated at

Laser source

modulated at

Laser source

modulated at

A.

B.

I

...

I

Temporal

demodulation

GPU Processing

(CUDA)

x

y

Time

Acquisition

High speed

frame grabber

Figure 1. Real time hyperspectral acquisition and processing setup

(A: Projection system and camera, B: Acquisition and processing system).

B. Spectral information extraction

In order to get the spectral contributions of each
wavelength, a discrete Fourier transform is used from the N
acquired images referred in (1).

The discrete Fourier transform of one pixel in time is
given by:

(2)

With

(3)

Thus:

(4)

10 20 30 40 50 60 70 800

Modulation frequency

f

A.U.

Precise Fourier Frequency

10 20 30 40 50 60 70 800 f

A.U.

Figure 2. Sample of good/bad Frequency positioning in Fourier domain -

arbitrary unit (A.U.).

And the amplitude value of (4) is the spectral

contributions of the wavelength modulated at a given
frequency.

(5)

Depending on the application, a windowed step or rolling
window is used. According to our experience, the best way
to extract a hypercube data is to use the rolling window
method. Indeed, the next pixel in time is given by (6) and can
be rewritten with (7) and (8):

(6)

(7)

(8)

Xk = xn ∗ e−i2π
nk
N

N−1

n=0

e−i2π
nk
N = cos −2π

nk

N
 + i sin −2π

nk

N

Xk = xn cos −2π
nk

N

N−1

n=0

+ i xn sin −2π
nk

N

N−1

n=0

 Xk = xn cos −2π
nk

N

N−1

n=0

2

+ xn sin −2π
nk

N

N−1

n=0

2

Xk = xn cos −2π
 n mod N k

N

N−1+1

n=1

+ i xn sin −2π
 n mod N k

N

N−1+1

n=1

 xn cos −2π
 n mod N k

N

N−1+1

n=1

= xn cos −2π
 n mod N k

N

N−1

n=0

 −x0 cos −2π
 0 mod N k

N
 + xN cos −2π

 N mod N k

N

 xn sin −2π
 n mod N k

N

N−1+1

n=1

= xn sin −2π
 n mod N k

N

N−1

n=0

 −x0 sin −2π
 0 mod N k

N
 + xN sin −2π

 N mod N k

N

51Copyright (c) IARIA, 2018. ISBN: 978-1-61208-638-5

SIGNAL 2018 : The Third International Conference on Advances in Signal, Image and Video Processing

Start

I > N
Add to the previous

value Coef x Pixel

Add to the previous value
Coef x Pixel and remove

value in position (-N)

I = N

Compute amplitude
of the frequency

Compute amplitude
of the frequency

End

N

Y

N

Y

Figure 3. Demodulation algorithm applied to all the pixels of the images

from the high-speed camera.

This technique, depicted in the “Figure 3”, where I is the

number of acquired frames, replaces N multiplications with
the subtraction of the contribution of the first sample of the
rolling windows and the addition of the new sample
contribution, resulting in a significant gain of resources since
processors use more resources for multiplication than for
addition or subtraction.

III. GPU PROCESSING

Each pixel being totally independent in time from its

neighbors, the method is perfectly adapted for General

Purpose GPU computing, because GPU is particularly

useful for operations on arrays thanks of its massive parallel

architecture.

In this section, we present three different ways to

implement the temporal demodulation on the GPU and their

important operations are illustrated by CUDA code snippets.

Two of them consist of using CUDA Fast Fourier

Transform (FFT) library of NVIDIA based on one

dimension cudaFFT real to complex (R2C) function. The

third one consists of a custom-made implementation

inspired by the equations shown previously.

A. Implementation using cuFFT 1D

The first implementation starts with the initialization
where the GPU resources are allocated for the N images of
the FFT.

A ring buffer, having a dimension N corresponding to the
number of images, is used for this purpose. It also requires
resources for the output images of the function "cudaFFT 1D
R2C" and for the amplitudes of the images, which represent
the spectral contribution of each wavelength. Once the
allocations have been made, it is necessary to configure the
execution plan of the "cudaFFT 1D R2C" function. The role
of this operation is to provide information on how the data
will be read and stored and how many FFTs shall run. In our
case, the function must find pixels in time in a cube of N

images before executing the FFT and then reform the
images. The loop processing follows the initialization. In the
loop, once the buffer is full and for each new image, the
function "cudaFFT 1D R2C" executes the temporal FFT. The
call of the "cudaFFT 1D R2C" function is followed each
time by the function that calculates the amplitudes. These
amplitudes must be calculated using custom functions,
because the "cudaFFT 1D R2C" function only returns
complex values. “Figure 4” summarizes these different steps,
starting from the creation of the plan, the transfer of the
image to the GPU, the execution of the function cudaFFT
and the calculation of the amplitudes by our custom function.

Figure 4. A part of cuFFT 1D (Direct) C CUDA code.

B. Improved implementation using cuFFT 1D

The idea behind the second implementation with the

"cudaFFT 1D R2C" function is to reduce the time taken to

perform pixel search and alignment by directly controlling it

with a custom GPU function. The function created has the

role of temporally aligning the pixels by respecting the ring

buffer setup. This implementation requires a modification of

the code for the function that calculates the amplitudes

allowing the reconstitution of the images after FFT

execution. The resources needed for this operation are

allocated as before and the execution plan of the function

"cudaFFT 1D R2C" is configured. In loop processing, as

soon as an image arrives, the pixels are aligned in the buffer.

As described in “Figure 3”, when the system has received at

least the N number of images needed by the FFT, the

"cudaFFT 1D R2C" function executes. The amplitudes are

then calculated and the images reformed. “Figure 5” is

given below to summarize this improved implementation.

Figure 5. A part of cuFFT 1D (Improved) C CUDA code.

C. Custom-made DFT 1D Implementation

This last implementation is inspired from the equations

shown in the previous Section. As usual it needs to reserve

the GPU memory spaces necessary for processing: (1) a

memory space is reserved for the sin () and cos ()

cufftHandle plan;
cufftPlanMany(&plan, 1, N, 0, (Size_X * Size_Y), 1, 0, (Size_X *

Size_Y), 1, CUFFT_R2C, (Size_X * Size_Y));

cudaMemcpy((d_image + (Size_X * Size_Y * position)), h_datain,

Size_X * Size_Y * sizeof(cufftReal), cudaMemcpyHostToDevice);

cufftExecR2C(plan, d_image, d_outdata);

amplitude_function << < grid, block >> > (d_outdata, d_ amplitude);
cudaDeviceSynchronize();

cufftHandle plan;
cufftPlanMany(&plan, 1, N, 0, 1, N, 0, 1, (N / 2 + 1), CUFFT_R2C,

(Size_X * Size_Y));

cudaMemcpy(d_image, h_datain, Size_X * Size_Y * sizeof(uint16),
cudaMemcpyHostToDevice);

alignment_function << < grid, block >> > (d_image, d_image_

aligned);
cufftExecR2C(plan, d_image_ aligned, d_outdata);

reformation_and_amplitude_function << < grid, block >> >

(d_outdata, d_ amplitude);
cudaDeviceSynchronize();

52Copyright (c) IARIA, 2018. ISBN: 978-1-61208-638-5

SIGNAL 2018 : The Third International Conference on Advances in Signal, Image and Video Processing

coefficients needed for the calculation of the Discrete

Fourier Transform (DFT), (2) a ring buffer with a dimension

of N+1 is setup for the camera output images, (3) a memory

space is reserved for the images after treatment, and finally

(4) another memory space is allocated to store intermediate

results of real and imaginary parts. After accomplishing

memory allocation, the coefficients for the DFT are then

calculated on the CPU and they are transferred to the GPU.

Once the initialization is finished, the processing loop

can begin “Figure 6”. In this step, each time an image

arrives it is stored in the ring buffer of size N+1. The

function of the “Figure 7” is then called to compute the DFT

as explained above. This function directly returns an image

for each demodulated wavelength.

Figure 6. A part of DFT 1D custom implementation C CUDA code.

Figure 7. Custom-made DFT 1D computation function.

IV. NUMERICAL SIMULATION

A. Measurement simulation

In order to evaluate the performance of these three
CUDA codes, we measured the execution time considering a
one dimension DFT on stack of 8, 16, 32, 64, 128 and 256
images of size 512 x 512 pixels. These images allow
extracting respectively 5, 9, 17, 33, 65 and 129 wavelengths
by demodulation. The numbers of images have been chosen
so that functions based on the cudaFFT library produce
optimal performance [12]. The images used in this
experience are created using Matlab (MathWorks)
calculation tools by addition of multiple sinus signal for one
pixel and then simply duplicating M times to obtain the
desired image size.

B. GPU configuration

In GPGPU computing, the processing time depends

strongly on the configuration. For our implementation, the

major configuration we chose is related to the number of

threads and their organization for the execution of the

written functions. In our study, since we have been working

on 512 x 512 pixel size images, and the pixels are

independent in time, we chose to create one thread for each

pixel, which implies 512 x 512 = 262144 threads that we

broke down into 4096 blocks of 64 threads.

V. RESULTS AND DISCUSSION

The measurements of the different implementations

depending of the number of images used for demodulation

were performed. These measurements were performed with

two configurations; one with the GPU Quadro K2200 which

has 640 CUDA cores and another with the Geforce GTX

1080 Ti with 3584 CUDA cores. The obtained results are

shown in “Figure 8” and “Figure 9”. As we can see, the

implementation "Custom DFT 1D algorithm" is the fastest

in execution time followed by the two implementations

"cuFFT 1D (improved)" and "cuFFT 1D (direct)". The

relatively long execution time of the two last

implementations (compared to the Custom implementation)

is explained by the many matrix transpositions they

performed. Indeed, the performance of matrix transpositions

is strongly limited by the bandwidth and the memory

accesses [9]. For the fastest implementation, the Quadro

K2200 took 11400 µs for the demodulation of 129

wavelengths, corresponding to 88 µs per wavelength, and

the Geforce GTX 1080 Ti took 2250 µs for the same

number of frames, or 18 µs per wavelength.

0

15000

30000

45000

60000

75000

90000

105000

8 16 32 64 128 256

Time in µs

Number N images for DFT

Histogram of 3 methods implemented
for DFT 1D on Quadro K2200

DFT 1D algorithm cuFFT1D (improved) cuFFT1D (direct)

Figure 8. Histogram of 3 methods implemented for DFT 1D on

Quadro K2200.

The first conclusion drawn from these results is that the

execution time is inversely related with the number of

cudaMemcpy((d_image + (Size_X * Size_Y * position)), h_datain,
Size_X * Size_Y * sizeof(uint16), cudaMemcpyHostToDevice);

DFTcomputationGPU << < grid, block >> > (d_image, d_amplitude,
Reel, Imag, Cos_coef, Sin_coef);

cudaDeviceSynchronize();

__global__ void DFTcomputationGPU(uint16 *d_image, float

*d_amplitude, …) {

unsigned int id = (threadIdx.y + (blockIdx.y * blockDim.y)) *
Size_X[0] + (threadIdx.x + (blockIdx.x * blockDim.x));

…

for (int i = 0; i < N_lambda[0]; i++) {
…

if (Num_image[0] < N[0]) {

Reel[idx] = Reel[idx] + (d_image (id + Present_idx[0]) *
Cos_coef[ind]);

Imag[idx] = Imag[idx] + (d_image (id + Present_idx[0]) *

Sin_coef[ind]);
if (Num_image[0] == (N[0] - 1)) {

d_amplitude[idx] = (sqrtf((Reel[idx]^2) + (Imag[idx]^2)));
}}

if (Num_image[0] >= N[0]) {

Reel[idx] = Reel[idx] - (d_image (id + Past_idx[0]) * Cos_coef[ind])
+ (d_image (id + Present_idx[0]) * Cos_coef[ind]);

Imag[idx] = Imag[idx] - (d_image (id + Past_idx[0]) * Sin_coef[ind])

+ (d_image (id + Present_idx[0]) * Sin_coef[ind]);
d_amplitude[idx] = (sqrtf((Reel[idx]^2) + (Imag[idx]^2)));

}}}

53Copyright (c) IARIA, 2018. ISBN: 978-1-61208-638-5

SIGNAL 2018 : The Third International Conference on Advances in Signal, Image and Video Processing

CUDA cores: here multiplying the number of CUDA cores

by 5 results in dividing the execution time by 5. This leads

to suppose that we can still reduce the execution time and

therefore increase the acquisition frame rate with additional

GPU cores. Another important point is that the custom-

made implementation has the particularity to allow the user

to just compute the chosen modulation frequency.

Nevertheless, this method also has some limitations. A

first limitation is the constant delay due to the first number

of images needed to execute the first demodulation.

Depending on the application, such a delay may be or not a

drawback. This delay also implies no motion of the sample

during the acquisition, or at least motion that is much slower

that the time needed to acquire N frames. A way to mitigate

this issue consists of reducing the number of wavelengths

wanted by taking fewer frames for the FFT. A second

limitation is the number of wavelengths that can be

acquired, a direct consequence of the dynamic range of the

camera. Indeed, the bit depth of a camera is generally 8, 10,

12 or 16 bits. Consequently, the higher the number of

modulated wavelengths, the more the dynamic will be

subdivided. And with low modulation amplitude the

demodulated image quality will decrease due to a low signal

to noise ratio. One solution to circumvent this limitation

would be to use one or more camera with tunable or wheel

band filter at the cost of a more complex and expensive

system.

VI. CONCLUSION

A new method to acquire hyperspectral images was

presented by combining temporal modulation of light and

temporal demodulation using GPGPU processing. Three

CUDA codes allowing to get spectral information are

presented and are compared. With a simulation test we

demonstrate that it is possible to reach very high acquisition

frame rate by calculating the DFT with accumulation and

subtraction at the arrival of each image. We also discussed

about hardware system limitations essentially due to the

cameras dynamics. As a future work, it will be interesting to

study with a real system the effect of increasing the number

of wavelengths on the quality of demodulated images.

ACKNOWLEDGMENT

Funding for this research was provided by European
Research Council (ERC) under the European Union's
Horizon 2020 research and innovation program under grant
agreement No 715737 (QuantSURG), France Life Imaging,
University of Strasbourg IdEx, and ICube Laboratory.

0

1500

3000

4500

6000

7500

9000

10500

12000

13500

8 16 32 64 128 256

Time in µs

Number N images for DFT

Histogram of 3 methods implemented
for DFT 1D on GTX 1080 Ti

DFT 1D algorithm cuFFT1D (improved) cuFFT1D (direct)

Figure 9. Histogram of 3 methods implemented for DFT 1D on

GTX 1080 Ti.

REFERENCES

[1] L. Gao and R. T. Smith, “Optical hyperspectral imaging in

microscopy and spectroscopy – a review of data acquisition”,

J Biophotonics, vol. 8(6), June 2015, pp. 441-456,

doi:10.1002/jbio.201400051.

[2] T. Adão et al, “Hyperspectral Imaging: A Review on UAV-

Based Sensors, Data Processing and Applications for

Agriculture and Forestry”, Remote Sensing, vol. 9(11), Oct.

2017, pp. 1-30, doi:10.3390/rs9111110.

[3] L. Rousset-Rouviere et al, “SYSIPHE system: a state of the

art airborne hyperspectral imaging system. Initial results from

the first airborne campaign”, Proc. SPIE, vol. 9249, Oct.

2014, doi:10.1117/12.2066643.

[4] G. Lu and B. Fei, “Medical hyperspectral imaging: a review”,

J Biomed Opt, vol. 19(1), Jan. 2014, pp. 1-23,

doi:10.1117/1.JBO.19.1.010901.

[5] Y. Liu, H. Pu, D.-W. Sun, “Hyperspectral imaging technique

for evaluating food quality and safety during various

processes: A review of recent applications”, Trends in Food

Science & Technology, vol. 69, part A, Nov. 2017, pp. 25-35,

doi.org/10.1016/j.tifs.2017.08.013.

[6] A. Polak et al, “Hyperspectral imaging combined with data

classification techniques as an aid for artwork authentication”,

Journal of Cultural Heritage, vol. 26, July-August 2017, pp. 1-

11, doi.org/10.1016/j.culher.2017.01.013.

[7] R. G. Sellar and G. D. Boreman, "Classification of imaging

spectrometers for remote sensing applications”, Optical

Engineering, vol. 44(1), Jan. 2005, pp. 1-3,

doi:10.1117/1.1813441.

[8] A. B. Carlson and P. B. Crilly, Communication Systems: An

introduction to signals and noise in electrical communication,

McGraw-Hill Education, 2009.

[9] J. Cheng, M. Grossman, T. McKercher, Professional CUDA

C Programming, John Wiley & Sons, 2014.

54Copyright (c) IARIA, 2018. ISBN: 978-1-61208-638-5

SIGNAL 2018 : The Third International Conference on Advances in Signal, Image and Video Processing

[10] J. Sanders and E. Kandrot, CUDA by Example: An

introduction to general-purpose GPU programming, Addison-

Wesley Professional, 2010.

[11] Nvidia, docs.nvidia.com, “CUDA C Programming Guide”,

[Online] Available from: http://docs.nvidia.com/cuda/pdf/

CUDA_C_Programming_Guide.pdf, [retrieved: March,

2018].

[12] Nvidia, docs.nvidia.com, “CUFFT Library”, [Online]

Available from: http://docs.nvidia.com/cuda/pdf/CUFFT_

Library.pdf, [retrieved: March, 2018].

55Copyright (c) IARIA, 2018. ISBN: 978-1-61208-638-5

SIGNAL 2018 : The Third International Conference on Advances in Signal, Image and Video Processing

