
Real Time Hyperspectral Imaging using High Frame Rate Video Camera and 

GPGPU Processing 

Enagnon Aguénounon, Manon Schmidt, Foudil Dadouche, Wilfried Uhring, Sylvain Gioux 

ICube, UMR 7357, Université de Strasbourg and CNRS, 300 bd Sébastien Brant - CS 10413 - F-67412 Illkirch Cedex, 

France 

Email: wilfried.uhring@unistra.fr 

 

 
Abstract—This paper presents a new method to get real time 

hyperspectral images using time modulation of light and 

demodulation by means of General-Purpose computing on 

Graphics Processing Units (GPGPU). Three different Compute 

Unified Device Architecture (CUDA) implementations of real 

time hyperspectral images demodulation are presented. These 

methods are compared using a numerical simulation. The 

results show an execution time as low as 18 µs per wavelength 

and per frame for the Custom-made proposed implementation 

for a 512x512 pixels frame. 

Keywords-hyperspectral imaging; GPGPU; C CUDA; real 

time, FFT. 

I.  INTRODUCTION 

The purpose of hyperspectral imaging is to obtain more 

information on the scene (objects, samples) by adding a 

spectral dimension. This additional information may be 

useful in many applications ranging from microscopy [1] to 

astronomy. Among these applications we can quote 

geosciences [2][3], medical applications [1][4], food quality 

and safety [5], art work [6] and many others. To address the 

specific constraints of those applications, from the infinitely 

small to the infinitely large, several methods have been 

developed over time. In terms of instrumentation, these 

methods are commonly classified in 3 main categories [7]: 

(1) methods based on the dispersive elements (grating, 

prism, grism) which deviates the light differently according 

to the wavelength, (2) the methods based on filter elements 

that allow to get one wavelength or a spectral band at a time 

makes use of a filter wheels or tunable filters to get all 

spectral information and (3) interferometer systems based 

methods. Alternatively, it is possible to classify the methods 

in 3 other categories depending of the field of view: 

whiskbroom, pushbroom and framing [7]. The whiskbroom 

category refers to a point system using one of the 

aforementioned instrumentation methods and that requires 

to scan the entire scene to get the hyperspectral data. The 

pushbroom category is usually composed of several 

whiskbrooms that each acquires a line by scanning the scene 

in the opposite direction. Finally, the framing category, built 

around a whiskbroom or a pushbroom, is able to scan an 

entire scene at a time. It may use filters to acquire spectral 

information over time or be designed by stacked detectors, 

sensitive to different incident radiation spectrum. Most of 

these techniques are nowadays integrated into systems and 

many manufacturers offer both sensors technology and 

hyperspectral cameras. 

In this article, we propose a new method to get real time 

hyperspectral images using time modulation of light and 

GPGPU processing. The proposed method allows using a 

classic monochrome camera to acquire several wavelengths 

simultaneously. It is robust to noise, does not require a 

complex optical or mechanical system and offers at the 

same time a very high spectral and spatial resolution. 

The details of this method are described in the following 

sections. First, the operating principle of the hyperspectral 

method is introduced in Section II. Section III presents the 

Graphics Processing Units (GPU) implementation of the 

wavelengths extraction algorithm. The testing methods are 

reported in Section IV and the obtained results are presented 

in Section V where the advantages and current limitations of 

the proposed method are also discussed. Section VI 

provides some final observations, as well as future work 

required to improve reliability, robustness, efficiency and 

practicality of this hyperspectral imaging method. 

II. PROPOSED METHOD 

A. Principle 

The principle of the method is inspired from amplitude 

modulation and demodulation used in telecommunication 

[8]. As shown in the block diagram “Figure 1”, the typical 

system is composed of a camera, several modulated laser 

sources, a projection system, a high speed acquisition frame 

grabber and a GPU. 

The approach is composed of two consecutive steps. The 

first one consists of time modulation of k laser sources with 

different wavelengths k in a sinusoidal manner at different 

frequencies Fk. The chosen frequencies are exact 

frequencies in the discrete Fourier domain given by the 

formula (1): they depend on the camera framerate (fps), the 

number of images (N), which will be used later for the 

demodulation and the spectrum position (k) in Fourier 

domain. In a case where a modulation frequency does not 

match an exact discrete Fourier frequency, it will spread its 

energy on the two adjacent modulation frequencies, leading 

to possible crosstalk, as illustrated in “Figure 2”. 

 

(1) 

 

Fk =
k × fps

N
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In the second step, the spectral contribution of each 

wavelength can be isolated by using discrete Fourier 

transform during a demodulation process on a computer. In 

order, to keep a high framerate at the end of the process the 

temporal demodulation is performed by using a GPU 

processing. 
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Figure 1. Real time hyperspectral acquisition and processing setup 

(A: Projection system and camera, B: Acquisition and processing system). 

B. Spectral information extraction 

In order to get the spectral contributions of each 
wavelength, a discrete Fourier transform is used from the N 
acquired images referred in (1).  

The discrete Fourier transform of one pixel in time is 
given by: 

 
(2) 

 
With 

 
(3) 

 
Thus: 

 
(4) 
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Figure 2. Sample of good/bad Frequency positioning in Fourier domain -

arbitrary unit (A.U.). 

 
And the amplitude value of (4) is the spectral 

contributions of the wavelength modulated at a given 
frequency. 
 
 

(5) 
 
 

Depending on the application, a windowed step or rolling 
window is used. According to our experience, the best way 
to extract a hypercube data is to use the rolling window 
method. Indeed, the next pixel in time is given by (6) and can 
be rewritten with (7) and (8): 
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Figure 3. Demodulation algorithm applied to all the pixels of the images 

from the high-speed camera. 

 
This technique, depicted in the “Figure 3”, where I is the 

number of acquired frames, replaces N multiplications with 
the subtraction of the contribution of the first sample of the 
rolling windows and the addition of the new sample 
contribution, resulting in a significant gain of resources since 
processors use more resources for multiplication than for 
addition or subtraction. 

III. GPU PROCESSING 

Each pixel being totally independent in time from its 

neighbors, the method is perfectly adapted for General 

Purpose GPU computing, because GPU is particularly 

useful for operations on arrays thanks of its massive parallel 

architecture. 

In this section, we present three different ways to 

implement the temporal demodulation on the GPU and their 

important operations are illustrated by CUDA code snippets. 

Two of them consist of using CUDA Fast Fourier 

Transform (FFT) library of NVIDIA based on one 

dimension cudaFFT real to complex (R2C) function. The 

third one consists of a custom-made implementation 

inspired by the equations shown previously. 

A. Implementation using cuFFT 1D 

The first implementation starts with the initialization 
where the GPU resources are allocated for the N images of 
the FFT.  

A ring buffer, having a dimension N corresponding to the 
number of images, is used for this purpose. It also requires 
resources for the output images of the function "cudaFFT 1D 
R2C" and for the amplitudes of the images, which represent 
the spectral contribution of each wavelength. Once the 
allocations have been made, it is necessary to configure the 
execution plan of the "cudaFFT 1D R2C" function. The role 
of this operation is to provide information on how the data 
will be read and stored and how many FFTs shall run. In our 
case, the function must find pixels in time in a cube of N 

images before executing the FFT and then reform the 
images. The loop processing follows the initialization. In the 
loop, once the buffer is full and for each new image, the 
function "cudaFFT 1D R2C" executes the temporal FFT. The 
call of the "cudaFFT 1D R2C" function is followed each 
time by the function that calculates the amplitudes. These 
amplitudes must be calculated using custom functions, 
because the "cudaFFT 1D R2C" function only returns 
complex values. “Figure 4” summarizes these different steps, 
starting from the creation of the plan, the transfer of the 
image to the GPU, the execution of the function cudaFFT 
and the calculation of the amplitudes by our custom function. 

Figure 4. A part of cuFFT 1D (Direct) C CUDA code. 

B. Improved implementation using  cuFFT 1D 

The idea behind the second implementation with the 

"cudaFFT 1D R2C" function is to reduce the time taken to 

perform pixel search and alignment by directly controlling it 

with a custom GPU function. The function created has the 

role of temporally aligning the pixels by respecting the ring 

buffer setup. This implementation requires a modification of 

the code for the function that calculates the amplitudes 

allowing the reconstitution of the images after FFT 

execution. The resources needed for this operation are 

allocated as before and the execution plan of the function 

"cudaFFT 1D R2C" is configured. In loop processing, as 

soon as an image arrives, the pixels are aligned in the buffer. 

As described in “Figure 3”, when the system has received at 

least the N number of images needed by the FFT, the 

"cudaFFT 1D R2C" function executes. The amplitudes are 

then calculated and the images reformed. “Figure 5” is 

given below to summarize this improved implementation. 

Figure 5. A part of cuFFT 1D (Improved) C CUDA code. 

C. Custom-made DFT 1D Implementation 

This last implementation is inspired from the equations 

shown in the previous Section. As usual it needs to reserve 

the GPU memory spaces necessary for processing: (1) a 

memory space is reserved for the sin () and cos () 

cufftHandle plan; 
cufftPlanMany(&plan, 1, N, 0, (Size_X * Size_Y), 1, 0, (Size_X * 

Size_Y), 1, CUFFT_R2C, (Size_X * Size_Y)); 

cudaMemcpy((d_image + (Size_X * Size_Y * position)), h_datain, 

Size_X * Size_Y * sizeof(cufftReal), cudaMemcpyHostToDevice); 

cufftExecR2C(plan, d_image, d_outdata);  

amplitude_function << < grid, block >> > (d_outdata, d_ amplitude); 
cudaDeviceSynchronize(); 

cufftHandle plan; 
cufftPlanMany(&plan, 1, N, 0, 1, N, 0, 1, (N / 2 + 1), CUFFT_R2C, 

(Size_X * Size_Y)); 

cudaMemcpy(d_image, h_datain, Size_X * Size_Y * sizeof(uint16), 
cudaMemcpyHostToDevice); 

alignment_function << < grid, block >> > (d_image, d_image_ 

aligned); 
cufftExecR2C(plan, d_image_ aligned, d_outdata);  

reformation_and_amplitude_function << < grid, block >> > 

(d_outdata, d_ amplitude); 
cudaDeviceSynchronize(); 
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coefficients needed for the calculation of the Discrete 

Fourier Transform (DFT), (2) a ring buffer with a dimension 

of N+1 is setup for the camera output images, (3) a memory 

space is reserved for the images after treatment, and finally 

(4) another memory space is allocated to store intermediate 

results of real and imaginary parts. After accomplishing 

memory allocation, the coefficients for the DFT are then 

calculated on the CPU and they are transferred to the GPU.  

Once the initialization is finished, the processing loop 

can begin “Figure 6”. In this step, each time an image 

arrives it is stored in the ring buffer of size N+1. The 

function of the “Figure 7” is then called to compute the DFT 

as explained above. This function directly returns an image 

for each demodulated wavelength. 

Figure 6. A part of DFT 1D custom implementation C CUDA code. 

Figure 7. Custom-made DFT 1D computation function. 

IV. NUMERICAL SIMULATION 

A. Measurement simulation 

In order to evaluate the performance of these three 
CUDA codes, we measured the execution time considering a 
one dimension DFT on stack of 8, 16, 32, 64, 128 and 256 
images of size 512 x 512 pixels. These images allow 
extracting respectively 5, 9, 17, 33, 65 and 129 wavelengths 
by demodulation. The numbers of images have been chosen 
so that functions based on the cudaFFT library produce 
optimal performance [12]. The images used in this 
experience are created using Matlab (MathWorks) 
calculation tools by addition of multiple sinus signal for one 
pixel and then simply duplicating M times to obtain the 
desired image size. 

B. GPU configuration 

In GPGPU computing, the processing time depends 

strongly on the configuration. For our implementation, the 

major configuration we chose is related to the number of 

threads and their organization for the execution of the 

written functions. In our study, since we have been working 

on 512 x 512 pixel size images, and the pixels are 

independent in time, we chose to create one thread for each 

pixel, which implies 512 x 512 = 262144 threads that we 

broke down into 4096 blocks of 64 threads.  

V. RESULTS AND DISCUSSION 

The measurements of the different implementations 

depending of the number of images used for demodulation 

were performed. These measurements were performed with 

two configurations; one with the GPU Quadro K2200 which 

has 640 CUDA cores and another with the Geforce GTX 

1080 Ti with 3584 CUDA cores. The obtained results are 

shown in “Figure 8” and “Figure 9”. As we can see, the 

implementation "Custom DFT 1D algorithm" is the fastest 

in execution time followed by the two implementations 

"cuFFT 1D (improved)" and "cuFFT 1D (direct)". The 

relatively long execution time of the two last 

implementations (compared to the Custom implementation) 

is explained by the many matrix transpositions they 

performed. Indeed, the performance of matrix transpositions 

is strongly limited by the bandwidth and the memory 

accesses [9]. For the fastest implementation, the Quadro 

K2200 took 11400 µs for the demodulation of 129 

wavelengths, corresponding to 88 µs per wavelength, and 

the Geforce GTX 1080 Ti took 2250 µs for the same 

number of frames, or 18 µs per wavelength. 
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Figure 8. Histogram of 3 methods implemented for DFT 1D on  

Quadro K2200. 

The first conclusion drawn from these results is that the 

execution time is inversely related with the number of 

cudaMemcpy((d_image + (Size_X * Size_Y * position)), h_datain, 
Size_X * Size_Y * sizeof(uint16), cudaMemcpyHostToDevice); 

DFTcomputationGPU << < grid, block >> > (d_image, d_amplitude, 
Reel, Imag, Cos_coef, Sin_coef); 

cudaDeviceSynchronize(); 

__global__ void DFTcomputationGPU(uint16 *d_image, float 

*d_amplitude, …) { 

unsigned int id = (threadIdx.y + (blockIdx.y * blockDim.y)) * 
Size_X[0] + (threadIdx.x + (blockIdx.x * blockDim.x)); 

… 

for (int i = 0; i < N_lambda[0]; i++) { 
… 

if (Num_image[0] < N[0]) { 

Reel[idx] = Reel[idx] + (d_image (id + Present_idx[0]) * 
Cos_coef[ind]); 

Imag[idx] = Imag[idx] + (d_image (id + Present_idx[0]) * 

Sin_coef[ind]); 
if (Num_image[0] == (N[0] - 1)) { 

d_amplitude[idx] = (sqrtf((Reel[idx]^2) + (Imag[idx]^2))); 
}} 

if (Num_image[0] >= N[0]) { 

Reel[idx] = Reel[idx] - (d_image (id + Past_idx[0]) * Cos_coef[ind]) 
+ (d_image (id + Present_idx[0]) * Cos_coef[ind]); 

Imag[idx] = Imag[idx] - (d_image (id + Past_idx[0]) * Sin_coef[ind]) 

+ (d_image (id + Present_idx[0]) * Sin_coef[ind]); 
d_amplitude[idx] = (sqrtf((Reel[idx]^2 ) + (Imag[idx]^2))); 

}}} 
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CUDA cores: here multiplying the number of CUDA cores 

by 5 results in dividing the execution time by 5. This leads 

to suppose that we can still reduce the execution time and 

therefore increase the acquisition frame rate with additional 

GPU cores. Another important point is that the custom-

made implementation has the particularity to allow the user 

to just compute the chosen modulation frequency.  

Nevertheless, this method also has some limitations. A 

first limitation is the constant delay due to the first number 

of images needed to execute the first demodulation. 

Depending on the application, such a delay may be or not a 

drawback. This delay also implies no motion of the sample 

during the acquisition, or at least motion that is much slower 

that the time needed to acquire N frames. A way to mitigate 

this issue consists of reducing the number of wavelengths 

wanted by taking fewer frames for the FFT. A second 

limitation is the number of wavelengths that can be 

acquired, a direct consequence of the dynamic range of the 

camera. Indeed, the bit depth of a camera is generally 8, 10, 

12 or 16 bits. Consequently, the higher the number of 

modulated wavelengths, the more the dynamic will be 

subdivided. And with low modulation amplitude the 

demodulated image quality will decrease due to a low signal 

to noise ratio. One solution to circumvent this limitation 

would be to use one or more camera with tunable or wheel 

band filter at the cost of a more complex and expensive 

system. 

VI. CONCLUSION 

A new method to acquire hyperspectral images was 

presented by combining temporal modulation of light and 

temporal demodulation using GPGPU processing. Three 

CUDA codes allowing to get spectral information are 

presented and are compared. With a simulation test we 

demonstrate that it is possible to reach very high acquisition 

frame rate by calculating the DFT with accumulation and 

subtraction at the arrival of each image. We also discussed 

about hardware system limitations essentially due to the 

cameras dynamics. As a future work, it will be interesting to 

study with a real system the effect of increasing the number 

of wavelengths on the quality of demodulated images. 
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Figure 9. Histogram of 3 methods implemented for DFT 1D on  

GTX 1080 Ti. 
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