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Abstract—This study presents a One-Dimensional Convolu-
tional Neural Network (1D-CNN)-based algorithm for the early
detection of childhood absence seizures in ElectroEncephaloGra-
phy (EEG) traces. This detection aims to enable timely sensory
interventions, such as acoustic or visual stimulation, to potentially
abort seizures. The algorithm was evaluated using a clinical
setting with full EEG data and a reduced number of electrodes
version of the data to show its suitability in a normal child
environment. On the clinical EEG database of 117 patients, the
model achieved promising results, including a Sensitivity of 0.859,
Precision of 0.819, F1-score of 0.837, and a mean detection delay
of 0.522 seconds. The performance remained satisfactory when
using fewer electrodes, with a Sensitivity of 0.837, Precision of
0.808, F1-score of 0.820, and similar detection delays. These
results demonstrate the method’s robustness and feasibility for
clinical applications, as well as its potential to be embedded in
wearable devices for continuous, real-time seizure monitoring and
intervention in children with absence epilepsy.

Keywords-Surface EEG; Childhood Absence Epilepsy; Onset
Detection; 1D-CNN.

I. INTRODUCTION

Typical absence seizures are characterized by brief and
sudden lapses in consciousness and an absence of voluntary
movements. Typically, they are associated with specific pat-
terns of generalized spike-wave discharges observed in EEG
recordings [1]. Childhood Absence Epilepsy (CAE) affects
between 6.3 to 8.0 children per 100 000 annually [2] and
accounts for 18% of all cases of epilepsy in school-aged
children. Absence seizures, if untreated, can occur frequently
throughout the day, sometimes up to 200 episodes daily [3].
Children with CAE generally follow a normal developmental
path. Nevertheless, approximately 30% of them experience
learning difficulties and Attention Deficit Hyperactivity Dis-
order (ADHD).

The diagnosis of CAE often involves a physical exam with
an EEG routine during voluntary hyperventilation. On EEG,
seizures are commonly associated with 3-4 Hz generalized
spike-wave patterns, but variations in speed, symmetry, and the
presence of polyspikes may also be observed. The treatment

of absence seizures typically involves antiepileptic drugs, al-
though there is a notable drug resistance rate of approximately
30% [4]. As an alternative to drug therapy, sensory or electrical
stimulation techniques have shown promise in interrupting
seizures [5], [6]. Research on rodent models has demonstrated
that auditory stimuli, such as a 2 kHz tone, during the first
few seconds of the seizure can stop around 52% of absence
seizures [6]. In humans[7], simple acoustic stimuli delivered
during the first 3 seconds of the seizure can inhibit the episode
with a success rate of 57%. Thus, detecting the onset of
seizures as early as possible is crucial for effectively applying
these kinds of stimulation techniques. Numerous studies for
absence seizure detection from surface EEG signals have been
reported during the last decades [8]–[12]. Surprisingly, none
of these approaches have focused on early detection, i.e.,
identifying seizure within one second of its onset, which is
crucial for applying external stimulation to abort seizures as
the stimulation must occur within the first seconds of the
seizure [7]. To address this gap, the paper proposes a new Deep
Learning-based (DL) approach designed for early detection
of absence seizures from raw EEG data. The method uses a
learned 1D-CNN model to identify seizure onset within short
sliding windows of EEG data in real-time, making it suitable
for integration into wearable devices. This approach improves
accuracy by analyzing data across multiple EEG channels.
Additional constraints on the consecutive detection of the onset
of seizures and the number of channels, where the seizure is
detected, are also proposed to minimize the False Detection
Rate (FDR), ensuring robustness of the pipeline in real-world
applications.

This communication is organized as follows: the dataset, the
CNN-based model and the evaluation criteria are presented in
Section II. The obtained results are reported in Section III.
Discussion, conclusions and perspectives are given in Section
IV.
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Figure 1. a. Selection of 50 segments for the seizure onset. The first segment is selected so the expert onset tag is located at the 384th sample. The other
segments are shifted from the first one from 1 to 49 samples. b. 20 segments were picked from -2 to 2s around the artifact tag (yellow position). c. 20 seizure
segments were picked starting from 2s to 4s after the seizure onset tag. d. Noise segments were picked where seizure onset tags were absent within 2s from
the starting noise segment.

II. MATERIAL AND METHOD

The annotated dataset, the data-driven model design and the
evaluation metrics are described in this section.

A. EEG recordings

In this study, EEG signals issued from 117 children (53
females and 64 males) diagnosed with CAE were used for
evaluating the proposed pipeline. The dataset was acquired
between 2013 and 2019, following the guidelines outlined in
the French recommendations for EEG procedures in children
[13] under the study protocol IRB:IORG0010044. The chil-
dren were between 4 and 11 years old, and the recordings were
conducted at two medical centers: Saint-Brieuc Hospital and
Necker-Enfants Malades Hospital. The study strictly excluded
children with intellectual disabilities or relevant neurological
abnormalities based on the new classification of epileptic syn-
dromes. EEG signals were acquired using the Deltamed Natus
system at 256 Hz sampling frequency, with recordings lasting
at least 20 minutes. The number of EEG electrodes varied
across recordings, depending on the age of the patients, with
11, 16, or 19 electrodes used. Following the 10/20 international
system, these recordings resulted in a total duration of 2.75
days of EEG data, or 49.9 days when measured across one
EEG channel. As the signals are z-score normalized for each
EEG trace, no magnitude scale was given in all figures.

B. EEGs annotation

It is well-known that the ground truth is mandatory for
the performance evaluation of machine learning methods. In
our study, clinical experts visually annotated the seizure onset

times to create a ground truth for training the model and
validate the detection of the proposed procedure. The experts
used dedicated software to mark seizure onset times across
each EEG channel in a recording. To ensure consistency, two
strict criteria were applied for selecting seizure events: (1)
at least four consecutive spike-wave occurrences had to be
visually detected, and (2) spike-waves had to be visible on
at least half of the EEG channels. This ensured that only
generalized seizures were included in the analysis, leading to
827 early seizure onset positions used for training and testing.

C. Training data set building strategy

An adequate design of the training data set is important to
construct an efficient and stable DL model. Thus, to address
the specific task of early detection of absence seizure onset,
the training set was built by dividing the EEG data into
two sets of 2-second segments: the first one contains seizure
onset segments and the second one encompasses non-seizure
onset segments. More precisely, as depicted in Figure 1-
a, the seizure onset set was constructed, by extracting 50
segments from each onset expert tags. These segments were
designed to capture temporal information around the seizure
onset by varying their relative position to the expert onset.
This allows the model to learn the dynamic transition from
background EEG to seizure activity. The seizure onset expert
tags, positioned around 1.5 seconds of the window, ensure
the presence of 1.5 to 2 spike waves at the end of the seizure
onset segments which contributed to a comprehensive analysis
of onset seizure events. Regarding the non-seizure onset set,
it includes three subcategories of EEG signals: background
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EEG, physiological and non-physiological artifacts, and fully
developed seizure segments (Figure 1-b). Background EEG
was randomly selected to represent a broad spectrum of normal
brain activity (Figure 1-d). Artifact segments, such as those
caused by patient movements, eye movements, or amplifier
disconnections, were included to avoid detecting them as false
positives (Figure 1-b). In addition, fully developed seizure
segments (Figure 1-c) were also added to ensure that the model
could differentiate between the onset of a seizure and the more
periodic, established spike-wave patterns of a full seizure.

D. DL-based model architecture

The proposed model is designed to analyze each EEG
electrode independently. Analyzing each EEG channel inde-
pendently ensures flexibility across different EEG systems and
configurations, making it suitable for various clinical settings.
The model consists of four 1D convolutional layers with
progressively increasing numbers of filters (from 32 to 256),
followed by average pooling layers, a flatten layer, and two
fully connected layers. A dropout rate of 50% was applied
to prevent overfitting, and the Rectified Linear Unit (ReLU)
activation function was used throughout the network. The final
output layer used a Softmax activation function to classify
segments as either seizure onset or non-seizure onset. The
training was optimized using the Adam algorithm, with a batch
size of 128, 10 epochs, and a learning rate of 0.001.

E. Training, detection stages

To ensure the generalizability, robustness, and stability of
the proposed DL-based method, the training stage involved
constructing 12 bootstrap datasets, with 80% of patients al-
located for training and 20% for testing. Importantly, the
model was trained based on a non-patient-specific detection
strategy. For each bootstrap, patients included in the training
set were excluded from the testing set. During the detection
phase (testing stage), for each tested patient, the trained model
was applied on each EEG channel using a 2-second sliding
window with a 1-sample shift. Segments were classified as
Event of Interest (EoI) based on the output probability of
the 1D-CNN exceeding a threshold T . However, the sliding
window approach could lead to multiple detections of the same
seizure onset, artificially exaggerating the FDR. To reduce this
issue, a post-processing step was introduced. It is based on
two thresholds: i) if the percentage of the number of positive
detections within the N consecutive 2 s time windows is
higher than a threshold Pw%, then the final sample of the last
window is qualified to be a seizure onset position, and ii) the
end of this last window is definitively tagged as a seizure onset
if it was simultaneously detected on a minimum percentage of
EEG channels (denoted as Pch%).

F. Evaluation metrics

In this study, the Sensitivity (S), Precision (P), F1-score and
FDR per Hour (FDR/H) metrics [14] are used to evaluate the
seizure onset detection performance of the proposed pipeline.
The limit for the detection was fixed to 2 seconds from an
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Figure 2. All plots x-axis represent the length (in sample) of the consecutive
window use along with the Pw threshold, In all plots, each color used
represents a Pw value (blue: Pw=70%; orange: Pw=80%; green: Pw=90%;
red: Pw=100%). a. Boxplot of the delays of the algorithm detection with
respect to the expert tags. b-d. violin plot of the Sensitivity (b), Precision (c)
and F1-score (d).

expert tag: if a detection of our algorithm is out of this ±2s
bound, it is considered as a False Positive (FP).

III. RESULTS

The first experiment was conducted to determine a good
compromise between the number N of the consecutive 2
s time windows and the threshold Pw. Regarding the Pch
(minimum number of channels where the onset was simul-
taneously detected), it was fixed to 50% in the sequel. Fig-
ures 2 (a), (b), (c) and (d) display the delays, in seconds, of
the algorithm detections relative to the expert annotations, S,
P and F1-score, respectively, for all tested patients (across the
12 bootstraps). Four values of Pw=70% (blue), 80%(orange),
90% (green),100% (red) were tested, where the number N
was varied from 10 to 190 with a step of 20. It can be seen
from Figure 2 (a) that as N increases, the detection delay
becomes more pronounced, regardless Pw. Figure 2 (b) shows
that Sensitivity decreases significantly for N > 50, while
Precision increases with increasing N , indicating a reduction
in false detection. Interestingly, the best F1-score, defined as
the harmonic average of the Sensitivity and the Precision,
was obtained for N = 50 and Pw=80%, with a satisfactory
detection delay around 0.5 s. Figure 3 focuses on the results
obtained for Pw=80%, N = 50, and Pch=50% across all
bootstraps. The average F1-score across all bootstraps was
0.837 ± 0.032, reflecting the model’s effectiveness in detect-
ing seizure onsets. Sensitivity and Precision were also well-
balanced, with averages of 0.859 ± 0.030 and 0.819 ± 0.064,
respectively, while the FDR/H remained low at 1.78 ±0.49.
Furthermore, the delay between the detected seizure onsets
and expert annotations was minimal, with an average delay of
0.522 seconds and a maximum delay of 1.5 seconds, as shown
in Figure 3 (b). These results confirm the model’s ability
for very early seizure detection. Additionally, the proposed
pipeline demonstrated robustness across different training and
testing sets, since the standard deviations were low, whatever
the analyzed metric.
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Figure 3. a: Sensitivity (S), Precision (P) and F1-score computed from the
best F1 score of each Bootstrap (in blue) and for a unique triplet (in orange),
means are shown with white circles. Histogram of delays measured between
the expert annotation and the detected seizure onset moments by our algorithm
for separate bootstrap optimization (b) and overall bootstrap triplet (c).
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Figure 4. Sensitivity (S), Precision (P) and F1-score computed from the
best F1 score for an overall triplet in four different cases: All channels (in
orange), 4 monopolar channels (in green), 2 bipolar channels (in red), 2 bipolar
channels with a retrained DL model (in purple). Medians are shown with black
lines and means are shown with white circles

The second experiment deals with the configuration of the
wearable device, where we can only expect that four electrodes
will be available. Thus, we evaluated our detector only with
Fp1, Fp2, T3 and T4 electrodes. The choice of two prefrontal
electrodes and two temporal electrodes was driven by the
fact that they could be hidden in the temples of glasses.
More precisely, the model used previously was applied in two
different montages: i) on 4 monopolar EEG channels (brown
in Figure 4), and ii) on two bipolar channels Fp1-T3 and Fp2-
T4 (red in Figure 4). Bipolar montages are known to be less
susceptible to artifacts and commonly used for clinical EEG
recordings. The impaired statistics using a reduced number
of EEG channels are presented in Figure 4. We observed
that the optimal F1-scores and the related sensitivities and
precisions decrease for both montages compared to the use of
all electrodes. Logically, the number of FDR/H increased from
1.783 for all electrodes to 3.071 and 3.060 for four monopolar
and two bipolar electrodes, respectively.

To enhance the applicability of the model to bipolar chan-
nels, we also evaluate a new model that was specifically
trained only on bipolar channels FP1-T3 and FP2-T4. As
expected, this adjustment led to a significant improvement in
results, although it does not exactly reach the performance
achieved using all EEG channels (purple vs orange boxplots in
Figure 4). With respect to the Performances of the initial model
applied on bipolar montage (red boxplots), the Sensitivity,
Precision and F1-score were increased from 0.78 to 0. 837
(±0. 064), 0.771 to 0. 808(±0. 063), and 0.796 to 0. 820 (±0.
040), respectively. In addition, the FDR/H was improved from
3.06 to 2.03. Regarding the delays of the detection of the
seizure onset, the mean delay was almost not impacted (0.460

s).

IV. DISCUSSION AN CONCLUSION

The proposed study is based on existing research, which
demonstrates that absence seizures can be inhibited if external
sensory stimulation is applied early in the seizure onset.
Detection of the onset of the absence seizure as early as
possible is mandatory to abort seizure progression, as delayed
stimulation becomes ineffective once the seizure is fully es-
tablished. Although several studies have been dedicated to the
automated detection of absence seizures, no technique has yet
been designed for early seizure onset detection (less than one
second from the onset). Thus, this study introduces a new 1D-
CNN-based pipeline for the early detection of absence seizures
in children. Furthermore, the pipeline did not need heavy
preprocessing and can be implemented in wearable devices.
The 1D-CNN was favored over other models, such as Long
Short Term Memory (LSTM) and Temporal Convolutional
Network (TCN), due to its simplicity, ease of paralleliza-
tion, and performance efficiency in handling EEG data. For
instance, the computational time for processing data from a
15-electrodes is only about 0.4 ms. Obtained results, on a
large real database, show that the model is very efficient in
detecting the onset of seizures in children, with a Sensitivity
of 0.859, Precision of 0.819, and F1-score of 0.837, alongside
a time delay of just 0.522 seconds from the expert annotations.
Importantly, even with a reduced set of electrodes (two bipolar
channels), the method maintained good performance, which
indicates that the algorithm is well-suited for portable devices.
An adjustment of some parameters in the postprocessing step
can also provide a possibility for a tradeoff between FDR/H
and the maximal delay of detection allowed by a physicist to
abort seizures.

The study acknowledges certain limitations, including the
challenge of dealing with false detection due to short spike
trains, which clinicians do not consider as seizures. In addition,
more intensive clinical or animal studies are necessary to deter-
mine the optimal window length for effective intervention. The
exploited EEG data were collected in controlled environments,
and future work should focus on validating the robustness of
the proposed pipeline in more variable settings, particularly in
wearable devices.
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