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Abstract—This paper proposes a novel High Dynamic Range
video (HDRv) reconstruction method from Standard Dynamic
Range video (SDRv), with a Feature Modulation Spatio-
Temporal Fusion network (FMSTFnet). FMSTFnet has low-
frequency and high-frequency parts with a pyramid structure.
The low-frequency part mainly includes a Combined Global
and Local Feature Modulation module (CGLFM) and a
Spatio-Temporal Fusion Module (STFM). CGLFM modulates
global and local features of SDR frames to correct the detail
deviation caused by brightness differences in different regions
and obtain preliminary HDR frames. STFM is designed to
enhance the preliminary HDR frames using inter-frame
information, and eliminate possible inter-frame artifacts.
Finally, an adaptive hybrid module is constructed to fuse the
low-frequency HDR frames and gradually extend the
processed high-frequency information from low resolution to
the higher. The proposed network fully utilizes the inter-frame
information of multiple SDR frames and the contextual
information of previously predicted HDR frames to generate
high-quality results that are consistent in the temporal domain.
The experimental results show that compared with many
representative methods, the proposed method can reconstruct
higher quality HDR videos.

Keywords-high dynamic range video reconstruction; feature
modulation; spatio-temporal fusion; transformer block.

I. INTRODUCTION
New generation displays can display visual contents

with High Dynamic Range (HDR) and wide color gamut,
providing a higher visual experience quality. However, at
present, most video resources are still stored as Standard
Dynamic Range videos (SDRv), resulting in a shortage of
HDR video (HDRv) resources. Thus, generating HDRv
from SDRv (SDRv-to-HDRv) is a challenging task [1][2].

For learning-based SDRv-to-HDRv, Kim et al. [3]
proposed a method with separating input SDR frame into
base and detail layers for different processing, which has the
advantage of being easier to restore fine details.
Subsequently, they integrated video super-resolution with
SDRv-to-HDRv task to enhance texture details [4]. Chen et
al. [5] designed a deep learning network for a single SDRv-
to-HDRv task, which includes global feature modulation,
local enhancement, and over-exposure compensation, and
achieved good results. Wang et al. [6] proposed an SDRv-
to-HDRv method with three sub-networks corresponding to
the three processes in HDR imaging pipeline, to generate

HDR images with rich global information. Xu et al. [7]
constructed a frequency-aware modulation network that
enhances the contrast of SDR to HDR conversion in a
frequency adaptive manner, for reducing structural
distortion and artifacts in the low-frequency regions. Xue et
al. [8] proposed an improved residual block for extracting
and fusing multi-layer features for fine-grained HDR image
reconstruction. Guo et al. [1] constructed an HDRTV4K
dataset and an HDR to SDR degradation model, and
proposed a brightness segmentation network consisting of a
global mapping backbone and two Transformer branches on
the brightness range. The above methods mainly perform
SDRv-to-HDRv tasks spatially. Many SDRv-to-HDRv
methods mainly utilize a single SDR frame to generate
corresponding HDR frame, which may lead to temporal
inconsistency of HDRvs and produce annoying artifacts.
Cao et al. [9] presented a kernel prediction network based
SDRv-to-HDRv method, which utilizes multi-frame
interaction modules to capture spatial information of multi-
frame data and uses correction between adjacent frames to
maintain inter-frame consistency.

In this paper, a novel SDRv-to-HDRv method with the
design of Feature Modulation Spatio-Temporal Fusion
network (FMSTFnet) is proposed. Its main contributions are
summarized as follows: (1) A Combined Global and Local
Feature Modulation module (CGLFM) is designed to
perform macroscopic global and detailed local modulation
on the current frame to reduce the color deviation of HDR
video frames; (2) A Spatio-Temporal Fusion Module
(STFM) is constructed, which can process contextual
information in spatio-temporal domain, enhancing spatial
results while reducing temporal inconsistencies. (3) Low-
frequency and high-frequency information of SDRv are
processed separately using a pyramid structure and fused
with each other to obtain high-resolution output.
Experimental results demonstrate the effectiveness of the
proposed method.

The rest of the paper is organized as follows. Section 2
describes the proposed method in detail, Section 3 gives
experimental results and analyses, and finally Section 4
concludes the paper.

II. THE PROPOSEDMETHOD WITH FMSFNET
A novel SDRv-to-HDRv method with the designed

FMSTFNet is proposed, as shown in Figure 1. Aiming at the
problem of color deviation, a CGLFM is designed by
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combining adaptive feature modulation with Fourier
convolution. For processing spatio-temporal information, a
STFM is designed to fuse inter-frame features, and
Transformer is employed to enhance the features, which can
further reduce color deviation while eliminating temporal
artifacts. The designed FMSFNet first establishes a pyramid
structure and decomposes the input SDR frame into high-
frequency component pyramids and low-frequency SDR
frames. The low-frequency SDR frames are input to
CGLFM and STFM to obtain low-frequency HDR frames.
Residual blocks [10] are leveraged to reinforce the high-
frequency components. Then, the enhanced high-frequency
components are fused with low-frequency HDR frames
using an Adaptive Hybrid Module (AHM), gradually
expanding from low resolution to higher resolution results,
and reconstructing the final high-resolution HDRv frame.

Specifically, for the t-th SDR frame It, it is firstly
decomposed into a Gaussian pyramid M t

I =[ 0I
t , 1I

t ,… t
sI ]

and a high-frequency component pyramid M t
L =[ 1L

t ,… Lts ],
where s is the number of downsampling. Similarly, It+1 is
also processed like It. After that, the low-frequency
components of 0I

t and 1
0I
t  are respectively fed into CGLFM

with weight sharing to obtain the preliminary HDR frames,
denoted as 1 1

0 0, ( , )t t t t
CGLFMf +F F I I .

In Figure 1, Ft and Ft+1 are then fed to STFM for spatio-
temporal information enhancement; meanwhile, the (t-1)-th
preliminary HDR frame Ft1 is also input to STFM to obtain
the enhanced HDR frame 1 1( , , )S F F Ft t t t

STFMf   .
Each layer of the high-frequency component pyramid

M t
L is fed to multiple residual blocks ƒRes(·), to enhance the

high-frequency information, denoted as ( )t t
L Res LfK M . By

relying on the high-frequency information t
LK and the

enhanced pyramid low-frequency HDR frame St, high-
resolution results can be reconstructed. Adaptive Hybrid
Module (AHM) is used to fuse high-frequency component
pyramids with low-frequency HDR frames, the final output

pyramid E t
L =[ 0Y

t , 1Y
t ,…Y t

s ] is obtained, where Y t
s denotes

the reconstructed HDR frames, ( , )t t t
s AHM LfY K S .

A. CGLFM
In the SDRv-to-HDRv task, there may be a phenomenon

of uneven repair of over-exposed and under-exposed regions,
as well as uneven color mapping from standard color gamut
to wide color gamut. To address this issues, CGLFM, as
shown in Figure 1, is designed, in which the global rough
modulation is for roughness adjustment on images, while the
local detail fine-tuning is for local detail enhancement.
Specifically, the input SDR frame It is processed through
two-layer convolution to obtain low dynamic range features
IF, which will be modulated into high dynamic range
features Ft. CGLFM has two parts, namely, conditional
generation module and feature modulation module. The
conditional generation module can extract global and local
information from features for modulation. Global conditional
generation module uses Fourier convolution to perform
global operations on input features, and then uses average
pooling to downsample while reducing information loss, so
as to obtain global information of the image. After five
downsampling and global pooling, the feature CG is get,
denoted by ( ))(AVG C

G F
GFMf fC I , ƒCGFM(·) and ƒAVG(·) are

the global operation and global pooling, respectively.
By processing CG, global conditional features CG

V (V=A,B)
are obtained, which are used as the global modulation
vectors. Local modulation requires local features that
represent the corresponding pixel positions in the image.
Here, through upsampling the global features five times and
decoding from the encoded global information, the local
conditional features C L

V is obtained and expressed by

( ))(C ICLFM CGV FM
L Ff f , and ƒCLFM(·) is the local operation.
Then, perform global rough modulation and local detail

fine-tuning on the features. The former uses global features
CG
A to point-multiply the SDR feature HG to achieve global

Figure 1. The proposed SDRv-to-HDRv method with the design of Feature Modulation Spatio-Temporal Fusion network (FMSTFnet).
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scaling, and directly adds C G
B to achieve global displacement.

The latter uses C L
A to point-multiply the feature HL to

achieve local scaling, followed by adding C L
B to achieve

local displacement. After implementing local and global
modulation, the features are converted to the HDR domain to
obtain the preliminary HDR frame, which is expressed as

( )G G
L A G B  H C H C 

( )F C H Ct L L
A L B   

B. Spatio-Temporal Fusion Module (STFM)
STFM includes spatial and temporal reinforcement,

mainly relying on the non-local attention mechanism. As
shown in Figure 1, STFM mainly includes Hashing Spatio-
Temporal Non-local Attention Module (HSTNAM), Hashing
Non-local Attention Module (HNAM) [11], and Vision
Transformer (ViT). To reduce resource consumption, when
fusing inter-frame information in the temporal domain, only
the information transmitted from the previous frame is used.
Only the t-th and (t+1)-th frames are processed, and the (t-1)-
th frame is obtained from the previous processing, as shown
in Figure 2. Note that the (t-1)-th frame transmitted in the
network is the intermediate feature rather than image. This
processing can reduce the used memory while allowing the

network to learn the entire sequence information. The input
(t-1)-th frame contains the content of the previous video
frames. As the number of input video frames increases, the
network can learn all the early video frames.

STFM has four input features, i.e., Ft, Ft+1, Ft1 and St1.
It has conducted two inter-frame information fusions, and
with the deepening of the network, more deep level
information is carried in the features. HSTNAM in Figure
3(a) is constructed to fuse the features of the t-th, (t-1)-th and
(t+1)-th frames to obtain inter-frame information. Figure 3(b)
represents the hashing non-local attention module, which
differs from HSTNAM in that it only calculates spatial
domain non-local attention. The purpose of STFM is to
enhance features from both spatial and temporal perspectives,
learn global inter-frame information to improve the temporal
correlation of videos.

C. HDR Reconstruction and Loss Function
The FMSTFNet employs a pyramid structure, and the
proposed method mainly focuses on handling the low-
frequency components of the pyramid, which are processed
using the above modules. For the high-frequency
components, the stacked residual blocks are directly used for
processing. AHM is constructed to facilitate rapid scaling of
low resolution results. A lightweight module is designed as

1 2 1( ( ( ( ( )), )))t t t
s+ s sh cat up Y Y K 

where up(·) is the bilinear interpolation, ϕ1(·) and ϕ2(·) are
two 3×3 convolutional layers, cat(·) is the channel
concatenation, t

sK is the high-frequency component of It,
and h(·) is the ReLU activation function.

The proposed loss function includes a multi-scale HDR
reconstruction loss Lr and a perceptual loss Lp, expressed as

1 2: r ploss L L L    

where Lr represents the L1 loss between the ground truth
HDR image pyramid HL and the predicted HDR image
pyramid YL. Lp is the L1-norm difference between the
intermediate feature maps when YL and HL are separately
fed into the pre-trained VGG19.

III. EXPERIMENTAL RESULTS
This section verifies and compares the proposed method

with some representative methods including ITM-CNN [3],
FMNet [7], KPN-MFI [9], KUNet [6], SR-ITM [4] and
HDR-TV [5], and so on. Moreover, ablation experiment is
constructed to investigate the role of the core modules of the
proposed method. The proposed method is implemented
with Pytorch, and the environment is configured with an
Intel(R) Xeon(R) Silver4210 CPU, NVDIA RTX 3090Ti
GPU. The proposed FMSTFnet is trained by the Adam
optimizer, with β1=0.9 and β2=0.999. The batch size is 7, the
initial learning rate is set to 0.0002, and it decays to 0.00001
after 100 epochs. The network parameters are initialized by
the MSRA tool. A multi-frame SDRv-to-HDRv dataset is
constructed for training and evaluation. 20 HDR10 standard
HDR videos with 21603840 are collected from YouTube,

Figure 2. Information transmission approach of FMSTFNet.

Figure 3. The used two non-local attention modules.
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each with a corresponding SDR video. All videos are
encoded using PQ curves and BT.2020 color gamut. 16
pairs of videos are used for training, and the remaining 4
pairs are used for testing. To evaluate the quality of
generated HDR videos, six quality metrics are used, namely
PSNR, SSIM, spectral residual based similarity (SR-SIM),
learned perceptual image patch similarity (LPIPS), color
difference indicator (ΔEITP), and HDR visual difference
predictor (HDR-VDP).

Table I presents the objective comparison between the
proposed method and representative methods, and the best
results are presented in bold. The proposed method achieves
better HDR video reconstruction performance, resulting in
higher fidelity in spatial details and dynamic range of the
reconstructed HDR video. The proposed method combines
local and global features in the spatial domain and fuses
inter-frame features in the temporal domain, this can better
fit the nonlinear mapping process required for SDR frame to

HDR frame reconstruction. The proposed method also
achieves the best performance in ΔEITP, demonstrating the
superiority of the proposed method in color restoration.

Figure 4 shows the visual effects of videos obtained by
different methods. For each scene, the upper row shows the
original HDR frames without tone mapping, while the lower
is the tone mapped frames, similar to [4]. It can be found
that the proposed method reconstructs the HDR images with
higher visual quality and effectively restores the color
information. For example, in the cloud region of the sky, the
comparison methods produce significant visual artifacts. In
contrast, the proposed method utilizes both local and global
information to enhance the reconstruction results, thus more
realistically reproducing the information of cloud region.

For the ablation experiments, Table II shows the results
of average PSNR, SSIM and ΔEITP for different modules
and their combination. Clearly, the proposed full network

TABLE I. THE RESULTS OF THE PROPOSEDMETHOD COMPARED TO THE EXISTING REPRESENTATIVEMETHODS
Methods PSNR↑ SSIM↑ SR-SIM↑ LPIPS↓ ΔEITP↓ HDR-VDP↑

ITM-CNN [3] 29.96 0.9622 0.9358 12.73 22.354 8.0753
FMNet [7] 35.70 0.9811 0.9367 8.78 9.621 8.1787

KPN-MFI [9] 34.73 0.9645 0.9592 14.85 9.733 8.4039
KUNet [6] 35.72 0.9743 0.9419 9.58 10.458 8.2122
SR-ITM [4] 33.89 0.9782 0.9494 10.15 15.522 8.1667
HDR-TV [5] 37.45 0.9858 0.9650 6.53 8.947 8.6111
Proposed 38.53 0.9880 0.9710 5.34 7.517 8.6806

TABLE II. THE RESULTS OF AVERAGE PSNR, SSIM AND ΔEITP FOR DIFFERENTMODULES
CGFM AHM CLFM HSTNAM1 ViT HSTNAM2 PSNR↑ SSIM↑ ΔEITP↓

 36.51 0.9824 9.730
  37.60 0.9862 8.574
   37.60 0.9866 8.647
    37.70 0.9863 8.434
     37.70 0.9869 8.415
      38.53 0.9880 7.517

Ground truth image GT FMNet ITM-CNN KPN-MFI KUNet SR-ITM HDR-TV Proposed

(a) Scene 1

Ground truth image GT FMNet ITM-CNN KPN-MFI KUNet SR-ITM HDR-TV Proposed

(b) Scene 2
Figure 4. Visual effects of videos obtained by different SDRv-to-HDRv methods (Two partially enlarged regions are water splashes and the sky).
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achieves the best performance, which verifies the
effectiveness of each module.

IV. CONCLUSIONS
We have proposed a new HDR video reconstruction

method from SDR video method based on the design of
Feature-Modulation Spatio-Temporal Fusion network (called
FMSTFnet). The proposed method can fully utilize temporal
and spatial information to reconstruct HDR video, improve
the visual effect of the HDR video, and reduce its color
deviation. The designed FMSTFnet has low-frequency and
high-frequency parts with a pyramid structure, and combined
global and local feature modulation module and spatio-
temporal fusion module are constructed for eliminating
possible inter-frame artifacts and color deviation. In future
work, it will be extended to HDR light field reconstruction
and angular consistency constraint will be explored to ensure
better quality of reconstructed HDR light field images.
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