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Abstract—A novel framework, called InterGridNet, is in-
troduced, leveraging a shallow RawNet model for geolocation
classification of Electric Network Frequency (ENF) signatures in
the SP Cup 2016 dataset. During data preparation, recordings
are sorted into audio and power groups based on inherent
characteristics, further divided into 50 Hz and 60 Hz groups via
spectrogram analysis. Residual blocks within the classification
model extract frame-level embeddings, aiding decision-making
through softmax activation. The topology and the hyperparam-
eters of the shallow RawNet are optimized using a Neural
Architecture Search. The overall accuracy of InterGridNet in
the test recordings is 92%, indicating its effectiveness against the
state-of-the-art methods tested in the SP Cup 2016. These findings
underscore InterGridNet’s effectiveness in accurately classifying
audio recordings from diverse power grids, advancing state-of-
the-art geolocation estimation methods.

Keywords-electric network frequency (ENF); grid location esti-
mation; audio processing; multimedia forensics

I. INTRODUCTION

Due to power grid disturbances, the Electric Network Fre-
quency (ENF) is a dynamic time series that exhibits fluctua-
tions around its nominal frequency of 50 Hz in Europe and
60 Hz in the United States/Canada. These oscillations result
from instantaneous load variations within the power grid,
displaying a consistent pattern within interconnected grids.
ENF signals become embedded in multimedia recordings
captured in proximity to power sources. This distinctive signal
can subsequently be extracted [1]–[4] from digital recordings
for various applications, such as verification of recording
timestamps [5]–[8].

Another application where ENF is also utilized is grid local-
ization. Grid localization can be treated as inter-grid [9]–[11]
or intra-grid [10] [12] [13] localization. Inter-grid localization
focuses on identifying the grid in which a media recording was
captured, while intra-grid localization aims to determine the
recording’s location within the specific grid precisely. Inter-
grid localization is briefly surveyed in Section II.

The intra-grid localization is considered more challenging
due to the highly subtle distinctions in the ENF signatures
encoded within the recorded signals. However, this assumption
is challenged by [14], who detail noticeable differences due
to varying city power consumptions and the time for load
changes to impact different grid segments, a concept further

explored in [15]. Additionally, ENF fluctuations can stem from
system disruptions like short circuits, power line switching,
and generator failures, as noted in [16]. Minor local load
changes affect ENF differently than major events like gen-
erator disconnections, which impact the entire grid at about
500 miles per second [17]. Given the aforementioned intra-
grid characteristics, various methods have been proposed to
tackle the problem of intra-grid localization [18] [19] [20].

A novel framework, termed InterGridNet, is introduced for
geolocation classification exploiting the ENF. The framework
offers a comprehensive approach that includes data prepara-
tion and preprocessing techniques using a shallow RawNet
[21] for classification. The topology and the hyperparameters
of InterGridNet are optimized through Neural Architecture
Search (NAS), enhancing its capability to tackle inter-grid
localization in audio recordings. It incorporates innovative
techniques, including filtering to isolate the relevant ENF
signal, using residual layers to extract frame-level embeddings,
and employing a softmax activation function in the decision-
making process. To our knowledge, this represents a pio-
neering advancement spanning from preprocessing techniques
to the classification stage, establishing a novel framework in
geolocation classification using deep learning methodologies.
The Signal Processing (SP) Cup 2016 dataset [22], the only
benchmark dataset publicly available, is employed for assess-
ing geolocation classification.

The key contributions of the paper are as follows:

• A novel framework, coined InterGridNet, is proposed to
treat geolocation estimation as a classification problem
among nine power grids, employing a shallow RawNet
optimized with NAS and leveraging ENF signatures from
the benchmark SP Cup 2016 dataset. It should be noted
that a shallow RawNet is utilized to reduce the number
of parameters and achieve comparable performance with
that using a deeper neural network.

• Experimental evaluation, including extensive testing of
the SP Cup 2016 dataset, showcases the effectiveness
of InterGridNet in geolocation classification across nine
distinct power grids, where it is compared with state-of-
the-art methods.

The remainder of the paper is organized as follows. Sec-
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tion II provides an overview of related work. The proposed
framework is detailed in Section III. Experimental evaluation
is conducted in Section IV. Section V concludes the paper by
providing information for future work.

II. RELATED WORK

ENF variations due to load fluctuations and grid frequency
control help to localize audio recordings. Grigoras’s research
demonstrated this by correlating ENF from audio recordings
with reference ENF signals from different power grids to
estimate the location of the recording [23]. Extensive research
was conducted in grid localization using ENF by employing
diverse datasets [12]. Additionally, location estimation at var-
ious scales was addressed in [24] and [13]. In [10], a machine
learning system was developed to ascertain where an ENF-
containing media file was recorded, even when no simulta-
neous ENF reference was available. Five machine learning
algorithms were explored to identify the recording location
of power and audio recordings obtained from ten distinct
power grids in [25]. The hypothesis that variations in load
conditions could generate unique location-specific patterns
within the ENF signal was assessed in [14]. In [26], an ENF
region classification model, UniTS-SinSpec, was introduced
within the UniTS framework, integrating a sinusoidal activa-
tion function and a spectral attention mechanism and trained
on a public dataset. Addressing the complexities of inter-grid
classification, field specialists have formulated methodologies
to distinguish audio recordings across global power grids,
exemplified by the 2016 SP Cup. This work substantially
improved the forensic analysis based on ENF, fortifying the
verification of the authenticity of multimedia recordings. These
distinctive patterns could pinpoint the precise location within
a grid where the recording was made.

III. THE INTERGRIDNET FRAMEWORK

A. Dataset Preperation

The SP Cup 2016 competition [22] benchmark dataset [27]
is employed, with data split into three sets: a training set
for the model’s development and training, a practice set for
validation, and a testing set for evaluating performance on
unseen data (see Section IV-A). The dataset encompasses
audio recordings capturing ENF signals from power grids
across different countries. Specifically, it consists of recordings
from nine distinct power grids, denoted as A through I. Grids
A, C, and I are characterized by nominal ENF at 60Hz, while
the remaining grids exhibit ENF around 50Hz.

The dataset consists of audio and power recordings for each
grid. The power recordings were generated from a specialized
circuit designed to capture the ENF time series directly from
the power mains and have a temporal span of 30 to 60 minutes.
The audio recordings were acquired using a microphone near
substantial electrical devices, capturing the ENF hum for 30
minutes. In particular, power recordings are distinguished by
stronger ENF traces than audio recordings.

The testing set has been augmented with 100 samples
(40 Audio and 60 Power), each spanning 10 minutes. This

subset comprises 8-11 samples from each of the nine grids
(A - I) and 10 additional samples from networks other than
these, categorized as “None” (N). This diverse sample set
is a benchmark for assessing the proposed InterGridNet’s
efficiency and generalization.

Figure 1 illustrates the InterGridNet framework, highlight-
ing the two critical stages of data preparation and classifica-
tion. The data preparation process is depicted within the yellow
dashed box in Figure 1. Initially, the recordings’ inherent
characteristics, encompassing ENF signals at either 50Hz or
60Hz, are utilized to classify the recordings as audio or power
recordings. Four distinct and independent data groups were
created: audio50, audio60, power50, and power60.

During the training phase, this categorization is direct
since the differences between audio and power recordings are
perceptible, mainly due to the higher Signal-to-Noise Ratio
(SNR) in power recordings. In contrast, during the testing
phase, an automated grouping method is required to classify
recordings based on their spectral characteristics, mainly to
distinguish between the ENF frequencies of 50Hz and 60Hz.
This method is described as follows:

1) For each recording, the average spectrogram magnitude
is calculated for the first three harmonics associated with
the nominal frequencies of 50 Hz and 60 Hz.

2) For each nominal ENF, the harmonic with the smallest
value from step 1 is ignored. Since the ENF may not be
present in every harmonic, the two harmonics with the
stronger traces are enough for the categorization.

3) The average of the magnitude values at the retained
frequencies in step 2 is calculated.

4) The largest value reveals the nominal frequency of the
network.

After classifying each recording into its data group, a
filtering process is applied to isolate the corresponding ENF
within a range of 2 Hz. For instance, samples from the
audio60 group undergo filtering using a bandpass filter set
to frequencies between 59 Hz and 61 Hz. Subsequently, the
waveforms are segmented into 16-second frames with a 50%
overlap and normalized to the interval [−1, 1]. These processed
frames are subsequently fed into the classification model for
power grid classification, shown as the blue dashed box in
Figure 1. The aggregated count of frames for each grid is
depicted in Figure 2, providing an overview of the distribution
of frames across the dataset.

B. Classification Architecture

The spectral content of the frames exhibits variation based
on the grid of origin, providing valuable information for
the location estimation of the recording. Figure 3 displays a
spectrogram concentrated around the nominal ENF from four
distinct grids. Notably, the ENF behavior differs depending
on the grid, wherein Figures 3(a), 3(b), 3(c), and 3(d) the
frequency content is around 60Hz, 50Hz, 50Hz, and 60Hz,
respectively. Consequently, the technique elucidated following
harnesses these ENF characteristics to classify the samples
according to the grid where the recording was made.

17Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-245-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIGNAL 2025 : The Tenth International Conference on Advances in Signal, Image and Video Processing



Figure 1. Flowchart of the proposed InterGridNet framework.

Figure 2. Number of audio and power recording frames in each grid.

TABLE I. OPTIMIZED HYPERPARAMETERS OF THE SHALLOW
RAWNET.

G50
Audio G60

Audio G50
Power G60

Power

Learning Rate 6.5× 10−4 7× 10−4 1.1× 10−3 9.7× 10−4

β1 0.96 0.97 0.98 0.98
β2 0.998 0.998 0.992 0.993

To address the classification problem, individual classes are
defined for each grid, comprising 16-second frames derived
in Section III-A. These 16-second frames are called samples
hereafter. The classification problem for each data group is
denoted as GENF

REC, where REC represents the recording type
(Audio or Power), and ENF signifies the nominal frequency
of the grid. Consequently, the classification problems are
denoted as G50

Audio, G50
Power, G

60
Audio, and G60

Power. Each GENF
REC

is expressed as GENF
REC = {C1, C2, . . . , Cn}, where n = 3 for

G60
Audio and G60

Power, and n = 6 for the others. Each Ci class
in the classification problem contains all samples from the
corresponding grid in the respective data group.

As an illustrative example, the classification problem for the
data group audio60 is denoted as G60

Audio = {C1, C2, C3},
where C1 encompasses the audio frames from grid A, C2 from
grid C, and C3 from grid I. Each sample has a label l ∈
{1, 2, . . . , n}.

For the last part of the flowchart in Figure 1, a shallow
RawNet architecture has been implemented to perform the
classification. The topology of the shallow RawNet was opti-

mized through NAS using the Keras-Tuner library. During
this search, several parameters were fine-tuned, including the
number of convolutional layers (ranging between 3 and 5),
the filter sizes (128 to 256), Gated Recurrent Unit (GRU)
units (512 to 1024), and dense layer units (64 to 512). After
extensive experimentation, the optimal configuration for this
architecture was determined to include two residual blocks.

Specifically, as depicted in Figure 4, the network begins
with an input layer that processes frames of size 15,999.
These frames are passed through a Strided Convolution block
consisting of a one-dimensional convolution layer, batch nor-
malization (BN), and LeakyReLU activation (with a slope of
0.01 for negative inputs). This initial block outputs a feature
map of size 5333 × 128. The first residual block follows,
comprising two convolutional layers, batch normalization,
LeakyReLU activation, and a max-pooling layer, resulting in
an output of 593× 128. Following a similar structure, another
residual block with 256 filters is applied next, reducing the
output to 66 × 256. These residual blocks are crucial for
extracting frame-level embeddings from the input data. Next,
the network incorporates a GRU to aggregate these frame-level
embeddings into a single ENF-level representation. The output
from the GRU is then passed through a dense layer, reducing
the dimensionality to a 128-dimensional vector. This layer
condenses the extracted features into a more abstract, higher-
level representation. Finally, the 128-dimensional vector is
processed by the output layer, which uses a softmax activation
function to map the vector to a probability distribution over
the 9 classes, completing the classification task.

In addition to optimizing the topology of the shallow
RawNet, NAS is also employed to fine-tune the hyperparame-
ters. The optimization process explicitly targets the learning
rate and parameters associated with the Adaptive Moment
Estimation (Adam) optimizer [28]. Initially, the learning rate
is set within a range from 10−4 to 10−2, and the β values
for the Adam optimizer vary between 0.9 to 0.999 and 0.99
to 0.999, respectively. Following the optimization with the
Keras-Tuner library, the optimal hyperparameter settings
for each data group are summarized in Table I. These config-
urations effectively balance the influence of past and current
gradients, contributing to efficient optimization.

To perform grid localization using InterGridNet, we adhere
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(a) Grid A (ENF 60Hz). (b) Grid B (ENF 50Hz). (c) Grid D (ENF 50Hz). (d) Grid I (ENF 60 Hz).

Figure 3. Spectrograms focused on the nominal ENF value for different grids.

Figure 4. Architecture of the proposed optimized shallow RawNet model. The operators utilized in the network include Conv1D(kernel size, strides, filters),
MaxPool1D(pool size, strides), GRU(units), and Dense(nodes).

to the outlined steps depicted in Figure 1. After data prepa-
ration, each recording frame undergoes classification by the
neural network, resulting in a probability distribution across
classes as determined by the softmax activation function of
the last layer. For the classification of a frame into one of the
known classes, the predictions should satisfy the rule:

−
n∑

i=1

pi(x) log2 pi(x) < α1 · log2(n), (1)

where pi is the probability for each class prediction from the
softmax and n is the number of classes in the frame’s data
group. In cases where the frame fails to meet (1), it is classified
as N.

Subsequently, a majority voting mechanism is employed to
ascertain the final estimate. The final estimate is deemed valid
only if it appears in at least α2 of the frames’ predictions;
otherwise, it is designated as N. Through the validation
process, thresholds α1 and α2 have been set to 0.8 and
0.75, respectively. This approach ensures robustness in the
grid localization process by requiring a consistent majority
agreement across frames for a conclusive final estimation.

IV. EXPERIMENTAL RESULTS

In this section, the validation and testing of the InterGridNet
are disclosed [29]. Additionally, limitations are discussed,
providing valuable insights into the model’s performance and
areas for potential improvement.

TABLE II. INTERGRIDNET VALIDATION ACCURACY.

Type A B C D E F G H I N Overall

Audio 80% 100% 100% 100% 80% 100% 80% 80% 100% 100% 80%
Power 100% 100% 100% 100% 100% 100% 80% 100% 100% 100% 96.67%

All 80% 100% 100% 100% 80% 100% 60% 80% 100% 100% 90%

A. Model Validation and Testing

At the training phase of each model, all available training
data depicted in Figure 2, corresponding to each data group,
were utilized. For validation purposes and to experimentally
determine the coefficients α1 and α2, the practice set from
the SP Cup 2016 dataset was employed. This shares identical
characteristics with the testing set described in Section III-A
and consists of 50 samples (5 samples for each class).

Table II summarizes the accuracy achieved for each class
in the practice set of applying InterGridNet after completing
model training and coefficient tuning. The classifier exhibits
superior performance in the Power recordings compared to the
Audio recordings as the Power recordings contain stronger
ENF traces, and the corresponding classifiers benefit from
a larger volume of training data, contributing to enhanced
performance. In addition, class “None” has 100% accuracy,
as shown in column N, underscoring the effectiveness of the
“None” sample identification method outlined in Section III-B.
The aggregate accuracy of the framework culminates at 90%.

The final assessment of InterGridNet’s performance was
conducted utilizing the dataset testing set. In Figure 5(a),
the confusion matrix derived from the predictions of the
proposed framework is illustrated, yielding an overall accuracy
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(a) Bandpass filtering is applied.

(b) No filtering is applied.

Figure 5. Confusion matrices predictions on the testing set employing the
proposed InterGridNet.

of 92%. Notably, misclassifications between classes A-I are
minimal, owing to the inherent constraints of the data splitting
technique, which refrains from classifying a sample with ENF
at 50Hz into classes A, C, or I with ENF at 60Hz, and
vice versa. Consistent with expectations, the testing accuracy
closely aligns with the validation accuracy.

B. Discussion

The achieved testing accuracy of 92% underscores the
unique characteristics embedded in the ENF signal per grid.
Unlike analytical feature extraction methods [30]–[35], these
distinctive features, crucial for solving the classification prob-
lem, are effectively extracted by the residual blocks and the
GRU layer of the neural network described in Section III-B.
This observation suggests that the chosen architecture demon-
strates exceptional suitability for processing the ENF signal
within raw audio data.

Figures 5(a) and 5(b) present the impact of frequency
filtering around the nominal ENF on the classification. When
this filtering is not applied, the overall accuracy is 72%,
significantly lower compared to the scenario with bandpass
filtering. This underscores the significant contribution of the
ENF signal to accurately determining the grid corresponding
to the recording location. In Figure 5(a), the misclassifications
by InterGridNet predominantly categorize samples as “None”
(class N). This exposes a vulnerability of (1) in the framework

TABLE III. TESTING ACCURACIES (%) IN SP CUP 2016 DATASET.

Method Characteristic Accuracy

SVM [30] One-vs-one classification 86%
SVM [31] Multi-class classification 77%
SVM [35] Multi-class classification 88%
Random Forest, SVM, AdaBoost [32] Ensemble method 88%
Binary SVM [33] Binary classification 87%
Multi-Harmonic Histogram Compari-
son [34]

Frequency domain analysis 88%

InterGridNet (Ours) Shallow RawNet 92%

but also underscores its confidence when handling samples
from grids on which it has been trained. This dual observation
provides insights into the framework’s strengths and areas for
potential improvement.

Table III summarizes the testing accuracy of other methods
using the same testing set. The data highlights the superiority
of the proposed InterGridNet framework over previous works,
reaffirming its effectiveness in geolocating sound recordings.
Hence, InterGridNet is a powerful tool in the field, showcasing
its potential for advancing state-of-the-art audio source grid
location classification.

In [11], authored by our team, a fusion model comprising
five machine learning classifiers was developed, trained, and
tested using audio spectrograms from the nine ENF grids.
This model achieved a testing accuracy of 96%, compared
to the 92% accuracy of the proposed InterGridNet. While the
higher accuracy of the fusion model can be attributed to its
combination of multiple classifiers, it’s important to note that it
required a significantly larger parameter count, with 11 million
parameters for the CNN alone, which further increased when
including the parameters of the fusion framework’s classifiers.
In contrast, InterGridNet, with a streamlined architecture of
7 million parameters, adopts a novel unified single-classifier
approach based on raw audio input via a DNN, highlighting its
innovation and efficiency in power grid classification without
the need for classifier fusion.

V. CONCLUSIONS

This paper presents InterGrid, a novel framework for ge-
olocating audio recordings across different power grids, in-
corporating optimization through NAS. Inspired by RawNet’s
architecture, InterGridNet has employed a shallow version of
RawNet, offering a dynamic framework that includes prepro-
cessing techniques to tackle the complex challenge of inter-
grid localization within audio recordings. Key techniques have
been crucial, such as bandpass filtering of ENF data, integra-
tion of residual layers for extracting frame-level embeddings,
and softmax activation for decision-making. This research has
marked the first implementation of DNN methodology for
classification with preprocessing methods, achieving a 92%
accuracy rate on the SP Cup 2016 dataset. Future research
will employ a transformer architecture for grid location clas-
sification. To enhance transparency and understand the model’s
decision-making process, explainable AI (xAI) techniques will
also be integrated to extract specific patterns associated with
each grid.
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