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Abstract—This paper proposes a technique for camera calibra-
tion and depth estimation from a single view that incorporates
a spherical mirror. By leveraging the sphere’s contour and
reflections, the approach enables precise calibration and scene
measurement while capturing additional environmental details
beyond the direct image frame. The study explores the geometry
and calibration of catadioptric stereo systems, addressing both
challenges and practical applications. The paper delves into the
intricacies of the geometry and calibration procedures involved
in catadioptric stereo utilizing a spherical mirror. Experimental
results with synthetic and real-world data demonstrate the
method’s feasibility and accuracy.

Keywords-Camera matrix calibration; Single-view image; Spher-
ical objects; Mirror sphere; Computer vision.

I. INTRODUCTION

Incorporating spherical mirrors in a catadioptric imaging
system makes it possible to observe a wide area with a
relatively small mirror. Research and analysis of catadioptric
systems based on spherical mirrors can be found in various
papers [1]–[3].

Inspired by the concepts introduced in [4], [5], which
utilized two spheres in the camera’s field of view for obtaining
stereo information, our focus is on the more practical scenario
of employing a single mirrored sphere. Our research aims to
present a method capitalizing on the unique attributes of a
single mirrored sphere for both camera matrix calibration and
catadioptric stereo.

Our approach only requires the image to show part of the
sphere’s contour and one of the following; the reflection of
the camera, two pairs of corresponding points on and off the
spherical mirror, or a single correspondence in special cases.

This research extends to the practical implementation of
a real-time system, showcasing the feasibility and efficacy
of employing mirrors for stereo imaging as a compelling
alternative to the established two-camera stereo methodolo-
gies. It is also applicable in scenarios where an accidental
spherical mirror is present in the scene. In Section 2, reviews
related work in catadioptric imaging system and existing cal-
ibration methods, highlighting the advantages and limitations
of prior approaches. In Section 3, presents our proposed
method for camera calibration and depth estimation using a
single spherical mirror, including a detailed explanation of the
mathematical formulation and implementation. In Section 4,
provides experimental results, including synthetic and real-
world data, to validate the accuracy and feasibility of our
approach. Finally, In Section 5, discusses the implications of
our findings, possible improvements, and potential real-world

Figure 1. Spherical mirror in scene

applications. It concludes the paper with a summary of our
contributions and directions for future research.

II. RELATED WORK

Catadioptric imaging systems, combining cameras with one
or more mirrors, can be divided into categories based on the
mirror type and calibration methods. A planar mirror, often
used to create a new viewpoint, serves as a cost-effective
option for building a stereo system with a single camera. In
contrast, a spherical mirror provides a significantly wider field
of view, making it popular in catadioptric systems that aim to
capture a more complete environment.

Central catadioptric camera calibration: Central cata-
dioptric cameras are imaging devices that use mirrors to
enhance the field of view while preserving a single effective
viewpoint[6]. Linear calibration methods are proposed that
unify the handling of straight-line projections in the real world
and sphere images formed by reflections of a spherical mirror,
requiring three images of a spherical mirror for implementa-
tion. Ying et al. propose a calibration method for paracata-
dioptric camera based on sphere images, which only requires
that the projected contour of a parabolic mirror is visible
on the image plane in one view [7]. Their approach relies
on the projection properties of spheres in central catadioptric
cameras, utilizing a unit viewing sphere model where a sphere
projects to two parallel circles they derive constraints for
camera calibration. Our method is not sufficient for a central
catadioptric camera calibration due to our assumption that the
sphere projects an ellipse in the image.
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Multiple views of spheres: Agrawal et al. [8], [9] and
Zhang [10] developed comprehensive methods for camera
calibration, positioning three or more spheres at multiple
locations. They present an algorithm that uses the projection
of the occluding contours of three spheres and solves for the
intrinsic parameters and the locations of the spheres. Extrinsic
calibration here involves first estimating each sphere’s 3D
position in the camera’s coordinate system, using known
intrinsic parameters and projected ellipses. The methods then
determine relative rotation and translation between cameras
by aligning these 3D sphere centers. Schnieders et al. [11]
propose a method that given multiple views of a single sphere,
estimate the camera parameters using the recovered sphere and
light directions.

Mirror-Based Calibration with a single-view image: Cal-
ibration algorithms that do not require direct observation of 3D
reference objects. Many approaches leverage Zhang’s calibra-
tion algorithm to estimate intrinsic parameters, For instance,
Francken [12] utilized this approach for webcam calibration
restricted to a screen setup, and others, like Agrawal [13],
adapted similar methods.

Perhaps the closest work to our topic is presented by Han
et al. [14], who propose a novel self-calibration method for
single-view 3D reconstruction using a mirror sphere. Han’s
approach requires estimating/guessing both the principal point
and focal length from a single-view image by minimizing
focal length discrepancies between images or through iterative
sampling. In contrast, our method computes camera intrinsic
parameters directly based on precise mathematical equations
derived from the sphere’s contour and reflection properties.
This approach enables a robust calibration process that avoids
iterative estimation, making it suitable for real-time applica-
tions.

III. METHOD

In this paper, we assume:
• A projective camera with no skew.
• The image contains a spherical mirror.
• The extrinsic parameters of the camera are




1 0 0 0
0 1 0 0
0 0 1 0



 (1)

• The unit is defined by the sphere’s radius.
To calibrate the camera we need to find the sphere’s contour
and center in the image. The sphere projects to an ellipse
in the image [15]. Let the conic be v

T
Cv = 0, where T

denotes transposition, with v the homogeneous coordinates of
a point on the conic, and C is the 3→ 3 symmetric matrix (as
illustrated in Figure 1, where the ellipse mark in red represents
the projected contour of the sphere. ).

Locating ellipses in images is a long-studied challenge, with
various methods proposed to tackle it, including both tradi-
tional and deep learning approaches, for example, [16]–[19].

Next, we find the sphere’s center in the image (O =[
ox oy 1

]T ). O can be determined by either of the fol-
lowing three methods:

1) Locating the camera’s reflection in the mirror (see Figure
9a, Figure 9b). The rays from the camera to the mirror,
from the mirror to the camera and the normal at the
mirror coincide, thus the ray from the camera to its
reflection in the mirror intersects the center of the sphere.
So, the image of the camera center is also the location
of the image of the sphere’s center.

(a) The rays from the camera to the mirror 0 → H , from the mirror to
the camera H → 0, and the normal at the mirror coincide.

(b) The center of the sphere in the image is at the camera’s reflection.

Figure 2. Illustration of method 1.

2) Using 2 or more pairs of correspondence points (see
Figure 3a, Figure 3b). Let v be the image of a 3D point
V and v

→ the image of V ’s reflection at V
→ then the

rays from the camera to V
→, from V

→ to V and from V
→

to the sphere’s center B (the normal) are coplanar and
include the camera center thus project to the line in the
image coincident to the sphere’s center. The intersection
of lines spanning corresponding points, on and off the
mirror, is thus the image of the sphere’s center.

3) If we assume that the camera has equal focal lengths,
fx = fy . intersecting the line containing a single pair of
corresponding points and the major axis of the ellipse,
(see Figure 4) suffices. This follows from the axial
constraint [15], which is the observation that the camera
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(a) A 2D cross-section of a pair of correspondence points.

(b) Finding the sphere’s center in the image from two pairs of
corresponding points.

Figure 3. Illustration of method 2.

center, the sphere center, and the major ellipse axis are
co-planar. Thus, the image of the sphere center is on the
ellipse’s major axis.

We want to compute the camera matrix P3↑4 and the
sphere’s center B =

[
bx by bz

]T . We will use the radius
of the sphere as the unit. Assuming a no skew camera

P :=




fx 0 tx 0
0 fy ty 0
0 0 1 0



 =



K
0
0
0



 (2)

K contains the first 3 columns from the matrix P . Where
fx, fy are the focal lengths and (tx, ty) is the principle point.

Let V =
[
vx vy 1

]T ↑ R3 be a pixel on the projected
contour of the sphere. Geometrically (see Figure 5) this means
that there is s ↑ R+ such that:

• ↓0, sK↓1
V,B is a right triangle.

In other words

↔sK↓1
V,B ↗ sK

↓1
v↘ = 0. (3)

• The distance between sK
↓1

V and B is the radius.
The radius is our unit, so

|sK↓1
V ↗B| = 1 (4)

Figure 4. Finding the sphere’s center from a single pair of corresponding
points and the major axis of the ellipse. The green line connects the

corresponding points, while the red line represents the major axis of the
ellipse.

Figure 5. 2D example of sphere outline. sK→1
V is perpendicular to

B ↑ sK
→1

V . The distance between sK
→1

V and B is the radius, which is
1.

We simplify these equations to get:

↔K↓1
V,B↘2 + (1↗ |B|2)|K↓1

V |2 = 0 (5)

We use the fact that an inner product can be represented by
a matrix multiplication and rewrite it as:

V
T
K

↓T (BB
T + (1↗ |B|2)I)K↓1

V = 0 (6)

Where I denotes the identity matrix ensuring that it preserves
the dimensional of B. This is an equation of the conic section
we already computed: C. Therefore, they are equivalent up to
a scalar factor:

C = rK
↓T (BB

T + (1↗ |B|2)I)K↓1 (r ↑ R) (7)

We currently have 8 unknowns:

r, bx, by, bz, fx, fy, tx, ty

but equating the conic sections only gives 6 equations (Both
matrices are symmetric). We first get rid of tx, ty by shifting
the image so (0, 0) represents the center of the sphere.
We define:

S :=




1 0 ox

0 1 oy

0 0 1



 (8)
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Since we know C, o we can compute the matrix

M := S
T
CS (9)

Q := bzK
↓1

S =




bzf

↓1
x 0 bx

0 bzf
↓1
y by

0 0 bz



 (10)

p =
r

b2z

(11)

We get:

M = pQ
T (BB

T + (1↗ |B|2)I)Q (12)

Denote mij := M [i, j]. can be expanded to a system of
equations:






m11 = pf
↓2
x b

2
z(b

2
x + 1↗ |B|2)

m22 = pf
↓2
y b

2
z(b

2
y + 1↗ |B|2)

m33 = p|B|2

m12 = pf
↓1
x f

↓1
y bxbyb

2
z

m13 = pf
↓1
x bxbz

m23 = pf
↓1
y bybz

(13)

To solve these equations, first calculate p and |B|2:

p =
m13m23

m12
(14)

,

|B|2 =
m33

p
(15)

Now we can calculate b
2
x, b

2
y, b

2
z:

b
2
x =

1↗ |B|2
m11

m2
13
p↗ 1

, b
2
y =

1↗ |B|2
m22

m2
23
p↗ 1

, b
2
z = |B|2↗b

2
x↗b

2
y (16)

The choice of either the positive or negative square root of
b
2
x, b

2
y doesn’t matter and it will be compensated by positive or

negative fx, fy . However, bz should be positive as the sphere
is in front of the camera. Now we can determine the values
of fx, fy:

fx =
pbxbz

m13
, fy =

pbybz

m23
(17)

Notice KB is the position of the sphere’s center in the image,
so KB = bzo. Therefore, we can determine the values based
on our previous calculations:

tx = ox ↗ fx
bx

bz
, ty = oy ↗ fy

by

bz
(18)

Note that knowing both the sphere’s and camera parameters
suffice to reconstruct the 3D positions of all pairs of corre-
sponding points by intersecting the corresponding rays.

Figure 6. Synthetic Data 1

IV. RESULTS

We have tested our algorithm on a synthetic image of
resolution 2048x2048 generated using Blender (see Figure
6), using only the conic section, the contour of the spherical
mirror, and the reflection of the camera to calibrate the image.

First phase: We selected points on the sphere contour and
calculated the conic. Second phase: We estimate the center of
the sphere in the image by locating the camera’s reflection.
Now we apply our algorithm to calibrate the image. Figure 7
resolution 1920x1080.

TABLE I. COMPARISON OF REAL VALUES AND OUR ALGORITHM’S
RESULT ON 6.

Parameters

Ground Truth

bx = 3 by = ↑4,

bz = 7 fx = 1024

fy = 1024 tx = 1024

ty = 1024

Result

bx = 3.00 by = ↑3.94

bz = 7.03 fx = 1027.99

fy = 1032.84 tx = 1024.34

ty = 1016.94

.

Error Range Less than 1.5%

TABLE II. COMPARISON OF REAL VALUES AND OUR ALGORITHM’S
RESULT ON 7.

Parameters

Ground Truth

bx = ↑1.5 by = 3,

bz = 1 fx = 1144

fy = 1144 tx = 960

ty = 540

Result

bx = ↑1.47 by = 3.07

bz = 1 fx = 1179

fy = 1167 tx = 949

ty = 535

.

Error Range Less than 3.1%
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Figure 7. Synthetic Data 2

In the real image 1600x1196 (see Figure 1), the estimated
sphere origin is:

bx = ↗0.76, by = 0.13, bz = 5.07

fx = ↗1744, fy = 1732, tx = 722, ty = 583

To verify our algorithm, we also computed the length of
objects using two pairs of correspondence points (Figure 3a)
and a sphere with a radius of 5 cm, in Figure 8. We computed
the height of the vase using two pairs of corresponding points.
We computed the ray for each point. Let v,v→, and u, u→ be
pairs of correspondence points; we then calculate the rays in
3D space. This conversion involves scaling and translating the
pixel coordinates. Next, we compute the 3D point represen-
tation where the ray intersects the correspondence point v

→,
denoted as h. According to the equation we presented earlier,
(4), we define offset = h↗B = sK

↓1
V ↗B with the condition

|sK↓1
V ↗B| = 1. The reflected vector is

reflect = h↗ 2 ≃ ↔offset, h↘ ≃ offset.

Given the reflected ray and the direct ray, we compute the 3D
position of the point. The first and second phases are the same
as described in the previous example.

bx = 1.30, by = 0.48, bz = 5.62

fx = 2714, fy = 2703 , tx = 3052, ty = 1664

The height of the marker is 13cm, computing the 3D points of
v, u marked in red and their distance we obtained is a height of
14 cm. The real height of the tape dispenser is 5cm, computing
the 3D points of v, u marked in blue and the distance we
calculated a height of 5.05 cm.

TABLE III. COMPARISON OF ZHANG EVALUATION FOR OVER MORE THEN
20 IMAGES AND OUR ALGORITHM’S ON A SINGLE IMAGE RESULT

9.

Parameters

Zhang Calibration
fx = 8146

fy = 8286 tx = 3143 ty = 2397

Result
fx = 8258

fy = 8073 tx = 3904 ty = 3875
.

Figure 8. Height test

(a) Single image of a spherical mirror - our algorithm

(b) Images - Zhang algorithm

Figure 9. Comparison of Camera Calibration Methods for the Canon EOS
R10

V. CONCLUSION AND FUTURE WORK

We presented a novel approach for calibrating the camera
matrix using a single-view image. Our findings help reduce the
requirements for achieving this calibration. Using our method,
further image analysis is possible, such as determining the
3D location of a point from a pair of corresponding points or
estimating an omnidirectional image centered at the sphere’s
origin. Additionally, since a spherical mirror distorts the scene
by projecting it onto a curved surface, we aim to leverage our
findings to correct this distortion and reconstruct the scene as
if it were reflected in a planar mirror in future work.
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