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Abstract — This paper proposes the multirate Convolutional
Neural Networks (CNN) algorithms for an efficient
implementation of the 2-Dimensional (2-D) CNN circuits
implementation. During the rapid growth in computation power,
Deep Learning (DL) using CNN has widened the areas of the
Artificial Intelligent (AI) applications. For the layers of the
convolution with pooling operation in CNN some researchers
work has initially applied the multirate algorithms to the
traditional (non-multirate) convolutional kernel operation of
using polyphase architectures resulting in the more efficient
implementation of the multirate filtering. In this work we
extend it into 2-D CNN by using time-varying coefficient to
achieve an efficient implementation with reduced memory(i.e. the
line-buffer) size by M-fold(the pooling factor) and the MACs at
1/M of clock running rate. A design example of the first stage
of CNN system will be provided. Its results are verified with
the Matlab CNN-based digit recognition tool.
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L INTRODUCTION

With the surging of the computational power, Deep
Learning (DL) using Convolutional Neural Networks (CNN)
has become reality in more and more applications of
Artificial Intelligence (AI). However, some applications have
limited energy capacities. In various Internet of Things (IoT),
the wearable and mobile applications of CNNs have scarce
energy sources and thus require solutions to lower power
consumption and smaller hardware size in order to ensure the
longevity of the devices and smaller chip area [4]. As the
result of the demand for lower power consumption, more
research interest has been generated in exploring high-
performance neural processing units or Application Specific
Integrated Circuit (ASIC) accelerators with superior power
efficiency and computation parallelism [5].

Fig. 1 shows a typical DL system with CNN architecture
which contains convolution, pooling, and fully-connected
layers. It usually includes several cascaded convolutional
layers in which the a single clock frequency is employed [5].

In the applications of real-time image processing, for
instance, the 2-D CNN hardware architectures that make
dense, pixel-wise predictions, such as FCN [6], U-Net [7],
and their variants, use very long skip lines. For example each
line contains as many as 512 pixels in the U-Net image.
Those skip lines are crucial for recovering of the details lost
during the down-sampling. The IC  hardware
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implementations of those networks require large memory (or
line-buffer or line-delay) to store all the skip lines. The line
buffers often use external memory, such as SRAM or DDR,
which dramatically increases the cost in terms of silicon area
footprint and consumes high power [8].
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Figure 1. A typical CNN architecture with convolutional, pooling and
full-connected layers
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Images or 2-D signals are acquired line-by-line by the
raster scan sequence. In the 2-D raster scanning-line based
system, the row (vertical) delay of lines is accumulated in
each convolution layer. For example, a 2x2 spatial window
may cause a l-line delay, whereas two consecutive 3x3
convolutions may result in 2-line delays and each delay
contains 512 pixels to be stored in the U-Net image.

The problem with the long skip lines is that once the data
on one end of the skip line is generated, it needs to be held in
memory until the data in the receiving end of the skip
connection is available. The more layers a connection skips
over, the more line pixels need to be stored in memory.
Therefore, the size of the total memory required increases
with the length of the skip line. The memory requirements
for the line delays can aggregate quickly and become a
significant contributor to the total silicon area needed to
implement the network. Moreover, the latency issues can
also be problematic in latency-sensitive applications such as
autonomous driving systems.

The computation of convolutional operations involves
multipliers and adders, i.e., the Multiply-and-Accumulate
(MAC) operation. For concurrent processing, the number of
multipliers required must be the same as the filter size, which
can result in large area consumption. Moreover, summing up
the outputs of these multipliers involves multiple cascaded
adders. Thus, digital MAC units may occupy a vast area with
high power consumption [8].

The chip area and power constraint facilitate the
researcher interests in the multirate filtering techniques [2]
which can not only perform real-time kernel convolution but
can also occupy significantly less chip area and smaller
power consumption. Although the works in [2][3] are in the

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.  ISBN: 978-1-68558-245-6

28


mailto:tiger.wang@chendiantech.com

SIGNAL 2025 : The Tenth International Conference on Advances in Signal, Image and Video Processing

analog-digital mixed-signal domain, their multirate
(decimating  filter) algorithms and implementation
architectures can be expanded into the digital signal
processing domain.

In this paper we describe the way to design decimating
(multirate) filters for kerel convolution with pooling
(decimating) operations, and introduce the time-varying
coefficient (weight)architectures for the efficient 2-D CNN
circuit implementation architectures whose memory (the
line-buffer) size is to be reduced by M-fold(a pooling factor)
and the MACs at 1/M of the clock rate.

The paper is organized as follows. In Section II, the
multirate algorithms for 1-D decimating filter is presented in
terms of time-varying coefficients. In Section III, a direct-
form implementation of the 2-D CNN counterpart is derived.
Finally, Section IV presents a design example of 3x3 kernel
convolutional layer with pooling 2x2 (decimating filter)
for demonstrating of the 2-D CNN implementation.

II.  MULTIRATE ALGORITHMS FOR 1-D CONVOLUTION
WITH POOLING OPERATIONS IN CNN

The multirate algorithms for efficient implementation of
1-D and 2-D filtering circuits have been previously
introduced by [1][2][3] based on polyphase structures. In
CNN efficient implementation, however, we modify the
polyphase structures and manipulate the (decimating) filter
transfer functions as filtering with the time-varying
coefficients (weights) form. Thus, the resulting filter
expression form is comparable to its non-multirate prototype
counterpart.

The multirate algorithms in terms of time-varying
coefficient expression give explicit mapping relations
between non-multirate and multirate relations of z-transform
functions. These can be utilized for efficient design and
implementation architectures of such 1-D and 2-D
decimating filters.

For the sake of easy comprehension, only the first (one)
layer of CNN in Fig. 1 is discussed and illustrated. We can
see that the convolutional and pooling layers architecture is
the same as the 2-D decimating filtering system [2][3], as
depicted in Fig. 2, with an activation operation (ReLU)
which operates either after or prior to the pooling.
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Figure 2. The convolution followed by pooling architecture can be
considered as a 2-D decimating filter.

To derive the efficient implementation architecture we
further consider a 1-Dimensional (1-D) linear, time-invariant
(N-1)-th order FIR filter followed by a decimator with a
factor (In neural network computation, stride for pooling
layers is often used) of M, as illustrated in Fig. 3(a) below.
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Figure 3. (a) A general filter clocking at Fsand followed by a decimation
operator
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Figure 3. (b) Deriving efficient multirate implementation for an1-Dflter.

and its z-transfer function is H(z) as shown in Eq.1, where
the unit-delay z'! is related to the sampling frequency Fs . The
overall system clocking at an unique frequency Fs is also
called non-multirate (traditional) system,

N-1
H(@z)=> hz" )
n=0

For an efficient implementation of Fig. 3(a) this system
H(z) can be alternatively manipulated as Eq.2 by using
multirate (decimation or interpolation) filter architecture
based on the polyphase decomposition algorithms as
described in [1][2].

The efficient implementation implies that the most parts
in CNN operate at lower clock frequency (lower power
consumption) and less memory used (smaller memory size
required) especially in the 2-D and 3-D [9] CNN systems.
Such a decimating filter using time-varying coefficients
(weights) of convolutional layer expression can be
considered as a time-variant filter with periodically varying
coefficients [2][3]. It can be straightforwardly applied to
CNN implementation in which the convolutional layer is
followed by the pooling operation.

Considering such a decimating filtering system as in Fig.
3(a) which can be mathematically expressed as Eq.1, where
the (N-1)-th order prototype filter with decimating factor
(pooling stride) of M, it can be manipulated as

H(z)=h+hz' + bz +. +h_ 2
:(h0 +hz + iz + +};W71z'(‘”'1))

+(hM +hy 2" +h2Mflz’(M’1)) LA )

+(hN7M+] +...+ hNilzi(M’l) ) Z{L*l)M

where the filter order N= ML. Eq.2 contains L terms (and
each of which contains bracketed M sequential terms that can
be considered as a periodically commuted coefficient. We
define such a coefficient as a time-varying one. Therefore, it
has L time-varying coefficients.

Assuming Z= (zM) which is related to the reduced
sampling rate F/M . Thus, we arrive at the transfer function
with a time-varying coefficient form:
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where /; represents the time-varying weights in Eq.3. It is
noticed that Eq.3 has a similar math expression form to its
non-multirate (prototype filter) counterpart. H(Z) or H(z™) is
operating at Fy/M which is a lower clock rate than the
original Fs.

III.  EFFICIENT IMPLEMENTATION OF 2-D MULTIRATE
CONVOLUTIONAL AND POOLING LAYERS IN CNN

Fig. 4 shows an FIR prototype 2-D filter with the
transfer function H(zi1,z) where z'!' represents the horizontal-
dimensional delay unit and z;"' represents the vertical-
dimensional delay unit(scan-line delay). The overall filter
system is operating at the horizontal frequency Fs. This non-
multirate 2-D filter can be expressed as Eq.4.

P 20 Filh /P
= H[z1!zT =

F, F,
Figure 4. A non-multirate prototype 2-D filter.

N-1N -l . .
H(z,z)= z az'z"”’ Q)

j=0 i=0

where a;j are the normalized weight coefficients for both
the horizontal and vertical dimensions. The index i is
equal to the integer of for i = 0,1, and (Ni-1) where NV is
defined as the filter order in the vertical dimension.
Similarly, index j is for 0,1, and (N-1) where N is the
horizontal dimension filtering order.

The variable separable filters (convolutions) are
commonly used to design efficient neural network
architectures [8]. For the demo purpose of multirate concept,
assume the H(zi,z) to be variable separable. Therefore Eq.4
can be further simplified to Eq.5 [2][3],

H(z], z):H(z])H(z)

N-1
H(Z) = Zajzfj )
=0

Ny -1 }
H(Zl) = Z alizl_L
i=0

where

Assuming that decimating factor M is the same in both
dimensions, in Fig. 4 we apply the multirate transformation
[3] to both H(z) and H(z:) as similar form to Eq.3, and thus
an efficient implementation can be achieved in which the
scan-line memory length and computational clock speed can
be reduced by a factor of M as shown in Fig. 5.
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(a)A 2-D non-multirate filter H(z1,z) followed by a decimator
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(b)The efficient implementation form ofa 2-D decimating filter and the decimator is now in
front of filter

Figure 5. Deriving the efficient multirate implementation for the 2-D filter.

Fig. 5(a) and (b) depicts the process of deriving efficient
implementation of the 2-D decimating filter. It can be
observed in Fig. 5(a) a typical convolutional layer followed
by a pooling layer, in which the filter circuit is operating at
the system maximum frequency F and the scan-line memory
is equal to the input image pixel numbers in each line.

In Fig. 5(b), however, the decimator is placed in the
front of the 2-D filter and it yields an efficient
implementation when using time-varying weights. This can
be described as the following Eq.6.

H(Zl’ Z)=H(Z1)H(Z)

H(Z)=3 4,27 ©)

where the capital-case zi”' represents the vertical scan-

line delay and the capital Z equals to (zM), so Z'= (M)’
which implies that the computation rate (the required
sampling frequency) has been lowered with the factor of M.
L1 and L are the time-varying coefficient indexes,
respectively. Thus, we arrive at an efficient implementation
architecture of Eq.6 with the time-varying weights as

shown in Fig. 6
[ 2INHzZ
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Figure 6. The proposed efficient implementation with time-varying weights
where M equals 2 in both dimensions. Thus, the time-
varying coefficients can be manipulated as

1

_— - _
Ay =ag +a1z7; Al = ag + a3z and
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5 _ 15 _ -1
Ap = aw +anz; An = ain + @z

IV. A DESIGN EXAMPLE OF 2-D MULTIRATE CNN

Consider a 2-D FIR edge-filter example whose
coefficients is listed in TABLE I below

TABLE I. THE 2-D SEPERABLE EDGE FILTER WITH BOTH

DIMENSIONAL WEIGHTS
Filter Coefficients (Weights)
Horizontal a0=-3.9; a1=0; a;=4; a;3=0;
Filter H(z)
Vertical al—= _3.9; al= 0; ain= 4; aiz= O;
Filter H(z1)

For comparison, an image as shown in Fig. 7(a) inputs to
the three types of multirate (decimation) filter shown in Fig.
6.

Input Image Edge-Filter Followed by Decimator

150 200 (7) 80 100

Franca-Multirate Filter Decimator Followed by Edge-F ilter

20
40
60

60 80 100 (¢) 40 60 80 100 (d)
Figure 7. (a)Input image; (b)Type-L: Tradmonal convolution followed by
pooling system’s output image; (c)Type-II:Proposed multirate filter output;
(d)Type-1I1:The pooling layer followed by the convolution layer.

The type-I is the same as convolution layer of 3x3 kernel
followed by the pooling layer with stride =2 in CNN and the
simulated output image is as shown in Fig. 7(b). The type-II
is the proposed Franca-multirate edge filter architecture and
the output image is as shown in Fig. 7(c); The type-III
consists simply of placing the decimator in front of the filter
and the output is shown in Fig. 7(d).

Comparing the above mentioned output images, we
notice that the proposed Franca-multirate filter has the same

output with the traditional convolution plus pooling’s output.

To further verify the multirate architecture, consider again
the case of the design example for a convolution layer with
pooling stride=2. The operating clock frequency is set at
27MHz. It can be seen that the entire 2-D filter now
operates at a lower frequency 13.5MHz which can reduce
power consumption in the circuit and the scan-line memory
by half. In addition, the feature-map memory of CNN is
also reduced by three quarters (image 14x14).

By using MATLAB CNN based tool at 3x3 for the
digit-recognition, we compare the simulation results from
the original code to modified code which models our
multirate architecture in the first convolution, ReLU, and
pooling layers as shown above in Fig. 5 where the bias
values have been considered in the weights during the
training..

The weights training has no noticeable delay or any
convergence issue, and the final detecting accuracy is

identical to the MATLAB original results as depicted in Fig.

8.
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Figure 8. Digit-recognition simulation results of the multirate 2nd-order
filter with pooling stride=2

V. CONCLUSIONS

We have proposed the new multirate algorithms with
time-varying weight architectures for efficient CNN
hardware implementation. The design example has been
verified with digit-detection CNN-based MATLAB tool. It
has achieved 2-fold reduction of computing clock rate and
line delay memories for the CNN implementation resulting
in a smaller chip size and lower power consumption.

As future work, it would be interesting to design ASIC
chips to study how the efficient implementation of the while
multirate CNN presented in this paper would applied into
many applications in DL of Al, especially in the 2-D and 3-
D CNNs. The training methodology of the multirate CNN
should be further studied to achieve a similar generalized
existing learning methods.
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