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Abstract—This paper describes the use of validation methods 
in model building. We address issues associated with the 
increasing complexity of models that is in part a response to 
the growing popularity of Agent-Based Models (ABM), 
commonly used to study cognitive, natural, and social 
phenomena. The first section of this manuscript discusses 
model categories and attributes. The second section discusses 
the stages of validating a simulation model: verification, 
validity, and sensitivity analysis.  The third section presents 
specific validation approaches, with an emphasis on six specific 
tests that are described in detail. The final section summarizes 
the goals of model validation and modeling. 

Keywords-Agent-Based Models, Validation, Verification, 
Infectious Disease Models.  

I.  INTRODUCTION 
A number of global events point out the need for 

effective modeling. These include the H1N1 pandemic of 
2009 and most recently, the Chilean earthquake tragedy, in 
which observers used modeling to issue tsunami warnings to 
Hawaii. The tsunami warnings overestimated the effect of 
the waves that would ultimately reach Hawaii, and 
“scientists will pore over reams of data” [1] as they work to 
understand what happened. However, some scientists say 
that “there should be a rigorous examination of long-standing 
assumptions within computer-generated models that are used 
to estimate the strength and impact of tsunamis,” and that the 
“main problem right now is that we have unsubstantiated 
assumptions built into our warning system and we really 
have to check those [1].” 
 

Due to significant reductions in the cost of computational 
resources and the increasing power of those resources, the 
nature and type of computer models used in a number of 
areas including disease transmission processes are changing. 
In particular, Agent-Based Models (ABM) are a relatively 
new technology growing in use. One reason is that ABM are 
an important method for representing and describing 
interacting heterogeneous agents. Recently, they have been 
applied to H1N1 infectious disease applications [2-7]. The 
heterogeneous property of agents enables ABM to describe 
more sophisticated and complex environments. Many 
researchers believe that human systems are complex 
processes that are poorly described by existing/alternative 
equation-based models (EBM) and it is easier to incorporate 
existing knowledge about human interactions and decisions 

into an ABM than into a model described by analytical 
equations [8]. The downside of this enhanced flexibility is 
that validating ABM may be more complicated because the 
processes they describe are more complicated; consequently, 
rigor is more difficult to achieve because of the complex 
environment. 

 

A. Validation Definitions 
 
Various definitions of validation appear in the literature. 

Schlesinger et al. [9] define validation as “substantiation that 
a computerized model within its domain of applicability 
possesses a satisfactory range of accuracy consistent with the 
intended application of the model.” Midgley et al. [10] 
define validation as demonstrating that the “correct” 
equations have been solved by referencing an external and 
independent test. Macal [11] defines validation as the 
process of determining the extent to which a model or 
simulation accurately represents the “real” world from the 
perspective of its intended use. The final definition of 
validity presented here is from Ziegler [12], who 
distinguishes three types of validity: 

 
• replicative validity—the model matches externally 

available data that has been generated by the 
modeled system (retrodiction). 

• predictive validity—the model matches data that can 
be acquired from the modeled system, and 

• structural validity—the model reflects observed 
behavior and matches the process inherent to the 
process to produce the behavior.  

 

B. Model Characteristics 
 
The type of model used to describe the phenomena of 

interest depends on the nature of the phenomena, the 
available supporting information about the phenomena, and 
the purpose of the model. A major issue that affects the type 
and quality of the validation method that can be applied is 
the degree of heterogeneity required to describe model 
elements. In many cases, the level of detail that is 
incorporated into the model architecture is dictated by the 
model’s purpose. For example, if intervention strategies to 
prevent disease spread depend on individual agent 
characteristics, those characteristics have to be included in 
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the description of the agents. A review of the important 
categories of models and their characteristics is presented 
below. These categories are not mutually exclusive. 

 
1) Agent-Based Models (ABM) 

 
ABM have been used to describe phenomena such as 

social systems and immune systems, which are distributed 
collections of interacting entities (agents) that function 
without a leader. Simple agents interact locally according to 
simple rules of behavior, responding in appropriate ways to 
environmental cues and not necessarily striving to achieve an 
overall goal. An ABM consists of a set of agents that 
encapsulate the behaviors of the individuals that make up the 
system, and model execution consists of emulating these 
behaviors [13].  

 
2) Equation-based Models (EBM) 

 
EBM describe the modeled phenomena using a set of 

equations that interconnect the behavior of individuals or 
groups of individuals to the environment they inhabit. 
Manipulating the model’s interconnections allows assessing 
control scenarios through evaluation of the equations. 
Historically, an important category of EBM is system 
dynamics, an approach based on describing simulation 
processes using ordinary differential equations (ODE) [15]. 

 
3) Social Network Models 

 
The structure and dynamics of social networks are 

critically important to many social phenomena. There are a 
number of important questions in social networks research, 
but a lack of data does not allow them to be answered. For 
example, one of these questions is how social networks 
change over time.  

 
Social network models are built around two basic entities 

of a directed graph: the node and the edge. Networks are a 
form of relational data and arise in many fields, and graphs 
are a natural method for representing the structure of these 
relationships. In these applications, nodes usually represent 
people or agents, and edges represent a specified relationship 
between them. This framework has many applications, such 
as assessing the influence of the structure of social networks 
on the spread of epidemics, assessing the interconnectedness 
of the World Wide Web, and examining long-distance 
telephone calling patterns. 

 
4) Deterministic Models 

 
A deterministic model is a mathematical model that 

employs parameters and variables that are not subject to 
random fluctuations. Therefore, the system is at any time 
entirely defined by the initial conditions, in that the 
assumptions and equations the user selects "determine" the 
results. The only way the outputs change is if the user 
changes an assumption (or an equation). 

 
5) Stochastic Models  

 
In many real-life situations, observations are influenced 

by random effects throughout an entire interval of time or 
sequence of times. A stochastic model includes elements of 
randomness that can be introduced at one or many points of 
the model. Thus, every time the model is applied, a different 
result is produced even if the parameters and logic are 
unaltered. Running the model many times provides a 
measure of the variability in the process that can be captured 
by the model. In many cases, stochastic models are used to 
simulate deterministic systems that include smaller-scale 
phenomena that cannot be accurately observed. The 
stochastic nature of these types of models is caused by at 
least three sources: noise in the parameter realization; the 
representation of a truly random process, and/or a 
deterministic process that is measured with imprecise tools. 
The last scenario, though not truly random, produces 
random-type behavior. In complex systems such as hybrid 
ABM/EBM, all three sources of randomness could be 
present. Thus, comparing individual trajectories/outcomes is 
not straightforward because an infinite number of outcomes 
are possible. Therefore, a comparison of two stochastic 
processes should be based on trajectory/outcome 
generalizations.  

 
6) Monte Carlo Simulation Methods 

 
Monte Carlo models are a class of computational 

approaches that rely on repeated random sampling to 
compute results [16]. Monte Carlo methods are often used in 
simulating physical and mathematical systems. Because of 
their reliance on repeated computation of random numbers, 
these methods tend to be used when it is unfeasible or 
impossible to compute an exact result with a deterministic 
model. These methods are useful in studying systems with a 
large number of coupled degrees of freedom and for 
modeling phenomena with uncertainty in inputs. It is a 
successful method in risk analysis when compared with 
alternative methods or human intuition.  

 

II. VALIDATION STAGES 
There are three steps in the validation process: (A) 

verification, which assesses the accuracy of the programmed 
model; (B) validation, which assesses the accuracy of the 
phenomena (as described by the model assumptions) against 
external criteria such as data or other factual information; 
and (C) sensitivity analysis, which determines the robustness 
of model estimates with respect to changes in model 
assumptions. 

 

A.  Model Verification 
  
With a complicated computer program, programming 

errors can result in output that is the result of a mistake rather 
than a surprising consequence of the model. Verification is 
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the process of checking that a program does what it was 
planned to do. In the case of simulation, the difficulties of 
verification are complicated by many simulations being 
based on a stream of random numbers—meaning every run 
is different—and it is only the distribution of results that can 
be anticipated by the theory. Therefore, it is essential to 
debug the simulation using a set of test cases, perhaps of 
extreme situations in which the outcomes are easily 
predicted. Setting up a suite of such test cases and re-running 
the simulation against them—each time a major change is 
made—can help ensure that more errors have not been 
introduced. This process can be made easier by using a 
version control system that automatically records and tracks 
model results from each version of the simulation program.  

 

B. Model Validation 
 
Validation processes attempt to demonstrate whether the 

simulation is a good model of the target phenomena. A 
model that can be relied on to reflect the behavior of the 
phenomena is valid. One way to ascertain its validity is by 
comparing the model’s output to data collected from the 
target. However, a few caveats are warranted:  

 
• Both the model and the target processes are likely to 

be stochastic, so exact correspondence would not be 
expected on every occasion. Whether the difference 
is large enough to cast doubt on the model depends 
in part on the expected statistical distribution of the 
output measures. Unfortunately, with simulations, 
these distributions are rarely known and are not easy 
to estimate. 

• Some simulations are path-dependent and early 
random number choices can greatly influence 
outcomes. Outcomes may also depend on the initial 
conditions chosen, which will affect the paths taken 
by the simulation.   

• Even if the results obtained from the simulation 
match those from the target, there may be some 
aspects of the target that the model cannot 
reproduce.  

• A model may be correct but the target data available 
for validation is either incorrect or not known.  

• Data accuracy issues also arise when a model is 
intentionally highly abstract. Relating the 
conclusions drawn from the model to specific data 
from the target may be difficult. In highly abstract 
models, it is unclear what data could be used for 
direct validation. This issue arises with models that 
employ synthetic populations, in which the 
population is either intentionally remote from the 
simulation or does not exist at all. For these models, 
questions of validity are difficult to assess.  

 

C.  Model Sensitivity Analysis 
 

Sensitivity analysis investigates how projected 
performance varies along with changes in the key 
assumptions on which the projections are based. Once a 
model appears to be valid, at least for the initial conditions 
and parameter values for which a simulation has been run, a 
modeler is likely to consider a sensitivity analysis to answer 
questions about the extent to which the behavior of the 
simulation is sensitive to assumptions that have been made. 
Sensitivity analysis is also used to investigate the robustness 
of a model [10, 14]. If the behavior is very sensitive to small 
differences in the value of one or more parameters, a 
modeler should be concerned about getting accurate 
estimates for those sensitive parameters.   

 
The principle behind sensitivity analysis is to vary the 

initial conditions and parameters of the model by a small 
amount, re-run the simulation, and observe differences in the 
outcome. This is done repeatedly while systematically 
changing the parameters. Unfortunately, even a small set of 
parameters can quickly result in a very large number of 
combinations of variations in parameter values, and the 
resources required to perform a thorough analysis can be 
prohibitive.  

 
Randomization of parameters to obtain a sample of 

conditions is one of several uses of random numbers in 
simulation. Random numbers can also be used to: vary 
exogenous factors (all the external and environmental 
processes that are not being modeled); model the effects of 
agents' innate attributes; and address simulation techniques 
that yield different results, depending on the order in which 
the actions of agents in the model are simulated.  

 
Results from the simulation will need to be presented as 

distributions, or as means with confidence intervals. Once a 
random element is included, the simulation must be analyzed 
using the same statistical methods that have been developed 
for experimental research: analysis of variance to assess 
qualitative changes (e.g., whether clusters have or have not 
formed), and regression to assess quantitative changes.  

III. METHODS 

A. The General Process 
 
A model is usually developed to examine a specific set of 

issues; therefore, model validity should be examined with 
respect to them. For example, if a disease transmission 
model is focused on a single epidemic period, and if the 
pathogen generating the epidemic confers immunity, having 
the model discriminate between agents that are susceptible to 
disease and agents that have contracted disease is important. 
However, if the focus of the study is to determine effective 
intervention strategies, the outcome of persons contracting 
disease is unimportant.   

 
Model validation is difficult to make into a structured 

task. As a model develops, modelers should conduct formal 
theory predictions (analytical validity) and empirical data 
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comparisons (historical data validity). These tests can be 
done with varying levels of sophistication. In some cases, 
looking for simple equivalence is possible. In other cases, 
running the model hundreds of times is necessary to ensure 
that the results are robust across a variety of parameter 
settings. 

 
After designing the model, researchers should spend a 

substantial amount of time testing model performance under 
a variety of conditions. Model components can be validated 
with historical data. Subject area experts can examine the 
face validity of the predictions to confirm the similarity of 
model output to their perceptions of how the modeled events 
should have developed and progressed. Modelers should 
examine their results to test the implications of the core 
model assumptions. If possible, they should use real data 
from external sources and compare model results with the 
external data. 

 
Modelers should also conduct a set of experiments to set 

model parameters to their extreme values. Model results 
using extreme parameter settings should have obvious 
outcomes.  

 
Once the logical boundaries of the parameter settings are 

determined, a sensitivity analysis can be performed on all 
model parameters. In this analysis, model results are 
generated across a wide range of theoretically feasible 
parameter settings. This allows the effect of each model 
parameter on the dependent (outcome) variables to be 
quantified by generating a numerical estimate of the partial 
derivative of the outcome variables with respect to changes 
in the parameter variables. 

 
Simulation models based on ABM use more details to 

represent a specific model than do those based on EBM. This 
introduces greater opportunities for validation. Also, using 
the partial derivative sensitivity estimates as a criterion 
identifies those parameters that require accurate estimates. 
Validation of simulation models based on ABM in general 
should be judged by fidelity, realism, and resolution. These 
models should be validated on empirical data, as is 
commonly done for empirical models. Validation is possible 
through prediction and retrodiction. The quality of the data 
should be an important criterion for determining the weight 
of individual validation components. Sensitivity analysis is 
also necessary for simulations in which parameters are 
imperfectly measured. Finally, sensitivity analysis should be 
performed not only on model parameters but also on rules 
used by the simulation to specify the agent’s interaction 
mechanisms. 

 

B. General Validation Approaches 
 
 Many validation approaches have been described in 

the literature. In general, we will follow the procedures 
reported in [17]. Schreiber describes four sets of validation 
tests. We have added sensitivity analysis as a fifth test to 

assess model robustness. The five tests are defined as 
follows:  

 
1. Theory-Model Tests determine whether the model 

describes the conceptions in the minds of the modelers.  
2. Model-Model Tests connect the developed model to 

other pertinent models that describe the same or similar 
phenomena.  

3. Model-Phenomena Tests connect the programmed 
model to the phenomena that are observed via available data.  

4. Theory-Model-Phenomena Tests simultaneously 
examine the model in the context of both theory and 
phenomena. Because models, theories, and phenomena often 
overlap, these categories are more constructed conveniences 
than concrete truth. 

5. Global Sensitivity Tests assess model parameter 
sensitivity. 

 

C. Validation Tests  
 
A number of validation tests are derived from the general 

approaches cited above. Note that these validation tests begin 
after the model has been verified, but in many instances they 
supplement the model verification processes. Examples of 
these tests are described below. 

 
1) Calibration 

 
Calibration is the process of tuning a model to fit detailed 

real data. This is a multi-step, often iterative process in 
which the model’s processes are altered so that the model’s 
predictions come to fit, with reasonable tolerance, a set of 
detailed real data. This approach is generally used for 
establishing the feasibility of the computational model; it 
shows that the model can generate results to match the real 
data. Calibrating a model may require the researcher to both 
set and reset parameters and to alter the fundamental 
programming, procedures, algorithms, or rules in the 
computational model. To an extent, calibrating establishes 
the validity of the internal workings of the model and its 
results.  

 
2) Theory-Model Tests  

 
In Theory-Model tests, the central problem is whether the 

model matches the theory. As programmed thought 
experiments, models can have a transparency (assuming the 
code is written clearly and assumptions are described clearly) 
that raw theories may lack. Theory-Model tests are also 
called Cross-Model Validity tests, which emphasize the 
connectedness of the epistemological framework.  

 
Docking Validity Tests are standard tests of Theory-

Model validity. Docking tests use a second model 
(developed independently) to investigate whether the index 
model and the second model proceed in like manner or yield 
similar results. Analytical Validity Tests are similar to 
Docking Validity Tests, except they compare results from 
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the index model with results from published accounts about 
the second process and/or the inputs and outputs that are 
connected to this process [18]. 

 
The Face Validity Tests uses the broad knowledge and 

experience of substantive experts as the source of the data. A 
model is presented to persons who are knowledgeable about 
the source problem, and they are asked whether this model is 
reasonably compatible with their knowledge and experience. 
The Narrative Validity Test is similar to Face Validity, but it 
relies on published accounts about the process usually 
presented by observers of the phenomena. The Narrative 
Validity Test is amenable to consensus from a team of 
scholars. Within the context of a group discussion, the group 
will more likely disagree about whether a model fits their 
experience than whether it fits a narrative description. 

 
The Turing Test, named for mathematician Alan Turing, 

examines whether a group of experts can tell the difference 
between data generated by a model and data generated by the 
real world. Extreme Point Tests are useful Theory-Model 
approaches from two perspectives. First, they are an 
important debugging tool in that they frequently identify 
subtle code problems. Second, these tests can be used to 
check model behavior on extreme scenarios.  

 
3) Model-Model Tests  

 
Model-Model tests have a number of variations. In 

general, these tests involve comparing the index model with 
other similar models or with theoretical models. In this 
scenario, a commonly used test is the Cross-Model validity 
test [19], which validates computational models by 
investigating whether several models can produce the same 
results after changing an element/variable in the agent 
architecture. 

 
Comparing two models allows modelers to recognize 

significant differences between model results. Identifying the 
assumptions that caused the differences is an important 
outcome because it often defines a difference in model 
assumption or a parameter that is imperfectly known. 

 
4) Model-Phenomena Tests  

 
This category of tests compares the occurrence of 

specific events represented in the model with the occurrence 
of the event as represented by real-world data. Comparing 
model-time series results with the results of previously 
collected data is one example. Some models forecast results 
of specific events that follow other events, or alternatively 
forecast the duration of a specific event. Results from these 
models can be compared with the actual occurrence of the 
sequence of the phenomena in the data.  

 
5) Theory-Model-Phenomena Tests  

 
These tests examine the model and the phenomena 

simultaneously and compare the occurrence of particular 

events in the model with the occurrence of the events in the 
source data. Historical Data tests compare model results 
against previously collected data of some part of the 
simulated scenario. 

 
6) Global Sensitivity Analysis  

 
Global Sensitivity Analysis tests adjust the parameter 

settings of the model to determine how sensitive the model 
predictions are when small changes are made in model 
parameters. If particular results, such as control strategy 
predictions, change as a consequence of slightly altered 
parameter values, then modelers should exercise caution 
when making claims about model outcomes. Running a 
comprehensive set of sensitivity analysis tests is not a trivial 
issue. For example, scientists are confronted with a huge 
parameter space and very little notion of reasonable 
parameter values. This requires running many simulations to 
determine feasible model outcomes. Given a large parameter 
space, enumerating every possible combination of 
parameters may be out of the question. This suggests a need 
for an adaptive process that can steer a search of the 
parameter space toward more useful/realistic model 
outcomes.  

 

D. Component Validation Issues 
 
So far, we have discussed tests designed to examine the 

entire model as a single entity. Testing individual 
components can also be useful, especially if the social 
network and agent state change driving force (e.g. disease 
transmission) components are disjoint entities. In this 
situation, validating model components allows examining the 
performance of the model’s individual components; 
degenerate tests may interrupt some elements of the model 
and examine the impact on overall results, and trace testing 
examines individual agents as they work through the 
modeling environment. Animation methods can support this 
test to compare the visually displayed qualities of the model 
with the qualities observed in source data. Trace testing 
combines our theoretical expectations of the model and our 
observations about the model and real-world phenomena. 

 
ABM have been criticized because of the large number of 

assumptions used to implement them. This increases the 
number of components requiring authentication in the model. 
However, proponents of ABM might argue that even though 
detailed models increase the number of component 
assumptions that have to be reconciled, the assumptions are 
presented explicitly. Most of us generally understand explicit 
assumptions and can therefore attempt to validate them. 
Consequently, they form the basis for judging the validity of 
one component of a model. However, implicit assumptions 
are often buried in the logic of EBM and are therefore 
hidden. In some instances, when implicit assumptions are 
identified, they are recognized as crude and a necessary evil, 
with the basic assumptions behind them unchangeable as a 
part of the fabric of the approach. 
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 ABM and EBM use distinct approaches to describe the 

same process. They both make a judgment about an identical 
set of assumptions. ABM represent the assumptions 
explicitly, while EBM represent assumptions about the same 
set of processes implicitly, hidden within the fabric of the 
methodology. 

 
Overall, representing assumptions explicitly allows ABM 

to expose the weaknesses of the assumptions and define new 
knowledge requirements for improving model performance. 

 

IV. SUMMARY 
Overall, model validation is a common problem in 

computational modeling of cognitive, natural, or social 
phenomena: Determining whether the model is the right one 
and if it captures the essential mechanisms behind the 
modeled empirical phenomenon is important. As we have 
seen above, model predictions can be compared with the 
empirical data to draw conclusions about the plausibility of 
the model’s assumptions. However, this approach does not 
measure the model's accuracy with respect to unseen data or 
alternative models designed to explain the same 
phenomenon. As noted above, there are other methods of 
validation that can help the modeler, including drawing on 
the knowledge and experience of subject matter experts. 

 
A related issue is model selection and determining 

whether a particular model most accurately explains the 
target phenomenon. Comparing several models and reporting 
their relative predictions is one way, but this approach often 
attributes superior performance to inherent model 
complexity or ad hoc assumptions included in the model.  

 
The goal of modeling is to increase understanding of the 

underlying mechanisms of the phenomenon; a model that fits 
the data perfectly does not necessarily capture the essential 
mechanisms behind the modeled phenomenon. Instead, the 
model may simply be flexible enough (i.e., over 
parameterized) to account for the random noise introduced 
into the model by various means [20]. 
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