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Abstract—A compliant mechanism is a mechanism that obtains 
its mobility or force from the flexibility and elastic deformation 
of its components. Topology for compliant mechanism is very 
sensitive and can be obtained very variously according to 
topology optimization methods and computation conditions. A 
modified ant colony optimization algorithm is suggested for 
compliant mechanisms in order to obtain a stable and robust 
optimal topology. The modified ant colony optimization 
algorithm was applied for both linear and geometrically 
nonlinear compliant mechanisms. Using three kinds of 
objective functions commonly used, optimized topologies were 
compared for compliant mechanisms. And it was concluded 
that the modified ant colony optimization algorithm can 
successfully be applied for linear and geometrically nonlinear 
compliant mechanisms, and the algorithm provides very stable 
and robust topologies. 

Keywords-Compliant mechanism; Modified Ant Colony 
Algorithm (MACO); Topology optimization; Geometrically 
nonlinear. 

I.  INTRODUCTION 
Topology optimization has been applied for various 

linear structural problems so far [1][2][3][4][5][6]. However, 
when a very large load is applied or structural deformation is 
very large, geometrically nonlinearity may be occurred due 
to mechanical conditions. In order to obtain more useful and 
valuable optimal topology of a structure satisfying the given 
constraints, the above nonlinearity should be considered in 
analysis and design. 

Buhl et al. [7] has performed stiffness designs of 
geometrically nonlinear structures using topology optimiza-
tion based on the density method. Pedersen et al. [8] has 
performed linear and geometrically nonlinear topology 
optimizations based on the solid isotropic material with 
penalization (SIMP) method for large displacement 
compliant mechanisms. Bruns and Tortorelli [9] also carried 
out linear and geometrically nonlinear topology optimization 
for nonlinear structures and compliant mechanisms. 

Recently, Kaveh [10] suggested ant colony optimization 
(ACO) algorithm for structural models to find the stiffest 
structure with a certain amount of material, based on the 
element’s contribution to the strain energy. The results 
showed that ACO can be a suitable tool to handle the 
problem as an on-off discrete optimization. However, the 

field of topology optimization for compliant mechanisms is 
rarely new in ACO algorithms since researches on compliant 
mechanisms have not been done so far. 

In this study, a new topology optimization algorithm 
based on ACO algorithm is developed for a compliant 
mechanism for the first time implemented with a filter 
scheme [11]. Distribution of material is expressed by density 
of each element to apply ACO algorithm. Three kinds of 
objective function are examined to obtain stable and robust 
topology, it is found that the developed topology scheme is 
very effective and applicable in a compliant mechanism 
topology optimization problems and mutual potential energy 
(MPE) / strain energy (SE) type of objective function was the 
best through the comparison of the results of the linear and 
geometrically nonlinear cases. 

This paper is organized as follows. Formulation of a 
Force Compliant Mechanism in Section II. In Section III, we 
introduce the proposed method which is called MACO. 
Section IV contains Numerical Examples, and Section V, 
concludes the paper. 

II. FORMULATION OF A FORCE COMPLIANT MECHANISM 
A compliant mechanism [12] is a mechanism that obtains 

its mobility or force from the flexibility and elastic 
deformation of its components. Fig. 1(a) [13] shows design 
domain Ω with the input force and the desired output 
displacement Δout.  P1  and  P2 represent the input and output 
ports, respectively, and Δout represents the desired output 
displacement at the output port. Fig. 1(b) shows the 
analytical conditions of SE for evaluating the stiffness and 
MPE for evaluating flexibility of a compliant mechanism. 

Three kinds of objective functions are usually used for 
compliant mechanisms. MPE [13] is used for maximizing 
displacement at the output port. One of multicriteria 
objective functions, wMPE+(1-w)SE, is used for considering  
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Figure 1.  Analysis load case 
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both flexibility and stiffness of compliant mechanisms with 
weighting factor  w. A ratio [14] of  MPE  to SE  is employed 
for maximizing displacement at the output port considering 
both flexibility and  stiffness  of  compliant  mechanisms.  In 
this paper, the above objective functions were used, and 
topology optimization based on the MACO method was 
performed for a force compliant mechanism. 

Firstly, we explain how to calculate sensitivity number 
for the case that MPE/SE is employed as the objective 
function. The sensitivity number can be calculated by 
adapting the method suggested by Ansola [13]. The finite 
element equation for MPE can be expressed using (2) as 
follows; 

 
{ } [ ]{ } 2  1

T
outMPE D K D= ∆ =                     (2) 

 
where [K] is the generalized stiffness matrix, {D1} is the 
nodal displacement vector due to the input load and {D2} is 
the displacement vector due to the unit dummy load placed 
at the output port, respectively. MPE means that the 
displacement at the output port when Fin at the input port is 
applied. 

The finite element equation for SE can be expressed 
using (3) as follows. SE means the strain energy stored when 
the unit dummy load applied at the output port. 
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If the i -th element is added to the previous topology, the 

change in MPE can be calculated as follows (4). 
 

{ } [ ]{ } 1  2
TMPE D K D∆ = − ∆                     (4) 

 
Similarly, when the i -th element is added to the previous 

topology, the change in SE can be obtained as follows (5). 
 

{ } [ ]{ } 2  2
1
2

TSE D K D∆ = − ∆                     (5) 

 
Element addition affects the generalized stiffness matrix, 

and we can calculate the change in the generalized stiffness 
matrix due to the i -th element addition as follows (6); 
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' iK K K K∆ = − =                      (6) 
 

where [K'] is the generalized stiffness matrix after the i -th 
element is added, [K] is the generalized stiffness matrix 
before the element is added, and [K]i is the generalized 
stiffness matrix of the added element. From (4), (5), and (6), 
the following relations (7) can be obtained; 
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where {D1}i, and {D2}i represent the generalized displa-
cement vectors due to the i-th element addition.  

In this paper, in the case that MPE is employed as an 
objective function, the sensitivity number is calculated as 
follows (8). 

 
{ } [ ] { } 1  2 

T
i i iiD K Dα = −                        (8) 

 
Secondly, in the case that wMPE+(1-w)SE is used as an 

objective function, the sensitivity number is calculated as 
follows (9). 

 
( )1i w MPE w SEα = ∆ + − ∆                    (9) 

 
Finally, the sensitivity number for the i-th element can be 

obtained by differentiating the objective function (10). 
 

2
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The above sensitivity numbers can be used for adding, 

eliminating, or transforming elements in topology optimiza-
tion for a force compliant mechanism. 

III. MODIFIED ANT COLONY OPTIMIZATION ALGORITHM 
If ACO algorithm is applied for topology optimization of 

geometrically nonlinear compliant mechanisms, a critical 
problem can be encountered. This method can provides a 
stable topology in the case of a high target volume in 
structural topology optimization. However, in the case of a 
low target volume, the asymmetry of stiffness matrix 
becomes very severe since the topology consisted of solid 
elements significantly lose the symmetry of structure. It 
causes poor accuracy of the solution since ill-condition might 
be produced. In order to overcome the above weakness, it is 
necessary to define a design variable such as continuously 
distributed density in the previous studies [15] for topology 
optimization. Therefore, a MACO algorithm is suggested in 
order to remedy the weakness of the ACO algorithm. 

The governing equations of the ACO algorithm [10] are 
briefly described as follows. Contribution of each element i 
into the overall objective of the problem, which is analog to 
the pheromone trail of a segment of a route, is here denoted 
by ( )i tτ . The parameter t represents the time of deployment 
of ants which is equivalent to the cycles of iteration within 
the algorithm. Inspired by the procedure employed in TSP 
[16], and ignoring the effect of the local heuristic values, the 
ant decision index ( )ia t  can be written as (11); 
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where α is a parameter that controls the relative weight of the 
pheromone trail, M is the number of finite elements and t is 
an indication of the present cycle which is analogous to the t-
th time of deploying our ants. Note that here the probability 
of an element being chosen by a typical ant is the same as the 
decision index as defined in (11). 

After completion of a cycle of designs by all ants, each 
ant k deposits a quantity of pheromone k

iτ∆  on each element 
based on its relative objective function, as shown below, 
which is an index of the performance of the element, i.e. for 
a better design a larger amount of pheromone is deposited 
(12); 
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                               (12) 

 
where k

iU is the objective function in each element of design 
and the exponent λ is a tuning parameter for improvement of 
performance of the algorithm and its convergence. 

The amount of pheromone in each element is due to 
addition of new pheromone as well as evaporation which is 
implemented within the algorithm via the following rule (13). 

 
( ) ( )1i i it tτ γτ τ+ = + ∆                             (13) 

 

where 
1

m
k

i i
k

τ τ
=

∆ = ∆∑  and m is the number of ants used in 

each cycle. The rate of evaporation coefficient [ ]0,1γ ∈  is 
applied for taking into account the pheromone decay to avoid 
quick convergence of the algorithm towards a suboptimal 
solution. 

The main difference between ACO and MACO is to use 
a new continuous variable, which is called “fitness” in finite 
element analysis (FEA), instead of the positions of the ants. 
Fitness is defined by the ratio of the summation of the ants 
number passed each element to the number of inner loop. It 
can be expressed as (14); 
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             (14) 

 
where A represents the existence of ant (existence = 1, no 
existence = 0). N is the number of iteration, i is the element 
number. Then, the calculated fitness in iteration process is 
used to FEA as a design variable in cycle process. 

In this study, a new change of objective function new
iα is 

defined as (15) in order to accelerate the convergence rate of 
the MACO; 

 
new
i i ifitnessα α= ×                           (15) 

where i indicates each element. The resized iα  is applied to 
the global update equation (12) and the iU in (12) is replaced 
by iα for geometrically nonlinear compliant mechanism (16).  
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In addition, it is very important to reduce computation 

time for geometrically nonlinear compliant mechanism. 
Convergence rate of the ACO is dependent on the ant 
decision index ( )ia t , so that the parameters of α, λ, γ, affect 
very much on the convergence rate. It has been suggested 
that convergence rate can also be accelerated by resizing 
pheromones newly added to the solution found by rank-
based ant system or elite ants [17] [18] [19].  

 

( )min min
max

1
new

new newi
i new

τ
τ τ τ

τ
∆

∆ = − ∆ + ∆
∆

                   (17)  

 

where 
1

m
new k
i i

k
τ τ

=

∆ = ∆∑ , min
newτ∆  is 0.0001 and max

newτ∆  is the 

maximum value of pheromone trail at each iteration. The 
resized Δτi provides the improved effect of acceleration rate 
on convergence, and overcome numerical singularity 
occurred on the low-density region. Also it gives the 
selection possibility of the elements, which have been 
removed because of low deposited pheromone in the 
previous iterations, in the following iterations. The resized 

iτ∆  is applied to the global update equation (13). The 
optimization process using MACO can be depicted as a 
flowchart shown in Fig. 2. The procedure can be outlined as 
follows: 

1. Specify ACO control parameters (α, γ), tune the 
parameter λ, and assign an initial pheromone trailing 
value on each element. 

2. Create the initial design using a sequence of random 
selection by spreading pheromone trailing uniformly 
in the design space 

3. Calculate  iα for each element using compliant 
mechanism finite element analysis with a mesh-
independency filter scheme to suppress checker-
board pattern. 

4. Move ants probabilistically according to (11). 
5. Deposit new pheromones at the present locations 

where ants move using (16). 
6. After completion of a cycle, resize pheromones 

using (17). 
7. The amount of pheromone on each element is 

updated according to (13). 
8. Steps 3 through 7 are repeated until convergence 

criterion is satisfied using (18). 
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where, c is the current iteration number, φ is an 
allowable convergence error, and N' is the integral 
number which results in a stable convergence in at 
least ten successive iterations. 

IV. NUMERICAL EXAMPLES 

A. Force invertng mechanism 
A displacement generator in compliant mechanisms 

having dimensions of 40 μm × 20 μm × 7 μm is subjected to 
input force Finput = 2 mN with the spring constants k input, output 
= 1 mN/μm at input and output ports as shown in Fig. 3. 
Design domain is divided into 80 × 40 by four node 
rectangular element. The material is assumed to have 
Young’s modulus of 100 GPa and Poisson’s ratio of 0.3. The 
coefficients of MACO are defined as α = 1, λ = 2, ρ = 0.8. 
Allowable convergence error, τ is set to be 0.001. The 
objective is to obtain a stiffest structure under a volume 
constraint of 20% of the original volume. 

Topologies for linear and geometrically nonlinear cases 
with MPE and wMPE+(1-w)SE where w = 0.8 as objective 
functions are shown in Fig. 4 and Fig. 5, respectively. And 
topologies for linear and nonlinear cases with MPE/SE are 
shown in Fig. 6. The displacements of the optimal topologies 
for three kinds of objective functions are compared in Table 
1. It can be found that the displacements of MPE type are the 
largest in linear and nonlinear cases. In other cases of 
MPE/SE type for both linear and nonlinear are the smallest. 
Also, the joint part is a little more reinforced in the nonlinear 
case than the linear case. 
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Figure 2.  Flowchart of the MACO for compliant mechanisms 

From the results of the example, topology at the joint 
parts is not connected when MPE implemented with the 
MACO is employed as an objective function. Even though 
topology at the joint part is connected each other when 
wMPE+(1-w)SE where w = 0.8 is used as objective  function, 
there appears checkerboard pattern, and the topology may 
change according to weighting factor. As seen here, topology 
at the joint part is firmly connected each other and a stable 
topology can be obtained when MPE/SE is used as objective 
function. Therefore, it is concluded that MPE/SE is very 
suitable among three kinds of objective functions for 
designing compliant mechanisms. 
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Figure 3.  Design domain of a force inverter 

 

  
(a) Linear case (b) Geometrically nonlinear case 

Figure 4.  Optimal topology using MPE 

 

  
(a) Linear case (b) Geometrically nonlinear case 

Figure 5.  Optimal topology using wMPE+(1-w)SE (w = 0.8) 

 

  
(a) Linear case (b) Geometrically nonlinear case 

Figure 6.  Optimal topology using MPE/SE 

 

TABLE I.  DISPLACEMENTS OF LINEAR AND NONLINEAR OPTIMAL 
TOPOLOGIES 

Cases MPE wMPE+(1-w)SE MPE/SE 

Linear 2.972 μm−  1.606 μm−  0.212 μm−  

Geometrically 
nonlinear 3.067 μm−  2.426 μm−  0.587 μm−  
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B. Gripper mechanism 
A gripper mechanism having dimensions of 40 μm × 15 

μm × 1 μm is subjected to input force Finput = 1 mN with the 
spring constants  k input, output  = 0.1 mN/μm at input and output 
ports as shown in Fig. 7. Design domain is divided into 120 
× 45 by four node linear finite elements. The material is 
assumed to have Young’s modulus of 100 GPa and Poisson’s 
ratio of 0.3. The coefficients of MACO are defined as α = 1, 
λ = 2, ρ = 0.8. Allowable convergence error, τ is set to be 
0.001. The objective is to obtain a stiffest structure under a 
volume constraint of  20% of the original volume. 

Topologies for linear and geometrically nonlinear cases 
with MPE and wMPE+(1-w)SE where w = 0.8 as objective 
functions are shown in Fig. 8 and Fig. 9, respectively. And 
topologies for linear and nonlinear cases with MPE/SE are 
shown in Fig. 10. The displacements of the optimal 
topologies for three kinds of objective functions are 
compared in Table 2.  

It can be found that the displacements of MPE type are 
the largest in linear and nonlinear cases. In other cases of 
MPE/SE type for both linear and nonlinear are the smallest.  

From the results of the example, topology at the joint 
parts is not connected when MPE for nonlinear case 
implemented with the MACO is employed as an objective 
function. Even though topology at the joint part is connected 
each other when wMPE+(1-w)SE  where  w = 0.8  is  used  
as  objective  function, there appears that topology of output 
part is unstable compared to the other objective function. 
Therefore, it is concluded that MPE/SE is very suitable 
among three kinds of objective functions for designing 
compliant mechanisms. 
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Figure 7.  Design domain of a gripper mechanism 

 

  
(a) Linear case (b) Geometrically nonlinear case 

Figure 8.  Optimal topology using MPE 

 

  
(a) Linear case (b) Geometrically nonlinear case 

Figure 9.  Optimal topology using wMPE+(1-w)SE (w = 0.8) 

 

  
(a) Linear case (b) Geometrically nonlinear case 

  
Figure 10.  Optimal topology using MPE/SE 

TABLE II.  DISPLACEMENTS OF LINEAR AND NONLINEAR OPTIMAL 
TOPOLOGIES 

Cases MPE wMPE+(1-w)SE MPE/SE 

Linear 1.922 μm−  1.703 μm−  1.426 μm−  

Geometrically 
nonlinear 2.45 μm−  2.43 μm−  2.28 μm−  

V. CONCLUSION AND FUTURE WORK 

A. Conclusion 
In this study, the MACO algorithm has been suggested 

for compliant mechanism problems and a compliant mecha-
nism using three kinds of objective functions. From the 
results of examples, the following conclusions are obtained.  

(1) It is verified that the MACO algorithm can success-
fully be applied for a compliant mechanism, and provides 
stable and robust optimal topology. 

(2) MACO algorithm is suggested for applying it for 
compliant mechanisms in order to obtain a stable topology 
since ACO algorithm might severely provide asymmetric 
stiffness matrix due to the characteristics of stochastic 
methods. 

(3) It is found that MPE/SE considering flexibility and 
stiffness together is the most suitable for objective function 
among three kinds of objective functions for designing 
compliant mechanisms. 

The topology optimization using the ACO could be 
extended to more complicated thermally actuated compliant 
mechanism specifications such as electro-thermal actuators 
subjected to non-uniform temperature fields actuated by 
Joule heating. 

REFERENCES 
[1] M. P. Bendsøe and N. Kikuchi, “Generating optimal 

topologies in structural design using a homogenization 
method,” Comput. Meth. Appl. Mech. Eng., vol. 71, pp. 197-
224,  November 1988. 

[2] H.P. Mlejek and R. Schirmacher, “An Engineer's Approach to 
optimal Material Distribution & Shape Finding,” Comput. 
Meth. Appl. Mech. Eng., vol. 106, pp. 1-26, July 1993. 

156Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-234-9

SIMUL 2012 : The Fourth International Conference on Advances in System Simulation



[3] O. M. Querin, G. P. Steven, and Y. M. Xie, “Evolutionary 
structural optimization (ESO) using a bidirectional 
algorithm,” Eng. Comput., vol. 15, pp. 1031-1048, 1998. 

[4] Q. Q. Liang and G. P. Steven, Performance-based 
optimization of structures:Theory and applications, Spon 
press, Taylor and Francis Group, London, New York  2005. 

[5] J. A. Sethian and A. Wiegmann, “Structural boundary design 
via level set and immersed interface methods,” J. Comput. 
Phys., vol. 163, pp. 489-528, September 2000. 

[6] T. Belytschko, S. P. Xiao, and C. Parimi, “Topology 
optimization with implicit functions and regularization,” Int. J. 
Numer. Meth. Eng., vol. 57, pp. 1177-1196, June 2003. 

[7] T. Buhl, C. B. W. Pedersen, and O. Sigmund, “Stiffness 
design of geometrically nonlinear structures using topology 
optimization,” Struct. Multidisc. Optim., vol. 19, pp. 93-104, 
April 2000. 

[8] C. B. W. Pedersen, T. Buhl, and O. Sigmund, “Topology 
synthesis of large-displacement compliant mechanisms,” Int. J. 
Numer. Meth. Eng., vol. 50, pp. 2683-2705, April 2001. 

[9] T. E. Burns and D. A. B. Tortorelli, “Topology optimization 
of non-linear elastic structures and compliant mechnisms,” 
Comput. Methods Appl. Mech. Engrg., vol. 190, pp. 3443-
3459, March 2001. 

[10] A. Kaveh, B. Hassani, S. Shojaee, and S. M. Tavakkoli, 
“Structural topology optimization using ant colony 
methodology,” Eng. Struct., vol. 30, pp. 2259-2565, 
September 2008. 

[11] X. Huang and Y. M. Xie, “Convergent and mesh-independent 
solutions for the bi-directional evolutionary structural 

optimization method,” Finite. Elem. Anal. Des., vol. 43, pp. 
1039-1049 October  2007. 

[12] L. Howell, Compliant Mechanisms, Wiley, New York, 2001. 
[13] R. Ansola, E. Vegueria, J. Canales, and J. A. Tarrago, “A 

simple evolutionary topology optimization procedure for 
compliant mechanism design,” Finite. Elem. Anal. Des., vol. 
44, pp. 53-62 December 2007. 

[14] M. Motiee, “Development of a Novel Multi-disciplinary 
Design Optimization Scheme For Micro Compliant Devices,” 
A Thesis for the degree of Ph. D, UNIVERSITY OF 
WATERLOO, Canada, 2008.  

[15] I. Kosaka and C. C. Swan, “A symmetry reduction method for 
continuum structural topology optimization,” Comput. Struct., 
vol. 70, pp. 47-61, January 1999.  

[16] M. Dorigo, “Optimization, Learning and Natural Algorithms 
(in Italian),” A Thesis for the degree of Ph. D, Politecnico di 
Milano, Italie, 1992. 

[17] S. D. Shtovba, “Ant Algorithms: Theory and Applications,” 
Program. Comput. Softw., vol. 31, pp. 167-178,  2005. 

[18] T. Stützle and H. Hoos, “Improvement on the ant-system: 
Introducing MAX-MIN and system,” In proceedings of the 
international conference on artificial neural networks and 
genetic algorithms, 1997. 

[19] B. Bullnheimer, R. F. Hartl, and C. A. Strauss, “New rank-
based version of the ant system: a computational study,” 
Technical Report POM-03/97, Institute of Management 
Science. University of Vienna, Austria, 1997. 

 
 

 

157Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-234-9

SIMUL 2012 : The Fourth International Conference on Advances in System Simulation


	Introduction
	Formulation of a Force Compliant Mechanism
	Modified Ant Colony Optimization Algorithm
	Numerical Examples
	Force invertng mechanism
	Gripper mechanism

	Conclusion and Future Work
	Conclusion
	References



