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Abstract— In this paper, we present an analytical method to 

model the joint probability density function of delay and leakage 

power. In order to model the joint distribution of these two 

parameters, they should be modeled independently through an 

accurate method. The manufacturing process variations as the 

sources of delay and leakage power variations are considered in 

our modeling. We also demonstrate that the proposed method is 

so accurate in modeling joint cumulative density function which 

is the very parametric yield whose predicting is the main 

objective of this work. Finally, the proposed method is verified 

by HSPICE simulations for combinational benchmark circuits 

in 45 nm technology. We compare the accuracy of our method 

with that of classic bivariate Gaussian estimation. Simulation 

results reveal that the mean percentage error of our proposed 

technique for joint cumulative density function of ISCAS85 

benchmark circuits is 2.5 % by average. The average 

improvement achieved in accuracy of modeling joint cumulative 

density function through our work compared to aforementioned 

classic method is 17.1 % and 16.8% respectively without and 

with considering correlated intra-die variations.  

Keywords- Process Variation; Parametric Yield; Simulation; 

CMOS Circuits. 

I. INTRODUCTION  

The scaling of CMOS has resulted in the increasing 

magnitude of the variabilities which manifest themselves in 

the forms of random and systematic variations. Sources of 

variations could range from random dopant fluctuation to 

non-idealities imposed by photolithography [1] [2].  

The dramatic increase in leakage power with scaling, and a 

strong dependence of leakage on highly varying process 

parameters, raises the importance of statistical leakage and 

parametric-yield optimization. Leakage-power consumption 

increases are due to both channel (subthreshold)-leakage and 

gate-leakage currents [3]. The subthreshold current is a strong 

exponential function of highly variable process parameters. It 

has been demonstrated that the variability of subthreshold 

leakage depends primarily on L and Vth [4]. Leakage power is 

inversely correlated with chip frequency. Hence, the Joint 

Probability Density Function (JPDF) of delay and leakage 

should be modeled precisely in order to budget one while 

optimizing another. As a result, parametric yield modeling 

considering the correlation between delay and leakage 

consumption is of great importance.  

Yield –driven optimization tools require accurate statistical 

models for both timing and leakage consumption considering 

correlation between them. There have been works which have 

limited their yield estimation to either timing or leakage [5], 

[6]. However, these approaches neglect the correlation 

between delay and leakage power.  

Although [7] proposes a methodology to model the 

parametric yield considering leakage/performance 

correlation, it only presents a closed-form equation for total 

chip leakage that models the dependence of the leakage 

current distribution on different process parameters. The only 

closed-form expression for JPDF of delay and leakage has 

been proposed by [8][9], wherein the cornerstone of modeling 

is taking the JPDF of delay and logarithm of leakage as 

bivariate normal distribution. [10] and [11] despite of 

improving and building their method upon [8][9] still use the 

same model which is bivariate normal approximation. 

In this paper, we present an analytical approach to 

accurately model the JPDF of delay and leakage power. In 

order to verify the efficacy and accuracy of our proposed 

method, we present the results of HSPICE Monte Carlo 

simulation as well as those of our model for the performance 

and leakage consumption of ISCAS85 benchmark circuits 

[12]. The simulations have been performed in Nangate 45 nm 

open cell library technology [13]. It should be mentioned that 

the method presented in this paper is not limited only to this 

specific issue in Integrated Circuits industry. This method can 

be extended to any application in engineering and science 

where modeling and simulation of the JPDF of several 

random variables is the main objective. This paper is 

organized as follows. Section II briefly introduces the main 

formulations we use to model the delay and leakage power 

under variations. Section III introduces our proposed 

analytical yield modeling. Section IV discusses the 

simulation results and a comparison is made between our 

method and previous work. Finally, Section V concludes the 

paper. 

II. FORMULATIONS OF DELAY AND LEAKAGE POWER 

UNDER VARIATIONS 

In order to model delay and leakage power under process 

variations, we need to determine which parameters of the 

circuit are subject to variations. In this paper, similar to [9], 

we assume that gate-length and gate-length-independent 

threshold voltage are the sources of variation. It is also 

assumed that these sources are normally distributed. 

According to [9], delay and leakage power of an individual 

gate can be expressed as following: 
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Where dnom and exp(Vnom) are the nominal values of delay and 

leakage power, respectively. α’s and β’s also represent the 

sensitivities of delay and log of leakage to the process 

parameters under consideration. The Random Variable (RV) 

ΔPi represents the change in the process parameters from 

their nominal value. In our case, the sources of variations are 

gate-length and gate-length-independent threshold voltage. 

Therefore, (1) can be modified to the following for each gate: 
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where ΔVth0N and ΔVth0P represent the change in NMOS and 
PMOS gate-length independent threshold voltage. ΔL also 
represents the change in gate-length. 

III. ANALYTICAL YIELD MODELING  

The parametric yield of a circuit given delay and power 

constraints can be expressed as: 

                             )0,0( PPDDPY                           (3) 

which is the probability of delay and leakage being less than 

D0 and P0, respectively. Srivastava and Chopra propose a 

bivariate Gaussian random variable for yield [8][9]. 

According to [8][9], it is assumed that delay and logarithm of 

leakage are normally distributed. As a result, they proposed 

the bivariate normal distribution for JPDF of delay and 

logarithm of leakage as follows:            
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where, x, y, and ρ respectively stand for delay, natural 

logarithm of leakage, and correlation coefficient. However, 

even if the gate delays are assumed to be normal, it should be 

mentioned that maximum operation is an inherently nonlinear 

function. The maximum of two normal distributions is a non-

Gaussian distribution. Blauuw et al discuss and explain the 

non-Gaussian nature of delay distribution [14]. Besides, the 

simulation results reveal that natural logarithm of leakage 

consumption deviate from normal distribution. For some 

input states of gates, the leakage distribution does not show 

lognormal behavior. As a result, the accurate JPDF of delay 

and natural logarithm of leakage is skewed by both variables. 

Hence, there is a need to analytically calculate the JPDF of 

delay and leakage power in order to obtain a more accurate 

prediction.  

A. Analytical JPDF of Delay and Leakage Power 

Given two random variables x and y and two functions 

g(x,y) and h(x,y) we assume we have the following functions: 

             
y)(x,=     ,    y)(x,= hwgz                                     (5) 

These functions are also random variables whose JPDF 

shall be expressed in terms of JPDF of x and y. Given this 

fact, we shall express the JPDF fzw(z,w) of the random 

variables z=g(x,y) and w=h(x,y) in terms of the JPDF fxy(x,y) 

of the random variables x and y. The Jacobian function J(x,y) 

is, by definition, the determinant given by: 
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To find fzw(z,w), we solve the systems (5) for x and y. If this 

system has no real solutions in some region of the zw plane, 

fzw(z,w)=0 for every (z,w) in that region. Suppose, then, that 

(5) has one or more solutions (xi,yi), that is, 
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where (xi, yi) are all pairs satisfying (7) [15]. The 

aforementioned procedure is extendable to any n×n systems. 

Now, for calculating the JPDF of delay and leakage power, 

we can replace z and w by delay and leakage power, 

respectively, in previous analysis. However, in our case, we 

may have n sources of variation where n is not necessarily 

equal with 2. In this case, we have to add n-2 auxiliary 

equations to systems. Hence, in our case where we have 3 

sources of variation, our 3*3 1
st
 order systems are as 

following: 
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Equation (9) can be simply expressed as follows: 

 

                                   

 XY                                  (10) 

 

Where Y and X are respectively dependent variables and 

sources of variations vectors. Σ and Φ are respectively n×n 

coefficients matrix and constants vectors. Now, (9) should be 

reordered to solve for vector X. Now, X is obtained from the 

following: 

)Y(X 1                                 (11) 

Therefore, 
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According to (6), (9), the Jacobian function of this system is 

obtained through the following: 
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Now, by (8) and (13), the JPDF fzwE(z,w,E) of delay, 

Ln(Leakage), and auxiliary variable (E) in terms of the JPDF 

of ΔVth0N, ΔVth0P, and ΔL can be expressed as following: 
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Where, ΔVth0N, ΔVth0P, and ΔL are obtained from (12). JPDF 

of delay and Ln(Leakage) can be obtained through the 

following integration: 
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B. Analytical Parametric Yield 

According to (3), the parametric yield of a circuit given 

delay and leakage power constraints is the probability of 

delay and leakage power being less than D0 and P0. 

Subsequently, having found the JPDF of delay and leakage 

power, the parametric yield of a circuit can be expressed as 

following: 
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The parametric yield is a 3-dimentional surface versus 

delay and leakage power constraints. This surface 

monotonically increases from 0 to 1 as it represents a 

probability.  

C. Correlated Intra-Die Variations 

The sources of variation are correlated within the die area. 

To handle the correlated components of variations, the overall 

chip is divided into a grid as shown in Figure 1. The 

correlation coefficient varies from one and falls off to zero 

with increasing distance. Each square in the grid corresponds 

to a random variable of the process parameter which has 

correlations with all other random variables corresponding to 

other squares in the grid. The values at the top of each of the 

grids show the correlation coefficients with the top left square 

on the grid.  

To simplify the problem, this set of correlated random 

variables is replaced by another set of mutually independent 

random variables with zero mean and unit variance using the 

principal components of the set of correlated random 

variables. A vector of random variables, say X, with a 

correlation matrix C, can be expressed as a linear 

combination of the principal components Y as [8]: 

                           YDVX X
2/11                          (17) 

Where X is the vector of the mean values of X,  is a 

diagonal matrix with the diagonal elements being the standard 
deviations of X, V is the matrix of the eigenvectors of C, and D 

is a diagonal matrix of the eigenvalues of C. If pP in (1) is 

generated by (17), correlated sources of variations are 
incorporated in calculating delay and leakage power 
consumption.  

IV. RESULTS AND DISCUSSION 

We implemented our proposed model and bivariate 

normal model in MATLAB and compared the accuracy of 

both approaches by HSPICE Monte Carlo simulations. We 

performed 10.000 Monte Carlo simulations on ISCAS 85 

benchmark circuits assuming that all sources of variations 

have (3σ/μ=20%). In this paper, we assume that sources of 

variations are channel-length and gate-length independent 

threshold voltages of NMOS and PMOS transistors. In this 

work, the full-chip simulations on ISCAS 85 circuits have 

been set up similar to those of [8] in terms of sources of 

variations. In our approach, the JPDF of delay and leakage 

power are calculated analytically by means of Jacobian 

matrix. 

Figure 2 depicts the JPDF and Joint Cumulative 

Distribution Function (JCDF) of bivariate normal model for 

c432 from the benchmark circuits. Figure 3 shows the JPDF 

and JCDF of our model and simulation results. As shown in 

Figure 2 and Figure 3, the JPDF of our model is visually 

more similar to that of simulation results compared to 

bivariate normal model. The errors are calculated with regard 

to HSPICE simulation results. The Mean Percentage Error 

(MPE) of model is calculated as following: 

 
 

 

Figure 1. Partition of c7552 physical layout using a grid to model the 

correlated components of variation where the refernce for correlation 

coefficients is the top-left square. 
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where Model(i) and SPICE(i) are the i
th

 point in the model 

and SPICE simulation, respectively. The improvement in the 

mean error achieved by our model compared to bivariate 

model for ISCAS 85 benchmark circuits are collected in 

Table I with and without correlated intra-die variation. We 

have calculated the average error improvement achieved for 

estimating the JCDF of delay and leakage by our model to be 

17.1% compared to bivariate normal model when correlated 

intra-die variations have not been considered. The mentioned 

average error improvement has been calculted to be 16.8% by 

considering correlated intra-die variations. We have assumed 

that the correlated intra-die variations follow the pattern of 

Figure 1 for all circuits.  

V. CONCLUSION 

We proposed a methodology for modeling the JPDF and 
parametric yield considering variations of delay and leakage 
power. In this method, we analytically calculated the JPDF of 
leakage power and delay by means of Jacobian matrix. Then, 

JCDF (parametric yield) was extracted by integration. We 
demonstrated that JPDF and JCDF achieved by our modeling 
outperform their counterparts in [8][9]. Simulation results in 
45 nm technology on ISCAS85 benchmark circuits revealed 
that our proposed model improves the accuracy of JCDF 
17.1% and 16.8% by average, respectively, without and with 
considering correlated intra-die variations. The proposed 
method in this paper is generic and can be incorporated in 
modeling any JPDF in engineering, considering the 
correlations among the random variables, where accuracy of 
the model is of great importance. 
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