
Shader-Based Realtime Simulation of High-Definition Automotive Headlamps

Nico Rüddenklau, Patrick Biemelt, Sven Henning, Sandra Gausemeier and Ansgar Trächtler
Chair of Control Engineering and Mechatronics, Heinz Nixdorf Institute, University of Paderborn

33102 Paderborn, Germany
Email: {nico.rueddenklau, patrick.biemelt, sven.henning, sandra.gausemeier, ansgar.traechtler}@hni.upb.de

Abstract—Introducing high-definition headlamp systems in the
automotive industry opens up a wide range of possibilities
for improving existing and developing new types of dynamic
lighting functions. Due to the complexity and subjectivity of
light distributions of modern headlamp systems, simulation-based
development is indispensable. This paper presents a first realtime
simulation of high-definition systems in virtual environments.
The simulation results are evaluated using validated software for
simulating static light distributions at night. The performance of
the implementation on the test hardware is also discussed. First
results show a great potential for future development, which will
be shown at the end of the contribution.

Keywords–high-definition headlamp; realtime headlamp simu-
lation; night driving simulation; dynamic light distribution.

I. INTRODUCTION

Compared to other vehicle components, the development
of headlamp systems is characterized by the multidimensional
solution space in terms of possible light distributions and the
highly subjective factor in their evaluation. A further compli-
cation is that dynamic headlamps, away from the simulation,
can only be proven by time-consuming and cost-intensive night
driving tests under non-reproducible test conditions. Further-
more, the construction of a prototype is expensive, therefore,
it should ideally be used in late development stages only.
These difficulties motivate the simulation-based development
of headlamps.

Realtime simulation of headlamps was first dealt with by
Kemeny et al. [1]. This initial realization implements per-
vertex-lighting. The quality of the simulated light distributions
therefore depends strongly on the tesselation of the scene
objects. Berssenbrügge et al. present an approach based on per-
fragment-lighting that decouples tesselation from the resolu-
tion of light distribution [2]. A comparable concept is presented
in [3]. It utilizes a proprietary development for the simulation
of night driving with additional functionalities. Based on such
simulations, various publications exist for testing dynamic
lighting functions. In [4], Kemeny et al. present the simulation
of the cornering light function within the established driving
simulation software SCANeR. Like Berssenbrügge et al. in [5],
they implement predictive cornering light, which calculates the
ideal light distribution on the basis of navigation data and vehi-
cle speed. Next to the cornering light function, Berssenbrügge
et al. are also testing an advanced leveling light system in their
simulation environment [6]. With active safety light Knoll et
al. presents the simulative testing of a new light function for
highlighting possible escape ways in risky driving situations
[7].

All of the implementations mentioned above have in com-
mon that the light distributions of the light sources used are
static. In concrete terms, this means that they are indepen-
dent of time. Dynamic functions are mapped exclusively by

means of the orientation angles of the light sources. High-
definition (HD) headlamps, however, realize lighting functions
in a totally different way and must therefore be modelled
and simulated differently. Their outstanding features and their
modelling are described in Section II. Section III the shader-
based implementation of the light simulation is discussed. This
is divided into the determination of the total light distribution
(Section III-A) and the illumination of the scene based on
that (Section III-B). In Section IV, the simulation results are
evaluated using a validated reference simulation tool and their
performance on the utilized test hardware is examined. The
last section provides a conclusion as well as recommendations
for future work.

II. HD-HEADLAMP SYSTEMS

HD systems are characterized by a great number of in-
dependent controllable light sources. Their illumination areas
concentrate on sharply defined solid angle intervals with
small overlapping areas. The total light distribution of such
a headlamp results from the superposition of all the individual
light distributions. This architecture enables the generation of
highly dynamic overall light distributions by independently
controlling the electrical current of each individual light source
in the headlamp. The variety of the representable light distribu-
tions is limited only by the resolution of the headlamp, which
can range from approx. 100 to several 10,000 pixels, and the
permissible values of the electrical current depending on the
light technology used [8].

For testing the simulation presented here, the HD84-
Matrix-LED-Headlamp developed by Hella KG from Lippstadt
is used. The actual HD component of this headlamp is realized
by a matrix of 84 LEDs, which can be supplied individually
with continuously adjustable electrical current. To compensate
for the relatively low resolution of 84 pixels, the illumination
range of the HD module is limited to the solid angle range with
the greatest variability requirements. Accordingly, additional
light sources are provided to illuminate the vehicle front area,
the sides and to support the high beam. In total, the HD84-
Matrix-LED-Headlamp therefore has 95 light sources.

In order to simulate the light distribution in any situation,
the characteristics of the emitted light must be known for each
individual light source. For this purpose, so-called luminous
intensity distributions are determined in lighting technology,
which describe the luminous intensity of the light source
depending on the direction of radiation [9]. These can be
obtained for an existing headlamp by a goniophotometer-
measurement [10] or for a computer model by ray tracing
methods [11].

Figure 1 shows the low beam distribution of the left
HD84-Matrix-LED-Headlamp. The horizontal angle θ around
the vertical axis is plotted on the x-axis (0◦ corresponds to

29Copyright (c) IARIA, 2018. ISBN: 978-1-61208-672-9

SIMUL 2018 : The Tenth International Conference on Advances in System Simulation

ϕ/◦

0

-10

-20

-30

-40
θ/◦-40 -30 -20 -10 0 10 20

IV /cd50 500 5.000 50.000
Figure 1. Low-beam distribution of luminous intensity IV of left

HD84-Matrix-LED-Headlamp measured in Candela [cd].

direction of travel). Along the y-axis the vertical angle ϕ is
plotted around the transverse axis. This is varied in the context
of headlights in a much smaller range. Within the diagram, the
luminous intensity IV measured in Candela [cd] is color-coded
for a given pairing of horizontal and vertical angles.

In order to be able to precisely reference the relevant ele-
ments of the light distributions of HD systems in the following
sections, these are described more formally. A discretized light
distribution can be interpreted as a matrix whose dimensions
depend on the considered angular range [ϕ0, ϕ1] or [θ0, θ1]
and the corresponding resolution ∆ϕ or ∆θ in horizontal or
vertical direction, whereby M = ϕ1−ϕ0

∆ϕ , N = θ1−θ0
∆θ = N

with M,N ∈ N must apply. The discrete value ϕm with
0 ≤ m ≤ M or θn with 0 ≤ n ≤ N then refers to the
horizontal angle ϕ0 +m ·∆ϕ or the vertical angle θ0 +n ·∆θ.
The light distribution Lk of the light source k with k ∈ {1,K}
of an HD headlamp with a total of K individual light sources
then has the form Lk ∈ RM×N≥0 .

The entry lk(m,n) of row m and column n of the Lk
matrix now contains the luminous intensity of the light source
k in the discretized direction of the vertical angle ϕm and the
horizontal angle θn in Candela.

After defining the light distributions of individual light
sources, the aggregation of these to the total light distribution L
can be formulated. For this purpose, a system is defined whose
input variables represent the relative electrical current values
ik ∈ [0, 1] of the individual light sources normalized to their
maximum value. In contrast to the matrices L1, . . . , LK , these
values are time-dependent signals. The output of the system
is the resulting light distribution of the headlamp and thus
a weighted composition of all individual light distributions.
Formally, the output variable corresponds to a L matrix whose
dimensions are identical to the dimensions of the individual
distributions L1, . . . , LK . The current overall light distribution
can be formulated as

L(t) =

K∑
k=1

ik(t) · Lk with L(t) ∈ RM×N≥0 . (1)

The time-dependent matrix L now contains all information
describing the light emitted by the headlamp at time t, which
constitutes the basic information for simulation purposes.

III. IMPLEMENTATION OF HD-HEADLIGHT-SIMULATION

The rendering of the dynamic light distributions of HD
systems was realized in the development environment Unity
(Version 2017.3.1f1 [12]). To ensure realtime capability in
terms of a sufficient number of frames per second (fps), the
high parallelism of the calculation must be exploited. For

this reason, not only the lighting of the scene, but also the
determination of the time-dependent total light distribution L is
outsourced to the GPU, which can solve such tasks many times
faster than the CPU. Consequently, both tasks are implemented
as shaders in the language Cg (C for graphics) [13] and can
thus be integrated into the programmable rendering pipeline
[14]. First of all, it should be mentioned that because of
its advantages with many light sources deferred shading is
used [15]. In the following section, the generation of the
total light distribution from the individual light distributions
by the CookieCombiner-Shader is discussed. Afterwards the
Headlight-Shader used for lighting the scene is introduced.

A. CookieCombiner-Shader
Textures, whose pixels correspond to the matrix entries,

are used to represent the light distributions on digital level.
Each pixel carries RGBA color information, with the first three
channels determining its color in the RGB color space and
the fourth channel (α-channel) determining the transparency
of the pixel. In principle, the direction-dependent variation of
the light colour would be possible via the RGB channels.
In the presented solution, however, these channels are not
considered, which is the reason why only monochrome light
can be displayed. The directional luminous intensity is coded
in the α-channel. Up to now, the texture considers an angle
range of 180◦ in both vertical and horizontal direction and
resolves in 0.2◦ steps. It therefore has a size of 900x900 pixels.
In computer graphics, both the horizontal (u) and vertical (v)
coordinates for accessing a texture and the permissible values
of individual pixel information are normalized to the interval
[0, 1]. To map the coded luminous intensity to this value range,
all entries of the matrices L1, . . . , LK are divided by their
maximum lmax.

Texturing of light sources to vary the luminous inten-
sity in different beam directions is already established. Such
light textures are called cookies, explaining the name of the
CookieCombiner-Shader. Its task is to combine the cookies of
individual light sources for total light distribution according
to (1). Its render target is a cookie whose α-values are all
initialized with 0. The shader is now repeatedly called on this
render target and receives a single light distribution Lk and
its weighting factor as parameters. In the fragment program of
the shader, the α-values of the respective cookie αuv(k) with
u, v ∈ [0, 1] are multiplied by the weighting factor and then
transferred to the render target by additive blending [14]. To
ensure that the α-values of the render target do not exceed
the permissible value range [0, 1], the weighting factor used is
formed as the product of the relative electrical current ik and
the reciprocal of the total number K of all light sources. If the
previous considerations are combined, the α-value αuv of the
render target at the normalized texture coordinates (u, v) after
passing through the shader for all single light distributions is
calculated as follows

αuv =

K∑
k=1

ik
K
· αuv(k) =

1

K
·
K∑
k=1

ik · αuv(k). (2)

With (2) and αuv(k), ik ∈ [0, 1] it follows that αu,v is
also within the permissible value range. After blending, the
render target contains the normalized luminous intensity of
the entire headlamp. The texture coordinates correspond to
the spatial directions into which the light radiates according

30Copyright (c) IARIA, 2018. ISBN: 978-1-61208-672-9

SIMUL 2018 : The Tenth International Conference on Advances in System Simulation

to the explanations at the beginning of Section II. In order to
reconstruct the actual luminous intensity, the normalizations
required by the limited range of values must be reversed.
Formally, the relationship between the original matrix entry
l(m,n) in L and the corresponding texture value αm

M
n
N

is
defined as follows

l(m,n) = K · lmax · αm
M

n
N
, (3)

which ensures undistorted computational mapping of lu-
minous intensity. The render target of the CookieCombiner-
Shader represents the total light distribution of the headlamp
in the form of a cookie and serves as input for the Headlight-
Shader presented below.

B. Headlight-Shader
The implementation of the Headlight-Shader is much more

extensive. Berssenbrügge et al. solved a similar problem in [2]
by using a built-in spotlight and mapping the light distribution
to its cookie scheme. The present contribution is based on
Unity’s built-in shader for deferred shading, but differs in
the light volume, used to describe the illumination range
of the headlamp, and the interpretation of the light cookie.
Moreover, no shadows are rendered, as their calculation is very
computation-intensive. Also, the driver and headlamps are in
approximately the same position, so that shadows are hardly
noticed by the driver.

Following the deferred shading procedure, the scene in the
initial base path is rendered into the g-buffer (geometry buffer)
independent of any lights. A very simple example of a scene is
shown in Figure 2. That way, the complex 3D scene is reduced
to the 2-dimensional screen output. The information relevant
for lighting, such as the surface normals, depth values or color
information, is stored in the g-buffer. The Headlight-Shader in
the subsequent lighting pass can refer to this information.

In the lighting pass, the illumination range of the light
is described by a light volume in the form of a half-sphere,
which is illustrated by yellow lines in Figure 2. The light
source is located in the center of the half-sphere and is oriented
vertically to the plane half-spherical surface in the direction of
the curvature. The light volume, approximated by a mesh of
65 vertices, is rendered, which is why the light space l is the
current object space.

According to the schema of the graphics pipeline, the
vertices of the mesh are first processed by the vertex program.
Since the Headlight-Shader implements per-fragment-lighting,
the vertex program can be realized by a few lines of code.
Essentially, three parameters are generated. First, a vertex lp

′

of the light volume mesh, passed in homogeneous coordinates,
is transformed from the light space l into the clip space c of
the camera (line 1). The transformation from l to the world
space w is done by the matrix M , from w to the view space v
by the matrix V and from v to the clip space c by the matrix
P (see Figure 2). c has the same origin as v, but distorts
the coordinates in perspective for mapping to the screen. The
vertex coordinates in the clip space cp

′ form the basis of the
rasterization and must be included in the return of the vertex
shader. Furthermore, the clip space position in the lines 2 and
3 is transformed so that the x and y coordinates are normalized
to [0, 1] for vertices in the view frustum (visible part of the
scene in the form of a pyramid frustum, see thick dashed lines
in Figure 2) in accordance with the perspective division in the

v

w
o

l

p

p′
p′′

nc,o

nl,ono

Figure 2. Simple scene to be rendered with coordinate systems for world
space (w), view space (v), light space (l) and an exemplarily object with

local space o.

fragment program. This information is then used to correctly
address the g-buffer and forms the second output of the vertex
shader. Finally, the vector from the camera to the vertex in view
space vp

′ is calculated by multiplying the vertex lp
′ in l by M

and V (line 4). This value is needed next to cp
′
uv to reconstruct

the position of the fragment in w within the fragment shader
and forms the third return of the vertex shader. This way all
vertices of the half sphere are processed by the shader.
Require: lp

′ ∈ R4 vertex of light volume as homogeneus
coordinates in l

1: cp
′ ← P · V ·M · lp′ // vertex in c

2: cp
′
uv.x← 1

2 · cp
′.x+ 1

2 · cp
′.w // transform to screen space

3: cp
′
uv.y ← 1

2 · cp
′.y + 1

2 · cp
′.w // transform to screen space

4: vp
′ ← V ·M · lp′ // vertex in v

5: return cp
′, cp

′
uv, vp

′

Afterwards the rasterization is effected based on the clip
space coordinates cp

′. The remaining vertex program returns
are interpolated to the fragments according to their distances
to the vertices. The fragment shader is called for all fragments
covered by the light volume with the respective interpolation
results cp

′
uv, vp

′.
Require: cp

′
uv ∈ R4 transformed coords in c and vp

′ ∈ R3

coords in v of vertex p′ of light volume
1: vp

′′ ← f

vp′.z
· vp′ // scale to far clipping distance (f)

2: buv ← 1
cp′uv.w

· cp′uv.xy // buffer coords of p′ (same for p)
3: zuv ← Gdepth(buv) // norm. depth at screen position buv
4: vp← zuv · vp′′ // position of p in v
5: wp← V −1 · vp // position of p in w
6: wvc,o ← wpc − wpo // vector p→camera in w
7: wnc,o ← wvc,o

|wvc,o| // direction p→camera in w

8: wl←M [1 : 4, 4] // position of light in w
9: wvl,o ← wl − wp // vector p→light in w

10: wnl,o ← wvl,o
|wvl,o| // direction p→light in w

31Copyright (c) IARIA, 2018. ISBN: 978-1-61208-672-9

SIMUL 2018 : The Tenth International Conference on Advances in System Simulation

11: lp← L · wp // vector light→p in l
12: adeg.x←atan2(lp.x, lp.z) // horiz. and vert. angle be-
13: adeg.y ←atan2(lp.y, lp.z) // tween light axis and lp

14: auv ← adeg+90◦

180◦ // Light-Cookie coordinates
15: luv ← Tcookie(auv) // light power in specific direction

16: att← 1
l.range2 · wvl,o · wvl,o // light attenuation

17: att← att · luv // consider light power
18: l.color ← att · l.color // attenuated light color

19: return lightingModel(co,wno,wnc,o,wnl,o, l.color)
The shader code can be divided into five logical blocks.

The first block (line 1 to 7) reconstructs the three dimensional
surface point p of the scene object o visible on the current
fragment. This reconstruction is enabled by the additional
information provided by the vertex shader. The vector p′ is
mapped to the same screen position as p (see dashed line
through p, p′ and p′′ in Figure 2). Therefore vp

′ describes
the cameras view direction to p in v. The g-buffer created in
the base path of deferred shading can be used to determine
the exact position of p on the corresponding line. It encodes
the z coordinate in v for each fragment in addition to other
data. To read the correct value from the depth buffer, the buffer
coordinates must be determined first. Therefore the vector cp′uv
is defined in the vertex shader, whose x- and y-coordinates
lie in the interval [0, cp

′
v.w = cp

′
uv.w] for points within view

frustum. After the perspective division by the homogeneous
component in line 2 the coordinates buv are in the value range
[0, 1] (line 3) used for texture/buffer access. The depth buffer
encodes depth zuv normalized on distance f to the far clipping
plane in the interval [0, 1]. The coords of p in v result from
scaling of vp′ to the far clipping plane receiving vp

′′ (line 1)
and the subsequent multiplication with the normalized depth
zuv (line 4). Multiplication by the inverse of V transfers the
object point p from v to w. For the evaluation of the lighting
model, the normalized direction vector from the object point
to the camera (eye vector) in world space wno,c (see Figure
2) is needed (line 6 and 7).

In addition to the eye vector, the incidence of light on the
object plays a central role in the lighting model, too. The light
vector is defined in lines 8 to 10. First the position of the
light source in world space wl is extracted from the matrix
M (line 8). Since the Headlight-Shader only renders the mesh
of the light volume into the light buffer, the transformation
matrix M from current object space l to w is constant across
all calls of the vertex program and contains the translation,
rotation and scaling of the light volume mesh into w. Since
the light source is in the coordinate origin of l, the translation
in M corresponds to the position of the light in w and can
be read from the fourth column of M . Now the normalized
direction vector from the object point to the light source in
world space wnl,o (see Figure 2) can be determined by the
lines 9 and 10 similar to the previous section.

In the lines 11 to 15, the directional luminous intensity
generated as cookie (Tcookie) in the CookieCombiner-Shader is
taken into account. In order to determine the luminous intensity
to be applied to the current fragment from the light distribution,
the horizontal and vertical angles of the incident light beam
with respect to the light centre axis must be calculated. For
this purpose, the object point belonging to the fragment is

transferred to the light space l through multiplying by L. The
position of this point in l, in whose coordinate origin the light
source is located and oriented along the z axis, simultaneously
corresponds to the light beam lp from the source to the object.
Its angle to the light center axis or z axis in l can then be
determined with the atan2 function (line 12 and 13). The
cookie must be addressed with normalized texture coordinates.
Therefore, the angles moving in the range [−90◦,+90◦] due
to the used light volume are transformed by line 14 to texture
coordinates auv . Thereby, the applicable value can finally be
read out by the light distribution (line 15).

After the positions of the relevant elements and the lumi-
nous intensity of the light are already known, the distance to
the light source must be taken into account in the lines 16 to
18. The intensity of light decreases square with the distance to
the shined object [16]. This square distance can be formulated
most efficiently as a scalar product of the vector from object
to light wvl,o with itself. The distance between object and
light is referred to a freely selectable positive light parameter
l.range, which allows the user to adjust the range respectively
the intensity of the light (line 16). It applies att = 1 if the
distance between light source and object corresponds to the
parameter l.range, and att→∞ for increasing distances. To
take into account the directional luminous intensity luv , which
is normalized to the interval [0, 1], att is multiplied by this
value. The calculated light attenuation can finally be mapped
by the light color in line 18 through multiplying the color of
the light defined by the user by att. Assuming a white light,
this multiplication corresponds to a shift on the grayscale.

Finally, the lighting model can be evaluated. At this point,
no separate solution has been implemented yet, but a Unity-
internal local lighting model has been used. This receives the
previously determined normals wno,c,wnl,o, the surface nor-
mal wno (see Figure 2) and material data co of the object from
the g buffer and the light color l.color, which already considers
attenuation. Based on these data, the lighting model delivers
the resulting color for the currently considered fragment and
thus generates the finished image of the scene on the output
medium.

IV. RESULTS

After the implementation is presented, the results are
evaluated in terms of subjective appearance and computation
time.

A. Appearance
A strictly objective evaluation based on numerical mea-

surements apart from the legal requirements is difficult in the
context of headlighting. Instead, a subjective comparison of
the implemented simulation and the LightDriver software from
Hella KG (64 Bit Version built on Jul, 2017) is used as the
primary evaluation basis. LightDriver is a validated software
tool for simulating headlamp light in night driving, which
Hella KG uses for its own development work. In contrast
to the implementation presented here, the LightDriver is not
able to display the high dynamics of HD systems in realtime,
since it has been primarily designed for the representation of
static light distributions. However, they are sufficient for the
plausibility check concerning the appearance of the presented
implementation and serve as a reference.

Figure 3 compares the dipped beam distribution
of the HD84-Matrix-LED-Headlamp as calculated by

32Copyright (c) IARIA, 2018. ISBN: 978-1-61208-672-9

SIMUL 2018 : The Tenth International Conference on Advances in System Simulation

Figure 3. Low-beam light of HD84-Matrix-LED-Headlamp projected on a
street with auxiliary surfaces simulated with own implementation (top) and

LightDriver (bottom).

CookieCombiner- and Headlight-Shader with the light
distribution of the LightDriver as reference. While in the
presented implementation only the electrical current values of
the individual light sources belonging to this light distribution
are specified, the LightDriver requires a simpler input in
the form of a single light distribution, which is therefore
calculated in advance. The scene for this comparison could
not be taken directly from the LightDriver and was therefore
recreated. As a consequence the geometric dimensions,
textures and colours of scene objects are not exactly the same,
but should suffice for a plausibility check.

At first glance you can see that the overall brightness differ
between both images. This difference is due to the different
textures. On closer inspection, one notices that the LightDriver
shows weak light curtains in the vehicle apron, which are not
reproduced in the implementation presented. There are also
qualitative differences in distance-dependent light attenuation.
The reasons for this are on the one hand the too coarse
resolution of 8 bit (α-channel of a RGBA texture) used for
the luminous intensity and on the other hand the different
light models. Essentially, however, there is a strong similarity
between the light distributions of both simulations. They have
comparable expansions and the same qualitative profile. If one
looks at the auxiliary surfaces at the left and right edge of the
road, it is noticeable that both light distributions illuminate
one’s own side of the road much more strongly in the distance
than the one next to it. This is a classic feature of low-beam
light distributions that ensures that oncoming traffic is not
glared.

Even if the light distribution on the road is the central
evaluation criterion for the driver, the observation of light
distributions on a vertical measuring wall has proven to be
useful especially for comparison purposes. The contours of
the light distribution, which are called the light-dark boundary
in this context, become clear through the close projection of
distant areas.

Although on Figure 4 both measuring walls are each 10
meters away, different distances seem to be present. This
impression is deceptive because of different road textures
leading to a distorted perception, especially due to the positions

Figure 4. Low-beam light of HD84-Matrix-LED-Headlamp simulated with
own implementation (top) and LightDriver (bottom) on a measurement wall.

of the central strips. In addition, the parameters of the camera
are not known in the LightDriver and therefore there is a
different view frustum in the implementation presented here.
The already mentioned disadvantages of the too low resolution
of the presented implementation are expressed by a sharper
light-dark boundary. Apart from these inequalities the vertical
projection shows the similarity of both simulations even clearer
than Figure 3. They have a dipped beam typical border to the
left in the upper middle area. The high resolution of the HD
system allows a sharp cut along the vertical center line and
thus ensures optimum long-range illumination of one’s own
lane without restricting other traffic participants. In addition
to the comparison shown, the high beam distribution was also
tested with a high degree of consistency.

B. Computation Time
With regard to the realtime requirement, the performance

of the implementation has to be taken into account. Our
workstation PC, which is representative for current average
computers, as test hardware is sufficient for a fundamental
evaluation of the realtime capability. This is a 64bit Windows
10 system with an Intel Core i7-6820HQ CPU (2.7 GHz, 8
cores), 16GB RAM and an NVIDIA Quadro M3000M with
4GB VRAM. The runtime of the rendering can be classified
as sufficient, if the calculation of the entire scene can be carried
out at least with the maximum frame rate of 60 fps of a
classical output device.

The independent evaluation of the performance of the
Headlight-Shader is only conditionally meaningful due to the
many influences, which result from the non realtime capable
operating system, the test hardware and the measurement itself.
For this reason, the implemented lights are compared with
Unity Spotlights, which represent the light sources with the
most similar properties. A large, flat surface serves as a test
scenario. In the middle of it, the camera is oriented parallel
to the ground. The scene can be rendered in 6.11 ms (164
fps). In front of the camera position, 50 Unity Spotlights are
placed and parameterized with a range of 60 length units and
a spot angle of 179◦ (max. value). The central axis of the
light corresponds to the direction of the camera’s view. The
calculation time is recorded over 1000 frames. The average
value for the calculation of a frame is 9.78 ms (102 fps). In
the same scenario, the Unity Spotlights are now replaced by as
many lights from the implementation presented here with the
same range parameter. In this case, the average calculation time

33Copyright (c) IARIA, 2018. ISBN: 978-1-61208-672-9

SIMUL 2018 : The Tenth International Conference on Advances in System Simulation

is 19.60 ms (51 fps). After subtraction of the rendering of the
unexposed scene, 0.07 ms per Unity Spotlight and 0.27 ms per
headlamp are required. Even if the Headlight-Shader turns out
to be slower than a Unity Spotlight, it is suitable for realtime
simulation even including external traffic. In particular, the
computing time is not negatively affected by more complex
scenes, but depends only on the resolution of the output device
(here 1354x873 pixels) due to the use of deferred shading.

In addition to the Headlight-Shader, the performance of
the CookieCombiner-Shader must be checked. The headlamp
ECU (Electronic Control Unit) is clocked at 50 Hz, so that
a recalculation in each frame should be assumed for the
CookieCombiner-Shader. Due to the difficulties in measuring
computing time mentioned in the previous section, an arti-
ficial test scenario is also created for the CookieCombiner-
Shader. To obtain the most representative value possible,
1,000 total light distributions of the HD84-Matrix-LED-
Headlamp are determined by iteration. Since the shader is
called once per single light distribution, this corresponds
to 95,000 calls of the CookieCombiner-Shader. The average
calculation time of a total light distribution is 0.304 ms.
Accordingly, CookieCombiner- and Headlight-Shader use a
comparable amount of resources, so that a total of 0.6 ms
is required for the calculation of a headlamp. Considering
complex scenes and the integration of external traffic, further
optimization potentials should be researched.

V. CONCLUSION AND FUTURE WORK
This contribution presents an approach for realtime simu-

lation of dynamic HD headlamp systems and thus lays the
foundation for the simulation-based development of high-
resolution dynamic light functions. Taking into account the
rather average test hardware and the optimization possibilities
discussed below, the shader-based implementation shows po-
tential to simulate night driving with dynamic HD system in
reduced scenes.

The rendering of the headlight is divided into two steps. In
the first step, the current total light distribution is determined.
This is the weighted sum of the 95 individual light distri-
butions of all adjustable light sources of the HD84-Matrix-
LED-Headlamp. In the technical implementation, the light
distributions are represented by textures with a resolution of
900x900 pixels and superimposed by blending the results of
the CookieCombiner-Shader applied to them. The total light
distribution initiates the second rendering step as input for the
Headlight-Shader. In the lighting pass of deferred shading, this
shader determines the final color values of the output device
pixels, taking into account the light influences.

The LightDriver software from Hella KG is used to eval-
uate the results. As a tool for headlamp development that has
been established for years, it is an excellent reference. As the
Figures 3 and 4 show, the implemented simulation is similar to
the LightDriver. The differences can mainly be traced back to
the unequal scenes and light models, as well as the differently
resolved light intensity. The last two points are starting points
for future work.

The performance analysis shows that Headlight- and
CookieCombiner-Shader are of comparable complexity and
lead to a calculation time of 0.6 ms per headlamp. For driving
simulations with the integration of external traffic, these ex-
ecution times should be further reduced. Therefore two ideas
could be persued. On the one hand, the previously considered

angular range in the vertical dimension could be reduced from
[−90◦,+90◦] to about [+10◦,−25◦] without hiding relevant
areas of the light distribution. This would decrease the required
pixels per cookie significant, reducing computing operations
and memory required. A more sophisticated coding of the light
distribution including additional color channels could also be
considered to reduce memory and increase the resolution of the
luminous intensity. On the other hand, it would be possible to
segment the calculation of the total light distribution to divide
it into several frames. However, this way only the frame rate,
not the update rate of the light distribution can be increased.

ACKNOWLEDGMENT
The authors would like to thank Hella KG for providing

the light distribution data of the HD84-Matrix-LED-Headlamp
and the LightDriver simulation software. This paper is part
of the EFRE.NRW (European Fonds for Regional Develop-
ment, North Rhine-Westphalia)-funded project ’Smart Head-
lamp Technology (SHT)’.

REFERENCES
[1] P. Lecocq, J.-M. Kelada, and A. Kemeny, “Interactive Headlight Simu-

lation,” Driving Simulation Conference, 1999.
[2] J. Berssenbrügge, J. Gausemeier, G. M., C. Matysczok, and K. Pöhland,

“Real-Time Representation of Complex Lighting Data in a Nightdrive
Simulation,” 7. International Immersive Projection Technologies Work-
shop, 9. Eurographics Workshop on Virtual Environments, 2003.

[3] J. Löwenau and M. Strobl, “Advanced Lighting Simulation (ALS) for
the Evaluation of the BMW System Adaptive Light Control (ALC),” In-
ternational Body Engineering Conference & Exhibition and Automative
& Transportation Technology Conference, 2002.

[4] A. Kemeny et al., “Application of real-time lighting simulation for
intellignet front-lighting studies,” Driving Simulation Conference, 2000.

[5] J. Berssenbrügge, J. Bauch, and J. Gausemeier, “A Virtual Reality-based
Night Drive Simulator for the Evaluation of a Predictive Advanced
Front Lighting System,” Design Engineering Technical Conferences &
Computers and Information in Engineering Conference, 2006.

[6] J. Berssenbrügge, S. Kreft, and J. Gausemeier, “Virtual Prototyping
of an Advanced Leveling Light System Using a Virtual Reality-Based
Night Drive Simulator,” Journal of Computing and Information Science
in Engineering, 2010.

[7] A. Knoll et al., “Evaluation of an Active Safety Light using Virtual Test
Drive within Vehicle In The Loop,” IEEE International Conference on
Industrial Technology, 2010.

[8] “AutomobilIndustrie: Adaptives LCD-Licht mit 30.000
Pixeln (Automotive Industry: Adaptive LCD-Light with
30,000 Pixels),” 2017, URL: https://www.automobil-
industrie.vogel.de/index.cfm?pid=1&pk=629502&p=1 [retrieved:
8, 2018].

[9] K. Reif, Ed., Automobilelektronik (Automotive Electronics).
Vieweg+Teubner, GWV Fachverlage GmbH, Wiesbaden, 2009,
ISBN: 978-3-8348-0446-4.

[10] H.-H. P. Wu, Y.-P. Lee, and S.-H. Chang, “Fast measurement of
automotive headlamps based on high dynamic range imaging,” OSA
Applied Optics Vol. 51, 2012.

[11] A. S. Glassner, Ed., An Introduction to Ray Tracing. ACADEMIC
PRESS INC., San Diego, CA 92101, 1989, ISBN: 0-12-286160-4.

[12] “Unity Homepage,” URL: https://unity3d.com/ [retrieved: 8, 2018].
[13] R. Fernando and M. J. Kilgard, Eds., The Cg Tutorial: The Definitive

Guide to Programmable Real-Time Graphics. Addison Wesley Pub Co
Inc., Feb. 2003, ISBN: 978-0321194961.

[14] J. F. Hughes et al., Eds., Computer Graphics - Principles and Practice,
3th Edition. Addison-Wesley, Jul. 2013, ISBN: 978-0321399526.

[15] T. Saito and T. Takahashi, “Comprehensible Rendering of 3-D Shapes,”
SIGGRAPH ’90, Dallas, 1990.

[16] F. Pedrotti, L. Pedrotti, W. Bausch, and H. Schmidt, Eds., Optik für
Ingenieure - Grundlagen, 4. Auflage (Optics for Engineers - Basics,
4th edition). Springer, Berlin, 2007, ISBN: 9783540734710.

34Copyright (c) IARIA, 2018. ISBN: 978-1-61208-672-9

SIMUL 2018 : The Tenth International Conference on Advances in System Simulation

