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Abstract—Sasol’s Operation Research department developed
their own discrete event flow-sheet simulation methodology to
Model Operations using Stochastic Simulation (MOSS). This
generic methodology is not restricted to Sasol, but can be
applied to any type of continuous process operation. In Sasol’s
case, MOSS has been so successfully applied that new process
modifications will hardly be done without a MOSS simulation.
However, these simulations require handling multi-component
flows with material recycle as well as optimal allocation to units
based on their capacity and profitability, resulting in complex
models which require long development times. Commercial pack-
ages were evaluated to improve model development time using
the MOSS methodology, but they did not comply with these
requirements. Automatic Modelling Operations using Stochastic
Simulation (AMOSS) is a bespoke simulation platform developed
to fit the MOSS requirements using free/open source software.
It is equation-oriented (as opposed to sequential modular) and
automatically generates mass and component balance equations
from user-generated process connectivity diagrams and operating
unit specifications (reactor conversions, separator efficiencies and
simulation-specific variables). It can allocate flows based on
unit operating rules (unit priorities and capacities). Stochastic
elements are introduced with user-defined distributions based on
actual plant data.

Keywords–stochastic simulation; Monte Carlo; flowsheeting;
equation-orientated; equation ordering.

I. INTRODUCTION

Sasol is an integrated energy and chemicals industry in
South Africa and leads the world in producing liquid fuels from
natural gas and coal. The whole operation can be grouped into
a number of value chains. A value chain normally consists of a
group of interlinked plants, designed to produce a basic com-
ponent which is then distributed and converted by consumer
plants into value-added products, which are then supplied to
their respective markets. The value chains and their external
influences are studied and improved as a unit prevents the local
optimization which results when only individual plants are
optimized. Factors such as limited plant capacity, insufficient
plant availability and sub-optimal operational philosophies are
often the main constraints. A value chain can become quite

complex when output streams are recycled back into the value
chain. In such cases, a change can have a big impact on a
completely different part of the operation, making it difficult
for the plant Subject Matter Experts (SME) to envisage the
impact and even harder to quantify the impact which is always
required for the motivation of Capital Expenditure (CAPEX).

This is an example where process simulation can be applied
with great effect. Since the model must be able to simulate
plant availabilities, operational philosophies (rules and heuris-
tics operators use to run the plant) and storage vessels, the
model must be dynamic, stochastic and heuristic in nature.
Over the years, Sasol has developed a modeling methodology,
Modeling Operations using Stochastic Simulation (MOSS) [1],
to determine the impact of modifications on value chains. The
strength of such a simulation lies in the ability to quantify
the impact of a change over the whole value chain and in
the process reduce the amount of subjective decision-making.
However, MOSS does not easily deal with value chains that
have tightly coupled feedback loops where resource optimiza-
tion is a prerequisite.

Before automation, the existing simulation method had
to be extended by hand to simulate the operation with an
acceptable level of accuracy. The modification included a
number of complex mathematical formulae that had to be
derived, programmed and tested. This added a significant
amount of model development time, resulting in a delayed,
but accurate set of results. This triggered the search for an
alternative set of stochastic simulation tools.

A number of alternative software tools were identified,
but due to time constraints, Sasol was not in a position to
complete a proper study. Hence, the University of Pretoria
was contracted to submit a modeling solution. The existing
stochastic model [2], the existing optimization model and the
existing steady state model were handed to the University as
usable references.

The rest of this paper is organized as follows. Section II
describes the performance criteria used to guide development.
Section III discusses decisions made about the software devel-
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opment environment used to develop the simulation software.
Section IV lists and explains the steps involved in developing
a simulation using AMOSS. Section V elaborates on some
of the steps to include information about the implementation.
The conclusion summarizes the achievements of the project
compared to the performance criteria and suggests future work.

II. SIMULATION ENVIRONMENT REQUIREMENTS

Sasol proposed the following list of performance criteria
for the new development environment. Note that the re-
quirements are not completely independent. For example, an
increase in accuracy can lead to an increase in development
time.

Development time: The simulation environment must re-
duce development time compared to manual equation rewriting
and not be affected by the complexity of the model.

Accuracy: The model must be appropriately accurate and
the accuracy must be independent of the complexity of the
value chain

Linear scalability: The resulting simulation must scale
linearly with the number of units.

Development flexibility: New scenarios that require mod-
ification to the existing model must be easy and simple to
incorporate.

Simulation time: The simulation execution time must be
short which will ensure that sufficient replications per scenario
can be run as well as more runs during model validation
and verification. Target simulation time should be less than
3 minutes per replication consisting of 70000 time steps.

Package stability: The model must calculate a value for
each variable in each time increment for all replications in all
the scenarios.

Generic application: The solution must be able to model
any value chain in Sasol irrespective of the combination and
configuration of plants, which imply that the existing legacy
models will be converted to the new modeling solution.

Debug capability: The solution must be able to guide
the user to locate a bug in a faulty model and requires the
recreation of an error situation in the same replication and
scenario in which it had occurred.

Fit for purpose: The modeling environment must be
focused on supporting the stochastic modeling methodology
of the Sasol and allows for ability to add additional features
and plants.

Learning curve: A quick learning curve is required for
the model developer, but it is accepted that the learning curve
for the software tool developer will take longer.

Version control: As more than one person can use the
same model at any time, the solution must allow for simulta-
neous modification and development in a controlled manner.

Cause identification: When simulation results are counter-
intuitive, the tool must allow the user to explain the results by
relating causes and effects. The tool must also assist in finding
bottlenecks.

Software Cost: Simulation packages are expensive and it
will be difficult to justify purchasing a new simulation tool
which will only partially solve Sasol’s problem and therefore
the initial cost as well as the annual maintenance cost must
thus be low.

III. SOFTWARE DEVELOPMENT

The current Sasol value chain models that make use of the
MOSS methodology are developed in MS Excel using VBA
[3] but fail some of the simulation environment requirements
mentioned. Most notably, the current solution requires manual
rewriting of equations in order to satisfy continuity equations
balances. Additionally, heuristics must be embedded in the
simulation code manually in order to do optimal unit allo-
cation.

Alternative simulation platforms, namely Simio [4] and
AnyLogic [5] were investigated, but they did not allow for
the simulation of continuous multi-component process streams
with optimal allocation at each time step. Both packages have
the ability to simulate continuous process flows and Simio has
the ability to do splitting of streams to maximise throughput.
The operating philosophies of the Sasol plant, however, call
for more widespread optimisation at each time step than these
packages supply without custom development.

AMOSS is built using mainly open-source tools. It is
written in Python [6], the graphical flowsheeting is done in
Open Modelica’s Connection Editor OMEdit [7] while the
Atom [8] text editor facilitates additional user inputs. Although
not open source, Microsoft Excel [9] is widely available and
used as an interface for editing tabular data.

The open source technologies allow for simple modifica-
tions to accommodate the needs of the platform.

IV. MODELING AND SIMULATION WORK-FLOW

The basic work-flow of AMOSS is illustrated in Figure 1
and descriptions of the steps are as follows:

Step 1 requires the user to draw a process diagram in
OMEdit together with operational unit-specific data in Excel.
The unit library contains the unit operations of concern in the
Sasol value chains (Buffers, Reactors, Pipes and Separators).
User inputs such as a component list, flow rates, separator
splits, buffer sizes and reactor conversions are entered during
this step.

Step 2 takes the OMEdit diagram which contains the
process connectivity and operational unit information and
parses it into a network graph. Using graph theory, a graph
table is generated containing the connectivity and attributes of
the process units.

Step 3 iterates through the graph, creating all the necessary
equations automatically. These equations are categorized as
component mass balance equations, total flow equations, mix
point equations, reactor equations, separator equations and
buffer equations.

Step 4 tears the equations using the block lower triangular
method and symbolically solves the smaller blocks to lower the
stiffness of the system of equations, making it easier to solve.
Prior to pre-solving equations, a degree of freedom (DOF)
analysis is done to ensure that the system is not under- or
over-specified.

Step 5 requires the user to define additional equations to
describe how the unit is operated (operating rules) together
with identifying which variables or parameters are stochastic
and provide a distribution. These rules are typically the unit
constraints (minimum and maximum capacities) of the units,
as well as the feed distribution priority between multiple units
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receiving feed from the same source. The stochastic element’s
distributions are also specified by the user during this step.

Step 6 takes the system of equations in Step 4 and concate-
nates it with the equations in Step 5 and tears these equations,
using the bordered block lower triangular method, producing
the full system of equations. The bordered lower triangular
form of the system of equations requires less variables to be
solved simultaneously compared to the unordered system. A
model is created from the ordered system and is solved using
numerical root-finding software.

Step 7 simulates the process for all active scenarios for the
number of required replications. Results generated are written
to a file.

Figure 1. Illustration of AMOSS work-flow

V. SIMULATION ENVIRONMENT COMPONENTS

To better understand the work-flow and the operation of
AMOSS this section elaborates on some of the components.
The work-flow starts with with a graphical description of the
process model in flowsheet form. This flowsheet is then parsed
and the equations implied by the connectivity are created,
ordered and pre-solved. It is also possible to include additional
equations which specify behaviour on the plant rather than the
mass and energy balances attached to the units.

A. Process flowsheet
Figure 2 shows an example of a process diagram in

OMEdit. The building blocks are dragged and dropped from

a library of operations. The building blocks are as follows:

Source is the location where mass enters the
simulated process.

Sink is the location where mass exits the simu-
lated process.

Mix Point is an operational unit where streams of
different compositions are mixed and the streams
leaving the Mix Point all have the same compo-
sition.

Buffer is a tank or accumulator within the pro-
cess.

Reactor is an operational unit where components
can be converted to different components.

Pipe is a block used to give streams names and
indicate the flow direction.

Separator is the operational unit that models
a distillation column. The block splits incoming
streams into multiple streams with different com-
positions.

0

Visual Unit is used to indicate a conglomeration
of process operations, but acts as a Mix Point.

Figure 2. Example of the graphical process interface by utilizing OMEdit

The input data is required to yield a degree of freedom
equal to zero. In each simulation, the component and total flow
rates will be calculated. In Table I, inputs specific to Pipes S1
to Sn are listed.

TABLE I. EXAMPLE TABLE OF COMPONENT (LEFT), STREAM AND
COMPOSITION INPUTS (RIGHT).

Components stream comp

comp1 S1 total

comp2 S2 comp1
...

...
...

compn Sn compn

The number of rows required in the input table per Separa-
tor is equal to the number of Pipes connected to outlet minus
one (nP−1). The number of columns in the table corresponds
to the number of components plus two (nC+2). For example
in row 1 of Table II, if S6 f1 is set to 0.5, 50% of the comp 1
mass flow entering the Separator will go to Pipe S6.

The number of rows in the input table per Reactor is
equal to the number of components in the component list
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TABLE II. EXAMPLE TABLE OF INFORMATION REQUIRED FOR EACH
SEPARATOR.

node attribute comp 1 comp 2 · · · comp n

Separator S6 S6 f1 S6 f2
. . .

...

Separator Sx Sx f1 Sx f2
...

...

VL101 S101 S101 f1 S101 f2 · · · S101 fn

(nC). The number of columns in the table correspond to
the number of components plus two (nC + 2). Column 1
contains the name of the Reactor and column 2 is the list
of components entering the Reactor. The remaining column
headings indicate the components exiting the Reactor. The
table contains the conversion of each component entering the
Reactor (comp x in) to another component (comp x out). For
example R1 c1i c2o (Reactor1 comp 1 in comp 2 out) is the
fractional conversion of comp 1 to comp 2.

TABLE III. EXAMPLE TABLE OF INFORMATION REQUIRED FOR EACH
REACTOR.

node comp comp 1 out comp 2 out · · · comp n out

Reactor comp 1 in R1 c1i c1o R1 c1i c2o · · · R1 c1i cno

Reactor comp 2 in R1 c2i c1o R1 c2i c2o
. . .

...

Reactor
...

...
...

Reactor comp n in R1 cni c1o R1 cni c2o · · · R1 cni cno

Cracker1 comp 1 in
. . .

...

Cracker1
...

Cracker1 comp n in · · · R2 cni cno

B. Automatic equation generation
With the connectivity specified, the conservation of mass

and chemical reaction equations are automatically generated by
the system. In the MOSS methodology, these equations would
be written into code by hand. This represents a significant
improvement in efficiency.

A directed graph is extracted from the process diagram
and processed using NetworkX [10], a Python library with a
variety of graph theory algorithms. All the operational units
in the diagram are vertices and the pipes indicate the edges
between vertices, together with edge direction.

The bipartite graph generated from the extracted informa-
tion, is used to construct a directed graph (Figure 3). This
is how the basic equations that describe the mass balance,
mix point, component conversion, component split and integral
equations for the buffers are created.

Next, the degrees of freedom are calculated to ensure that
the system is correctly specified.

C. Pre-solving equations
Pre-solving refers to the analytical solving of the system

of equations created in the previous section, prior to running
the simulation. The intent is to speed up the simulation by
avoiding numerical solving of equations.

Figure 3. Directed graph created from the bipartite graph

Sympy [11] is used to convert all the equations to symbolic
mathematical expressions. A tearing method is used to tear
the system of equations into subsets of equations that require
simultaneous solving. The tearing is achieved decomposition
of the unordered incidence matrix (Equation 1) to a bordered
lower triangular incidence matrix (Equation 2)

[A] =


x1 x2 x3 x4 x5

f1 1© 1
f2 1 1 1 1©
f3 1 1© 1
f4 1 1©
f5 1 1© 1

 (1)

[A] =


x1 x2 x3 x4 x5

f1 1© 1
f2 1 1©
f3 1 1 1©
f4 1 1© 1
f5 1 1 1 1©

 (2)

D. External user equations
AMOSS provides a platform to input additional equations

to describe the process activities and operating instructions.
In the MOSS methodology, it is common to distribute mass
into different pipes based on minimum and maximum con-
straints, together with allocation priorities. If the constraints
are local to the distribution point, the distribution is determined
analytically. If the constraints are up- or downstream of the
distribution point, general optimization is required.

These inputs are done using the Atom text editor with
a customized script for syntax checking and tab completion
(Figure 4).

The probability distributions are also specified as a table
input, with the option to switch between discrete and contin-
uous distributions:

Once the full system of equations are created, it is ordered
to ease the solving effort. Figure 5 is an example of an
incidence matrix using a test process of AMOSS with 171
variables and equations. The unordered state implies that 171
equations need to be solved simultaneously. Using the bordered
lower triangular ordering algorithm of Baharev [12] on the
system results in the ordered incidence matrix. In this form
there are only 19 free variables, while the values of the
remaining variables are solved by direct substitution.
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TABLE IV. EXAMPLE OF HOW A USER CAN DEFINE A DISTRIBUTION.

Discrete 0

value P

0 0

1 0.0625

2 0.125

3 0.1875

4 0.25

5 0.1875

6 0.125

7 0.0625

8 0

Figure 4. Entry of user inputs via Atom. From top to bottom: Adding
comments, tab completion, syntax highlighting and error indication.

The model is built in CasADi [13]. The need for an algo-
rithmic differentiation tool is required due to the optimization
operations introduced by the distribution of material according
to certain constraints. CasADi is also used to find the roots of
the system of equations.
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Figure 5. Unordered incidence matrix is ordered to bordered lower triangular
form

VI. IMPROVEMENTS TO DATE

Most of the improvements that were attempted to date was
to speed up the simulation time. The following simulation
speed improvements have been attempted:

HDF5 The HDF5 file format was used to improve the
performance of saving results to disk, because the format yields

a file 15 times smaller than a CSV file. BLT ordering Block
lower triangular ordering was used to increase the simulation
speed. The improvement seen by implementing BLT tearing is
due to the reduction in the number of variables that need to be
solved numerically. CasADi The implementation of CasADi
shows the power of derivative information. Parallel Process-
ing The simulations of AMOSS are embarrassingly parallel
(the scenarios can be simulated completely independently of
one another). Celery [14] is used to distribute the load of the
scenarios.

Figure 6 shows the effect of each of these improvements on
the simulation time. Parallel processing scales all these times
by a constant factor for each CPU used.

Figure 6. Simulation runtimes of the AMOSS test process with the
cumulative improvements

VII. CONCLUSION

AMOSS successfully provides a stochastic simulation plat-
form. AMOSS encompasses a variety of different aspects,
such as automatic equation generation, equation ordering,
optimization and parallel processing, to support this platform.

A. Achieved requirements

The deliverables that are satisfied by AMOSS are:

Reduction in development time The ability to generate
equations automatically given a process diagram together with
the equation ordering drastically reduces development time.
In MOSS, equations are manually derived for systems that
include recycles. When rebuilding a value chain in AMOSS,
the Sasol user reported a 6 week saving in development time.

Generic application AMOSS was designed as a general
stochastic simulation platform. The operational unit library can
be easily expanded and the code downstream of the automatic
equation generation will remain unchanged.

Development flexibility Changing the operating instruc-
tions or connectivity in the existing MOSS models requires
major effort. The manually generated equations will require
modification. Changing the model in AMOSS just requires
changes to connectivity and operating instructions.
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Simulation flexibility: AMOSS allows sections of the
plant to be deactivated with logical operators in the operating
instructions.

Acceptable accuracy: On condition that the Newton root
finder successfully finds a solution under 1000 function eval-
uations, any residual equation will be solved with an absolute
error of 10−12.

Fit for purpose: AMOSS is an extension of the MOSS
methodology and was developed with the guidance of Sasol
and therefore follows the modelling methodology of Sasol.
AMOSS is written in Python, which is a common language
with a large community, making it possible for a person with
moderate programming experience to contribute to AMOSS.

Linear scalability: AMOSS simulation time does scale
linearly depending on the number of equations in the system,
provided that the difficulty stays constant.

Quick learning curve: The Sasol user has reported the
learning curve as low to moderate, requiring only 1 week to
build a medium sized model. The most difficult part is to learn
basic Python grammar and how to create an OpenModelica
flowsheet together with rudimentary coding skills. This com-
pares favourably to the skills required to solve the equations
and code the model in the MOSS methodology.

Software cost: The software cost for AMOSS is low
relative to other commercial software due to the use of open
source software like Python and OpenModelica.

Version control: Version control of the project is done
with Git using Bitbucket as the cloud repository. Since model
files are plain text, it is also easy to track model development
using Git.

B. Future work
Three of the deliverables of the AMOSS requirements

could not be met. These are fast simulation time and software
package stability.

Fast simulation time: When comparing a model built in
AMOSS against the same model using the MOSS methodology
in VBA, the VBA model speed is superior. The benchmark
process takes 1.7 minutes to complete a replication of 70
128 hours, whereas AMOSS simulates the same process in
24 minutes. The leading cause is the high number of variables
that needs to be solved numerically. A high number of these
variables stem from infeasible assignments. Investigation into
eliminating the infeasible assignments is required.

Software package stability: AMOSS is stable in the sense
that is does not close unexpectedly, but the graphical user
interface is considered unstable. Focus will be given to develop
a more robust and user-friendly interface.

Cause identification: Rudimentary cause identification is
added by identifying when a logical operator is evaluated as
true. A list linking the created if-variables to the statement is
made available to the modeler. This feature needs to be further
developed to elicit better understanding of the simulation
results.
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