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Abstract—The calculation of geodetic lines plays an important 

role in many applications, such as the minimisation of material 

in manufacturing processes. Many manufacturing steps, such 

as cutting or attaching layers on curved surfaces, suffer from 

loss of material. In order to minimise wastage of material, 

geodetic lines can be employed to find a cutting pattern for the 

given material with minimal distortion. This paper presents an 

automatable algorithm that numerically calculates geodetic 

lines on any given surface. The result is evaluated with a 

practical example by comparing the numerical result and the 

analytical solution. 

Keywords-Geodetic Line; Surface Analysis; Materials 

Technology. 

I. INTRODUCTION  

This paper is based on the assumptions that the material 

of the given surface is of finite thickness and of low 

elasticity which leads to the necessity of minimising loss of 

material. Furthermore, the starting point of the presented 

research is the approach given in [1] for finding geodetic l 

ines between two points. The main idea is to successively 

calculate distances from the starting point which is 

improved by the fast marching method. In the following, an 

algorithm for extracting the geodetic line as well as for 

further improving it is derived.  

For cutting a curved surface either sectional planes or 

geodetic lines can be used. The graphical approximation of 

flattened material stripes of an originally curved surface 

having been cut by the procedures of applying sectional 

planes and calculating geodetic lines clearly show that the 

cutting with the geodetic lines provides straight edges when 

flattened whereas the sectional planes result in curved edges 

which leads to a higher amount of material loss. However, 

sectional planes are much easier to apply and less time 

consuming than the analytical calculation of geodetic lines 

which is not even possible in many cases. Thus, this paper 

aims to provide an algorithm which approximates analytical 

geodetic lines on any given surface.  

The paper is divided in five sections. After the 

Introduction, the calculation of the shortest distance on a 

triangulated mesh is shown in Section II followed by 

Section III about the extraction of the geodetic line. In 

Section IV a straightening algorithm for improvement of the 

geodetic line is presented. The paper ends with a concluding 

paragraph in Section V and an outlook to future work on 

this project.  

II. CALCULATION OF SHORTEST DISTANCES ON A 

TRIANGULATED MESH  

In this paper, the procedure of the Fast Marching 

Method (FMM) is used [3] for calculating the shortest 

distances on a triangulated mesh. Basically, this method 

approximates the distances of all points surrounding the 

starting point successively by a wave front until it reaches 

the given ending point. For the following procedure it is 

assumed that starting and ending point of the geodetic line 

which is to be approximated are given. 

A. Procedure 

In the FMM, the vertices of all triangles in the mesh are 
divided into several groups which are sets of vertices. 

1) Fixed vertex set (FVS): contains initially only the 

starting points; vertices which are points of the shortest 

distance are added in the procedure. 

2) Close vertex set (CVS): contains initially no vertices; 

vertices which are close to the point that is investigated in 

the current iteration of the loop are added. 

3) Fixed vertex set (FVS): contains all vertices of the 

mesh that are not contained in FVS. 
Two situations can be distinguished: Only one starting 

point is given and more than one starting point is given. If 

there is only one starting point, the distances 𝑇𝑖 of its direct 

neighbours have to be calculated and the neighbours are 
added to the CVS. If there is more than one starting point, 

the points 𝑎0, 𝑎1, and 𝑎2 which are part of a triangle of the 

mesh containing exactly two points in FVS have to be 

determined. After computing their distances 𝑇0, 𝑇1, and 𝑇2 

to the starting value, the points 𝑎0, 𝑎1, and 𝑎2 are added to 

CVS. After these initial steps, the following loop starts: 

• The point 𝑎𝑖, i = 0, 1, 2 with the shortest distance 𝑇𝑖 
to the starting value is moved to FVS and is now the 
point of origin for further investigations. This point 
is called trial.  

• The distances 𝑇𝑖 of all points in UVS∪CVS which 

are adjacent to triangles containing trial and a point 
in FVS are computed and moved to CVS. 

In each iteration, one point is added to FVS and its 
neighbours are added to CVS. The algorithm terminates 
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when FVS contains every vertex which is part of a line 
resulting in the shortest distance from starting to ending 
point.  

B. Calculation of Distance T 

For calculating the distance 𝑇 the method presented in 
[3] is used. It requires that one point, 𝑃1, of known distance 

𝑇1  is the origin and that another point, 𝑃2 , of known 

distance 𝑇2 is on the x-axis.  

1) Procedure: The distance 𝑇3  of the third point 𝑃3  is 

calculated in terms of 𝑇1, 𝑇2 and the connecting vectors 𝜈𝑖  

with 𝜈𝑖 = 𝑃𝑖 − 𝑃1 , in particular (𝜈3 )x and (𝜈3 )y, i.e., the 

projections of 𝜈3  onto the new basis vectors, which are 

calculated as follows: To change the default, adjust the 

template as follows: 

a) One point is set as the origin (𝑃1):  

𝜈𝑖 = 𝑃𝑖 − 𝑃1 

b) The coordinate system is transformed where:  

𝑒𝑥 =
(𝑝2 − 𝑝1)

|𝑝2 − 𝑝1|
=

(𝜈2)

|𝜈2|
 

𝑒𝑦 =
(𝜈3 − 𝑒𝑥 ⋅ (𝑒𝑥 ⋅ 𝜈3))

|(𝜈3 − 𝑒𝑥 ⋅ (𝑒𝑥 ⋅ 𝜈3)|
=

(𝜈3 ⋅ |𝜈2|
2 − 𝜈2 ⋅ (𝜈2 ⋅ 𝜈3))

|(𝜈3 ⋅ |𝜈2|
2 − 𝜈2 ⋅ (𝜈2 ⋅ 𝜈3)|

 

c) The distance of 𝜈3 to the new coordinate system is 

computed where 𝑂𝑥 is the x-coordinate at which the origin 

of the new coordinate is located and 𝑂𝑦  is the relative y-

coordinate:  

𝑂𝑥 =
1

2

(𝜈2)𝑥
2 + 𝑇1

2 − 𝑇2
2

(𝜈2)𝑥

 

𝑂𝑦 = ±√𝑇1
2 −

((𝜈2)𝑥

2 + 𝑇1
2 − 𝑇2

2)²

4(𝜈
2
)
𝑥

2
= ±√𝑇1

2 − 𝑂𝑥
2 

𝑇3 = 𝑂𝑥 ⋅ 𝑒𝑥 + 𝑂𝑦 ⋅ 𝑒𝑦 − 𝜈3 

A challenge with this method is that there are always 

two possible virtual origins due to ±𝑂𝑦. In [3] it is stated 

that this is solved by calculating both distances and taking 

the larger value. However, there are situations where the 

smaller value is the correct one. This happens, presumably, 

mostly or only when P3 is not in front of the wavefront but 

beside. Such a situation occurs when the distance of a point 

in the CVS is recalculated. To mitigate this issue in a simple 

way, the recalculated value for the distance 𝑇 is only stored 

if it is smaller than the existing one. 

2) Accuracy: The algorithm was tested on a sphere with 

equally spaced points as shown in Figure 1. The starting 

point, i.e., the point with distance 𝑇 = 0 is chosen to be the 

north pole. The points are numerated such that one whole 

circle at constant 𝜃 is taken. Thus, plotting the distance over 

the index results in plateaus of constant distance (see Figure 

1 b and c).  

III. EXTRACTING THE GEODETIC LINE 

In the second section, the shortest distance from starting 
to ending point on the triangulated mesh is determined. In 
order to approximate the geodetic line, a line of shortest 
distance can be backtracked along the points in FVS. The 
real geodetic line, however, does not necessarily consist only 
of vertices but of points on edges of the triangles as well. In 
the following the first approximation of the geodetic line is 
denoted by Γ0.  

A. Method of Minimum Distance  

The Method of Minimum Distance approximates Γ0 with 

regard to the calculated distances T. It iterates the following 

procedure and can be modified through two different 

options: 

1. The neighbor N of the previous point is determined 

which fulfills one of the following requirements: 

a) Option 1: N has the lowest distance TN of all 

provided neighbours.  

b) Option 2: N is the point of neighbours for which the 

value of the distance TN added to the distance from the 

previous point p is minimal 

2. The resulting neighbor N is appended to Γ0. 

 

This method extracts the geodetic line very quickly but does 

not provide a good approximation, neither with Option 1 nor 

Option 2, especially when the grid is very uniform. Also, 

the points of the geodetic line are still only located on 

vertices. Therefore, the gradient method was implemented. 

 

B. The Gradient Method 

The gradient method provides an approach to extract the 

geodetic line dissociated from the vertices. To determine the 

direction in which the geodetic line propagates the gradient 

of the distance T, approximated with the three distances for 

each point in each triangle, is used. 

 

1) Approximation of the gradient in a triangle: 

 

The gradient in a triangle with vertices i, j and k is given by 
 

(∇⃗⃗ 𝑇)(𝑖,𝑗,𝑘) = −
�⃗� 

|𝑛|⃗⃗ ⃗⃗  ⃗2
× (𝑇𝑖𝑒 𝑗𝑘 + 𝑇𝑗𝑒 𝑘𝑖 + 𝑇𝑘𝑒 𝑖𝑗),       

where 

𝑒 𝑎,𝑏 = 𝑥 𝑏 − 𝑥 𝑎  

 

are the vectors connecting the vertices a and b and �⃗�  is the 

surface normal of the triangle: 

 

�⃗� = 𝑒 𝑘𝑖 × 𝑒 𝑗𝑘 
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Note that the connecting vectors 𝑒 𝑖𝑗, 𝑒 𝑗𝑘 and 𝑒 𝑘𝑖 are 

circular, i.e., that 

𝑒 𝑖𝑗 + 𝑒 𝑗𝑘 + 𝑒 𝑘𝑖 = 0 

 

In Figure 2, a sketch of a triangle with its gradient is 

shown for an example set of distance values Ti, Tj, Tk. 

 
 

2) Extracting the Geodetic Line with the Gradient 

Method: 

 

The basic concept of the gradient method is to generate a 

line g for each triangle from the previous point p of the 

geodetic line and the gradient of T 

 

𝑔 ∶  𝑥 (𝜆) = 𝑝 + 𝜆∇⃗⃗ 𝑇(𝑖𝑗𝑘) 

 
and to find its point of intersection with the edges of adjacent 
triangles. For the choice of edges to intersect g with, one has 
to consider whether the previous point p is on a vertex or an 
edge. If p is on a vertex, the following procedure is applied: 
 

1. The negative gradients of the adjacent triangles are 
computed.  

2. A triangle determined whose negative gradient 
points into the triangle itself. 

3. The line g is intersected with the edge of that 
triangle on the opposite side. 

4. The point of intersection is added to Γ0. 
 

If no triangle is found whose negative gradient points 
into the triangle itself, the neighbour N with the smallest  
distance T to the previous point p is added to Γ0. 
 
If p lies on an edge, a different procedure is used: 
 

1. The triangle which is adjacent to p and was not used 
for the prior calculation of p itself has to be 
identified. 

2. The line g is intersected with the two remaining 
edges, if the negative gradient points into the 
triangle. 

 
If the negative gradient does not point into the triangle, 

the previous p is moved to the vertex of the same edge that 
has the smaller distance T.  

Special case: It might happen that p lies on a boundary 
edge. This case can be resolved by moving p to the vertex of 
the same triangle with a smaller distance T. If p lies on a 
boundary vertex, the above-mentioned procedure can be 
applied without further arrangements. As already mentioned, 
this is a special case. Therefore, this will not be considered in 
the further course. 

 
3) Performance of the Gradient Method 

The algorithm approximates the real geodetic line in many 
test cases very precisely in accurate time. In case that real 
geodetic line runs near or along a line of edges without 
passing through several triangles or without changing the 
lane over the course of many points, the calculated geodetic 
line tends to stick to one lane and very late moves over to the 
other. This cannot be taken care of by the improvement 
algorithm which is described in the next section unless it is 
run for a lot more iterations than usual which is expensive. 
However, this special case is not problematic unless one 
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wants to find the real geodetic line with even higher accuracy 
than already provided. For this, one could calculate the 
geodetic line and refine the triangulation around it to redo the 
whole calculation with the new triangulation until it 
converges. 

IV. IMPROVING THE APPROXIMATION OF THE GEODETIC 

LINE 

In the previous section we have generated an initial 

approximation Γ0 for the geodetic line between two points 

on a triangulated mesh in three-dimensional space. As this is 

just a first approximation, an algorithm for improving Γ0 is 

required. The improvement can be achieved by moving the 

points on vertices of the geodetic line along the edges of the 

mesh to shorten the length of Γ0. 

 

A. Criterion for Improvement of the Geodetic Line 

According to [2] the shortest path is given by the 

straightest path for triangulated surfaces. ‘Straight’ is 

defined as follows: After taking all triangles that the 

approximation Γ𝑖−1 passes through and unfolding them into 

a plane, the path Γ𝑖 is the shortest when it is a straight line in 

the planar view. Therefore, the algorithm for improvement 

aims at straightening the path in the unfolded planar view.  

 

B. The straightening algorithm 

For this section the i-th version of the path is denoted as 

Γ𝑖 and Pi,,j  the j-th point of the i-th path. For the following 

let Pi,,j  be the point to be corrected using the information 

about Pi,,j+1  and Pi,,j -1. The idea is to locally straighten the 

path by moving the central point of the three, i.e., Pi,,j . To 

ensure that the geodetic line converges and actually 

becomes shorter with each iteration, the updated Pi,+1,,j  for 

the updated path Γ𝑖+1  is calculated using the points which 

have already been updated during this iteration, i.e., Pi,+1,j-1 

instead of Pi,,j-1. For readability, we omit the “+1” in Pi,+1,j-1, 

but take care of it by only keeping one Г stored and 

updating it with each step during each iteration.  

There are always two cases to be considered: Pi,,j  lies on 

an edge or on a vertex as can be seen in Figure 3.  

 

1) Pi,,j  lies on an edge: 

If Pi,,j  lies on an edge, the two triangles adjacent to Pi,,j  are 

unfolded. The point of intersection of the connecting line 

between Pi,,j +1 and Pi,,j -1 and the edge that Pi,,j  lies on are 

calculated. If the point of intersection does not lie between 

the two vertices of the edge, the closer vertex is chosen to be 

the corrected point instead in this case. 

 
 

2) Pi,,j   lies on a vertex 

If the point that is to be corrected coincides with a vertex, 

the procedure becomes more complicated. Let Sk be the set 

of triangles that have Pi,,j  as the central vertex, then several 

cases can be distinguished. Firstly, there are two simple 

cases which can be easily taken care of numerically: 

a) If all three points (Pi,-1,j,  Pi,,j  and Pi,+1,j)  are part of 

the same triangle, Pi,,j   is removed from Г.  

b) If Pi, j+1 or Pi,,j-1 lies on an edge that is not part of 

the boundary of Sk, it is removed from Г. 
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For all other cases (Pi, j+1 and Pi,,j-1 belong to two 

different triangles) the vertices around Pi,,j are sorted and the 

left and right hand angles, θl and θr, are calculated in order 

to characterize the vertex as can be seen in Figure 4. These 

angles are given by the sum of the central angles of the 

triangles which are obtained by splitting the star-like 

structure of Sk along the path Pi,-1,j → Pi,,j  → Pi,+1,j. 

Three main cases can be distinguished:  

a) θ = 2π : euclidean 

b) θ = θl + θr  > 2π : hyperbolic 

c) θ < 2π : spherical 

These three cases are taken care of differently where θ is 

defined as left or right hand angle. 

a) Euclidean: Sk can be unfolded isometrically. After 

unfolding, Pi, j+1 or Pi,,j-1 are joined in the unfolded 

Sk and  the intersections with the edges added to Г. 

b) Hyperbolic:  

a. If  θl and θr  are greater than π: no 

correction is needed. 

b. If  θl and θr  are smaller than π, that side of 

Sk is unfolded and Pi, j+1 as well as Pi,,j-1 

are joined in the same manner as in the 

Euclidean case. 

c) Spherical: The part of Sk with smaller θl/r is 

unfolded and Pi, j+1 or Pi,,j-1 are joined as in the 

Euclidean case. 

In all three cases the part of Sk with smaller θl/r has to be 

unfolded and the points of intersection have to be 

calculated. 

In test runs, it was observed that points which are very 

close to vertices keep approaching the vertex which they are 

close to without coinciding and adopting its value. 

Therefore, every 10 iterations the path is scanned for points 

on Г for which this might be the case. These points are 

moved to the vertex instead. All following points that 

approach the same vertex are deleted from the path. This is 

necessary because otherwise curves in the path will never 

pass over a vertex. The effect of the scanning of the path 

and the movement of points to vertices is shown in Figure 5.  

V. EXEMPLARY RESULTS 

To test the capability of the gradient method and the 

straightening algorithm a geometry was chosen for which 

exact geodetic lines can be analytically computed for 

reference.  

A plane with a half cylinder barrier is generated and the 

geodetic line between two points on either side of the half 

cylinder is calculated, first analytically, then using the 

presented algorithm as shown in Figure 6. 

In Figure 6, several aspects can be seen: Beginning at 

the ending point (on the right-hand side of the half cylinder) 

the distances of the other points are calculated by the FMM. 

These increase up to the starting point (on the left-hand side 

of the half cylinder). For clarity, the colour palette was 

chosen such that it is repeated five times. The black line 

shows the analytically calculated geodetic line. The red 

crosses show the points of the geodetic line which was 

calculated with the above-described algorithm.  

In the left image the calculation is stopped after the 

extraction using the gradient method. For the right image 

the extracted geodetic line was improved by using the 

technique described in Subsection IV-B.  

As can be seen, the straightening algorithm removed a 

few deviations visible close to the upper right end of the 

geodetic line. The straightening algorithm ran 50 times but 

most of the improvement was already achieved after 5 

iterations. 
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VI. CONCLUSION AND FUTURE WORK 

An algorithm for calculating a geodetic line on a given 

surface and a technique for its further improvement are 

described. The goal was to derive an accurate numerically 

determined geodetic line. Further steps could feature an 

extension of the algorithm, such that several geodetic lines 

on one surface can be found by iterating over the algorithm. 

To further improve, analyse and straighten the geodetic line, 

the unfolding of surfaces with the least distortion could be 

investigated and automatised. Moreover, the change in 

accuracy dependent of the number of elements in the 

triangulated mesh could be investigated in order to define 

and optimize the relation between these two quantities. 
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