SIMUL 2018 : The Tenth International Conference on Advances in System Simulation

Generation of a Geodetic Line on Any Given Surface

Anna von Pestalozza, Stefan Weichert, Arash Ramezani, Hendrik Rothe

Chair of Short-Time Dynamics
University of the Federal Armed Forces
Hamburg, Germany
Email: pestalozza@hsu-hh.de, s-weichert@web.de, ramezani@hsu-hh.de, rothe@hsu-hh.de

Abstract—The calculation of geodetic lines plays an important
role in many applications, such as the minimisation of material
in manufacturing processes. Many manufacturing steps, such
as cutting or attaching layers on curved surfaces, suffer from
loss of material. In order to minimise wastage of material,
geodetic lines can be employed to find a cutting pattern for the
given material with minimal distortion. This paper presents an
automatable algorithm that numerically calculates geodetic
lines on any given surface. The result is evaluated with a
practical example by comparing the numerical result and the
analytical solution.
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. INTRODUCTION

This paper is based on the assumptions that the material
of the given surface is of finite thickness and of low
elasticity which leads to the necessity of minimising loss of
material. Furthermore, the starting point of the presented
research is the approach given in [1] for finding geodetic |
ines between two points. The main idea is to successively
calculate distances from the starting point which is
improved by the fast marching method. In the following, an
algorithm for extracting the geodetic line as well as for
further improving it is derived.

For cutting a curved surface either sectional planes or
geodetic lines can be used. The graphical approximation of
flattened material stripes of an originally curved surface
having been cut by the procedures of applying sectional
planes and calculating geodetic lines clearly show that the
cutting with the geodetic lines provides straight edges when
flattened whereas the sectional planes result in curved edges
which leads to a higher amount of material loss. However,
sectional planes are much easier to apply and less time
consuming than the analytical calculation of geodetic lines
which is not even possible in many cases. Thus, this paper
aims to provide an algorithm which approximates analytical
geodetic lines on any given surface.

The paper is divided in five sections. After the
Introduction, the calculation of the shortest distance on a
triangulated mesh is shown in Section Il followed by
Section 11l about the extraction of the geodetic line. In
Section 1V a straightening algorithm for improvement of the
geodetic line is presented. The paper ends with a concluding
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paragraph in Section V and an outlook to future work on
this project.

Il.  CALCULATION OF SHORTEST DISTANCES ON A
TRIANGULATED MESH

In this paper, the procedure of the Fast Marching
Method (FMM) is used [3] for calculating the shortest
distances on a triangulated mesh. Basically, this method
approximates the distances of all points surrounding the
starting point successively by a wave front until it reaches
the given ending point. For the following procedure it is
assumed that starting and ending point of the geodetic line
which is to be approximated are given.

A. Procedure

In the FMM, the vertices of all triangles in the mesh are
divided into several groups which are sets of vertices.

1) Fixed vertex set (FVS): contains initially only the
starting points; vertices which are points of the shortest
distance are added in the procedure.

2) Close vertex set (CVS): contains initially no vertices;
vertices which are close to the point that is investigated in
the current iteration of the loop are added.

3) Fixed vertex set (FVS): contains all vertices of the
mesh that are not contained in FVS.

Two situations can be distinguished: Only one starting
point is given and more than one starting point is given. If
there is only one starting point, the distances T; of its direct
neighbours have to be calculated and the neighbours are
added to the CVS. If there is more than one starting point,
the points a,, a;, and a, which are part of a triangle of the
mesh containing exactly two points in FVS have to be
determined. After computing their distances T, T, and T,
to the starting value, the points a,, a;, and a, are added to
CVS. After these initial steps, the following loop starts:

e Thepointa;, i =0, 1, 2 with the shortest distance T,
to the starting value is moved to FVS and is now the
point of origin for further investigations. This point
is called trial.

e The distances T; of all points in UVSUCVS which
are adjacent to triangles containing trial and a point
in FVS are computed and moved to CVS.

In each iteration, one point is added to FVS and its

neighbours are added to CVS. The algorithm terminates
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when FVS contains every vertex which is part of a line
resulting in the shortest distance from starting to ending
point.

B. Calculation of Distance T

For calculating the distance T the method presented in
[3] is used. It requires that one point, P;, of known distance
T, is the origin and that another point, P,, of known
distance T, is on the x-axis.

1) Procedure: The distance T of the third point P; is
calculated in terms of T;, T, and the connecting vectors v;
with v; = P, — P;, in particular (v3)x and (vs3)y, i.e., the
projections of v; onto the new basis vectors, which are
calculated as follows: To change the default, adjust the
template as follows:

a) One point is set as the origin (P, ):
vi=P,—P;

b) The coordinate system is transformed where:
_(P2—p1) _ (v2)

*lp—pil vyl
e = (vs — ey - (ex - v3)) _ (vs- ol = vy - (v - v3))
Y |(V3_ex'(ex'v3)| [(vs - V2|2 = vy - (vy - v3)

c) The distance of v5 to the new coordinate system is
computed where O, is the x-coordinate at which the origin
of the new coordinate is located and O, is the relative y-
coordinate:

1 (Vz):zc + Tl2 - Tzz

0)
S (v2)x

, (vl +Ti—T3) —
0,=4% |T{ - > = +4/T7 — 0%
4(v,)?

T3 =0,-e,+0,-e,—v;

A challenge with this method is that there are always
two possible virtual origins due to +0,. In [3] it is stated
that this is solved by calculating both distances and taking
the larger value. However, there are situations where the
smaller value is the correct one. This happens, presumably,
mostly or only when P3 is not in front of the wavefront but
beside. Such a situation occurs when the distance of a point
in the CVS is recalculated. To mitigate this issue in a simple
way, the recalculated value for the distance T is only stored
if it is smaller than the existing one.

2) Accuracy: The algorithm was tested on a sphere with
equally spaced points as shown in Figure 1. The starting
point, i.e., the point with distance T = 0 is chosen to be the
north pole. The points are numerated such that one whole
circle at constant 8 is taken. Thus, plotting the distance over
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the index results in plateaus of constant distance (see Figure
1 bandc).

I1l.  EXTRACTING THE GEODETIC LINE

In the second section, the shortest distance from starting
to ending point on the triangulated mesh is determined. In
order to approximate the geodetic line, a line of shortest
distance can be backtracked along the points in FVS. The
real geodetic line, however, does not necessarily consist only
of vertices but of points on edges of the triangles as well. In
the following the first approximation of the geodetic line is
denoted by T.

A. Method of Minimum Distance

The Method of Minimum Distance approximates I'y with
regard to the calculated distances T. It iterates the following
procedure and can be modified through two different
options:

1. The neighbor N of the previous point is determined

which fulfills one of the following requirements:

a) Option 1: N has the lowest distance Ty of all
provided neighbours.

b) Option 2: N is the point of neighbours for which the
value of the distance Ty added to the distance from the
previous point p is minimal

2. The resulting neighbor N is appended to T,

This method extracts the geodetic line very quickly but does
not provide a good approximation, neither with Option 1 nor
Option 2, especially when the grid is very uniform. Also,
the points of the geodetic line are still only located on
vertices. Therefore, the gradient method was implemented.

B. The Gradient Method

The gradient method provides an approach to extract the
geodetic line dissociated from the vertices. To determine the
direction in which the geodetic line propagates the gradient
of the distance T, approximated with the three distances for
each point in each triangle, is used.

1) Approximation of the gradient in a triangle:
The gradient in a triangle with vertices i, j and k is given by
(VT)(i,j,k) = —#X (Ti€jx + Tiéui + Tiéy;),

where
€ap = Xp — Xq

are the vectors connecting the vertices a and b and 7 is the
surface normal of the triangle:

-

'Fi= gki Xejk
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(b) Staircase-distances emerging
from the ring-after-ring
data-structure

(¢) Zoom of the upper "stairs” shows
oscillations (visible in intra-ring colour
changes in (A).)

(a) The colourmap was chosen to be
repeating 10 times so that intra-ring
fluctuations are visible.

Figure 1. Distances on homogeneously sampled sphere. The index starts at the south pole and increases ring by ring until the
north pole is reached. Distances are calculated from the south pole via the fast marching method.

Note that the connecting vectors €;;, €, and é,; are
circular, i.e., that
é)ij + é]k + é)ki = 0

In Figure 2, a sketch of a triangle with its gradient is
shown for an example set of distance values T;, Tj, Tx.

1i=0

Figure 2. Three points (i,/,k) of a triangle with distance
values 7' and the approximated gradient (VT')

2) Extracting the Geodetic Line with the Gradient
Method:

The basic concept of the gradient method is to generate a
line g for each triangle from the previous point p of the
geodetic line and the gradient of T

g: #A) =P+ AV

and to find its point of intersection with the edges of adjacent
triangles. For the choice of edges to intersect g with, one has
to consider whether the previous point p is on a vertex or an
edge. If p is on a vertex, the following procedure is applied:

1. The negative gradients of the adjacent triangles are
computed.

2. A triangle determined whose negative gradient
points into the triangle itself.
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3. The line g is intersected with the edge of that
triangle on the opposite side.
4. The point of intersection is added to T,.

If no triangle is found whose negative gradient points
into the triangle itself, the neighbour N with the smallest
distance T to the previous point p is added to T.

If p lies on an edge, a different procedure is used:

1. The triangle which is adjacent to p and was not used
for the prior calculation of p itself has to be
identified.

2. The line g is intersected with the two remaining
edges, if the negative gradient points into the
triangle.

If the negative gradient does not point into the triangle,
the previous p is moved to the vertex of the same edge that
has the smaller distance T.

Special case: It might happen that p lies on a boundary
edge. This case can be resolved by moving p to the vertex of
the same triangle with a smaller distance T. If p lies on a
boundary vertex, the above-mentioned procedure can be
applied without further arrangements. As already mentioned,
this is a special case. Therefore, this will not be considered in
the further course.

3) Performance of the Gradient Method

The algorithm approximates the real geodetic line in many
test cases very precisely in accurate time. In case that real
geodetic line runs near or along a line of edges without
passing through several triangles or without changing the
lane over the course of many points, the calculated geodetic
line tends to stick to one lane and very late moves over to the
other. This cannot be taken care of by the improvement
algorithm which is described in the next section unless it is
run for a lot more iterations than usual which is expensive.
However, this special case is not problematic unless one
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(a) F;j lies on an edge

(b) F; lies on a vertex.

Figure 3. The two cases of a point of the geodesic I'; needing correction. For readability, £;_; ;, Fi; and Fyy ; have been
replaced by Py, Py and P, respectively. The dashed line denotes the corrected path.

wants to find the real geodetic line with even higher accuracy
than already provided. For this, one could calculate the
geodetic line and refine the triangulation around it to redo the
whole calculation with the new triangulation until it
converges.

IV. IMPROVING THE APPROXIMATION OF THE GEODETIC

LINE

In the previous section we have generated an initial
approximation I, for the geodetic line between two points
on a triangulated mesh in three-dimensional space. As this is
just a first approximation, an algorithm for improving [ is
required. The improvement can be achieved by moving the
points on vertices of the geodetic line along the edges of the
mesh to shorten the length of T,

A. Criterion for Improvement of the Geodetic Line

According to [2] the shortest path is given by the
straightest path for triangulated surfaces. ‘Straight’ is
defined as follows: After taking all triangles that the
approximation T;_; passes through and unfolding them into
a plane, the path T is the shortest when it is a straight line in
the planar view. Therefore, the algorithm for improvement
aims at straightening the path in the unfolded planar view.

B. The straightening algorithm

For this section the i-th version of the path is denoted as
I; and P;j the j-th point of the i-th path. For the following
let P;j be the point to be corrected using the information
about P j+1 and P; j.1. The idea is to locally straighten the
path by moving the central point of the three, i.e., Pij. To
ensure that the geodetic line converges and actually
becomes shorter with each iteration, the updated P;j+1,j for
the updated path I;,, is calculated using the points which
have already been updated during this iteration, i.e., Pi+1j1
instead of P; j.1. For readability, we omit the “+1” in Pj +1-1,
but take care of it by only keeping one I' stored and
updating it with each step during each iteration.

There are always two cases to be considered: P; ; lies on
an edge or on a vertex as can be seen in Figure 3.
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1) P, lieson an edge:
If P;;j lies on an edge, the two triangles adjacent to P; ; are
unfolded. The point of intersection of the connecting line
between P; j+1and Pi .1 and the edge that P;; lies on are
calculated. If the point of intersection does not lie between
the two vertices of the edge, the closer vertex is chosen to be
the  corrected point instead in  this  case.

P, 45
q4 a6
. Py
q2
7 q1
qs

(a) Angle 6,
1

P 45
2 de
g3 Py
q2
q1 q7
qs

(b) Angle 6

Figure 4. Notation of angles in the star-like structure of S

2) P, lieson a vertex
If the point that is to be corrected coincides with a vertex,
the procedure becomes more complicated. Let S be the set
of triangles that have P; j as the central vertex, then several
cases can be distinguished. Firstly, there are two simple
cases which can be easily taken care of numerically:
a) If all three points (Pi-1j, Pi,jand Pi+1;) are part of
the same triangle, P; j is removed fromI'.
b) If Pi j+1 or Pj 1 lies on an edge that is not part of
the boundary of S, it is removed from I.
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q1 q1

(a) The path is stuck at a vertex

(b} After ten iterations all points
close to a vertex are removed and

s qs
i1

(¢) The next iteration corrects this
point and the detour is removed.

replaced by one point which is
directly located on the vertex.

Figure 5. Correction of points surrounding a vertex

For all other cases (Pi j+1 and Pjj1 belong to two
different triangles) the vertices around P; ;j are sorted and the
left and right hand angles, 6 and 6, are calculated in order
to characterize the vertex as can be seen in Figure 4. These
angles are given by the sum of the central angles of the
triangles which are obtained by splitting the star-like
structure of S along the path Pi_1j > Pij 2 Pi+1j.

Three main cases can be distinguished:

a) 0=2xn: euclidean

b) 6=0+6; >2n: hyperbolic

c) 0 <2x: spherical

These three cases are taken care of differently where 9 is
defined as left or right hand angle.

a) Euclidean: Sx can be unfolded isometrically. After
unfolding, Pi j+1 or Pj .1 are joined in the unfolded
Sk and the intersections with the edges added to I'.

b) Hyperbolic:

a. If 6 and 6, are greater than = no
correction is needed.

b. If 6 and 6, are smaller than =, that side of
Sk is unfolded and P; j+1 as well as P j.1
are joined in the same manner as in the
Euclidean case.

c) Spherical: The part of S¢ with smaller 6y is
unfolded and P; j+1 or Pjj1 are joined as in the
Euclidean case.

In all three cases the part of Sy with smaller 6y, has to be
unfolded and the points of intersection have to be
calculated.

In test runs, it was observed that points which are very
close to vertices keep approaching the vertex which they are
close to without coinciding and adopting its value.
Therefore, every 10 iterations the path is scanned for points
on T" for which this might be the case. These points are
moved to the vertex instead. All following points that
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approach the same vertex are deleted from the path. This is
necessary because otherwise curves in the path will never
pass over a vertex. The effect of the scanning of the path
and the movement of points to vertices is shown in Figure 5.

V. EXEMPLARY RESULTS

To test the capability of the gradient method and the
straightening algorithm a geometry was chosen for which
exact geodetic lines can be analytically computed for
reference.

A plane with a half cylinder barrier is generated and the
geodetic line between two points on either side of the half
cylinder is calculated, first analytically, then using the
presented algorithm as shown in Figure 6.

In Figure 6, several aspects can be seen: Beginning at
the ending point (on the right-hand side of the half cylinder)
the distances of the other points are calculated by the FMM.
These increase up to the starting point (on the left-hand side
of the half cylinder). For clarity, the colour palette was
chosen such that it is repeated five times. The black line
shows the analytically calculated geodetic line. The red
crosses show the points of the geodetic line which was
calculated with the above-described algorithm.

In the left image the calculation is stopped after the
extraction using the gradient method. For the right image
the extracted geodetic line was improved by using the
technique described in Subsection IV-B.

As can be seen, the straightening algorithm removed a
few deviations visible close to the upper right end of the
geodetic line. The straightening algorithm ran 50 times but
most of the improvement was already achieved after 5
iterations.
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Figure 6. Result of fast marching method (both), geodesic extraction (left) and improvement algorithm (right).

VI. CONCLUSION AND FUTURE WORK

An algorithm for calculating a geodetic line on a given
surface and a technique for its further improvement are
described. The goal was to derive an accurate numerically
determined geodetic line. Further steps could feature an
extension of the algorithm, such that several geodetic lines
on one surface can be found by iterating over the algorithm.
To further improve, analyse and straighten the geodetic line,
the unfolding of surfaces with the least distortion could be
investigated and automatised. Moreover, the change in
accuracy dependent of the number of elements in the
triangulated mesh could be investigated in order to define
and optimize the relation between these two quantities.
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