
RESTful Platform Broker: A Novel Framework for Engineering Programmable
Smart Spaces

Govind Raj Pothengil
Centre For Development of Advanced Computing

Noida, UP, India
pgovindraj@cdac.in

Subrat Kar, Hari Mohan Gupta
Department of Electrical Engineering,

Indian Institute of Technology,
New Delhi, India

subrat@ee.iitd.ac.in, hmgupta@ee.iitd.ac.in

Abstract—Designing and developing a Smart Space is a
difficult engineering and research problem. This paper presents
the design and implementation of a novel framework for engi-
neering Programmable Smart Spaces called RESTful Platform
Broker. The RESTful Platform Broker can be considered as
a middleware on top of a platform (e.g., Android). It views
the network of the Smart Space as a system bus and exposes
resources (e.g., Mobile Phone cameras, Smart Phone sensors,
etc.) that are present in the platform as RESTful resources.
Once the resources are exposed, these can be accessed by other
devices present in the Smart Space. This facilitates program-
ming the Smart Space and developing new services from the
existing ones. Further, RESTful Platform Broker uses HTTP
as a glue to interconnect heterogeneous components within the
Smart Space. This enables any programming language, or any
tool, which can understand HTTP to manipulate resources and
program the Smart Space. This is an advantage as compared
to earlier approaches, which warranted the use of specific
languages to program a Smart Space or use protocols like
9P/9P2000, which are not as popular as HTTP. Further, the
RESTful Platform Broker uses Hypermedia as an engine for
application state, which allows various components within the
Smart Space to evolve independently with respect to each other,
thereby, increasing Smart Space extendability. Therefore, the
RESTful Platform broker eases the engineering of a Smart
Space by hiding the complexity of the physical infrastructure
by providing a standard interface which can be used by Smart
Space programmers to extend and program it.

Keywords-Smart Space; Pervasive Computing; REST.

I. INTRODUCTION

Pervasive computing offers some unique research and
engineering challenges [1]. One of the identified research
areas in Pervasive computing is a Smart Space. A Smart
Space is a physical space consisting of heterogeneous
computing devices and services together with a software
infrastructure. The users can interact with these devices in an
unobtrusive manner through the infrastructure. This software
infrastructure abstracts the boundaries of the individual
devices, present in the physical space. It allows the user of
a Smart Space to interact with the set of devices as a whole,
rather than individual devices. In other words, services,
applications and peripherals in a particular device can be
accessed or used by other devices easily. Most of the first
generation Smart Spaces were custom built to implement

a particular scenario (e.g., Smart House, Smart Hospital,
Smart Meeting Room, etc.). It was difficult to incorporate
new technologies and extend the Smart Space by adding new
devices and services. This was mainly because these Smart
Spaces lacked the ability of being programmed. The Gator
Tech Smart House [2] was among the first Smart Spaces that
introduced the concept of Programmable Pervasive Spaces.
Programmable pervasive spaces are Smart Spaces which
exist both as a runtime environment and a software library.
Smart Space Programmers can, therefore, extend and evolve
the Smart Space by incorporating new devices and services.

However, engineering Smart Spaces is a challenging and
difficult task. The basic research challenge in engineering
Smart Spaces is in the system level architecture and compo-
nent level synthesis [1]. This research work aims at design-
ing and developing a framework using which the engineering
of a programmable Smart Space can be simplified.

Most of the tools that are available to engineer Smart
Space provide a middleware. These middlewares provide
APIs so that programmers can use it to incorporate new
services and devices into the Smart Space. Though Middle-
ware APIs provide a way to extend the Smart Space, the
requirement that all devices must have API compatibility,
could be a serious hindrance in extending it. Further, many
projects like GAIA [4] also mandated the use of specific
programming languages to extend the functionality of a
Smart Space. Plan B [11] provided a different approach.
It was designed as an OS which exported resources within
a device as a filesystem. Any language can therefore be
used to program the Smart Space. Though, this alleviated
the problems with APIs, however the limitation of Plan B
was that it could not be ported easily to different platforms
as it was an OS. In order to overcome these limitations, a
new framework for engineering programmable Smart Spaces
called the RESTful Platform Broker has been designed and
developed. It is designed as a middleware, so that it is easier
to port to different platforms. Further, it provides a Service
Oriented filesystem based mechanism to program a Smart
Space so that it is not limited to a particular set of API’s or
specific languages.

This paper presents the design and implementation of

35Copyright (c) IARIA, 2012. ISBN: 978-1-61208-225-7

SMART 2012 : The First International Conference on Smart Systems, Devices and Technologies

RESTful Platform Broker. It helps engineers and researchers
to develop programmable Smart Spaces. The main objec-
tive of the framework is to hide the complexities of the
underlying infrastructural elements of a Smart Space and
provide a uniform view of the resources present in it in
such a way that it is easy to program and extend the Smart
Space. The RESTful Platform Broker is considered as a
framework because Smart Space applications can be built
using it. From an implementation point of view, the RESTful
platform broker is a middleware that provides an abstraction
between a Smart Space programmer and the individual
infrastructure elements present in the Smart Space. It views
the network of the Smart Space as a system bus and exports
resources present within a device/platform onto the Smart
Space network as service oriented file systems. The concept
of service oriented file system was proposed by Eric Van
Hensberg [3]. Essentially, the RESTful Platform Broker
queries the platform for resources. These resources can be
in the form of hardware, e.g., Camera, or a software, such as
a Text to Speech utility. Once a resource is found, it wraps
the resource as a service oriented file system and exposes it
as a RESTful resource, which can be accessed using HTTP.
The user, however, can specify the resources they want to
expose to the Smart Space and thus, control the visibility of
the resources within it. The exposed resources can then be
used by other devices running on other platforms within the
Smart Space by issuing HTTP commands like GET, POST,
DELETE and PUT. Using this framework, programmers
can extend and program service compositions using any
language. Further, any device that can understand HTTP can
access the resources exposed by RESTful Platform Broker.

The RESTful Platform Broker has been implemented
over the Android Platform and has been installed on com-
mercially available Samsung Galaxy Pop GT-S5570 mo-
bile phone. Interaction of RESTful Platform Broker with
GNU/Linux (Ubuntu 11.04) has been achieved. The ex-
perimental setup for this has been discussed in this paper.
Though the implementation of the RESTful Platform Broker
is done on the Android Platform, it can run on any platform
on which there is a suitable JVM. The design of the RESTful
Platform Broker is such that porting to a different platform
can be done with minimal changes to its codebase.

This paper is divided into 6 Sections. Section 1 introduces
and presents a background of the research work. Section 2
presents the work which is related to the current research.
Section 3 presents the Design and implementation of the
RESTful Platform Broker. This section also presents a DNS
based Service Discovery mechanism implemented as a part
of this project. Section 4 presents usage scenarios of the
RESTful Platform Broker. Section 5 presents results on
RESTful Platform Brokers performance. Section 6 con-
cludes the paper.

II. RELATED WORK

The main aim for our research work is to design and
develop a pervasive computing framework which will help
engineers and researchers to develop programmable Smart
Spaces. This section focuses on projects, using which one
can design and develop pervasive computing application.
This section also compares their approach with that of ours.

Gaia [4] is a Meta operating system for Smart rooms. The
goal of this project was to design and develop a middleware
operating system (Meta operating system), that manages the
resources in a Smart Space. Conceptually it is similar to a
traditional operating system which manages tasks that are
common to all applications programs. Gaia extends typical
operating system concepts to include context awareness,
provide location awareness, detect when new devices are
spontaneously added to the Smart Space and adapt when
data formats are not compatible with output devices. From
an architecture point of view, Gaia was implemented as
a CORBA middleware. System components were imple-
mented as distributed objects with CORBA IDL interfaces.
To some extent, Gaia supports Smart Space programma-
bility. Using Gaia, programmers can integrate devices and
create new services in a Smart Space. However, Gaia [4]
requires special programming language like Olympus [5] to
program the Smart Space and utilize specialized mechanisms
like Microservers [6] to induct a device onto a Smart Space.
In contrast, in our approach any language that can handle
HTTP can be used to program the Smart Space. Further, any
device that supports HTTP can become a part of the Smart
Space without implementing any specialized software like
Microservers.

Stanford Universitys initiative, iROS [7][8] is an open
source software platform for designing and developing Smart
Spaces. Like Gaia, iROS can also be considered as a meta
operating system for Smart Spaces. The programming model
of iROS is to ensemble independent entities in the Smart
Space through the use of its subsystems. iROS consists
of three subsystems: EventHeap for application coordi-
nation, DataHeap for data movement and transformation
and ICrafter for user control of resources. A Smart Space
designed and developed using iROS as the platform needs to
wrap its resources using ICrafter to function within a Smart
Space. When using RETSful Platform Broker, devices need
to interact through a more generic HTTP based Domain
Application Protocol rather than specific mechanisms like
ICrafter. This enables integration of more devices into the
Smart Space, as greater numbers of devices are using the
HTTP protocol [9].

EQUATOR Component Toolkit (ECT) [10] provides a
mechanism for constructing pervasive computing applica-
tions by integrating sensing devices (inputs from sensors,
such as phidgets, motes and d.tools boards) and actuation
devices (of physical actuators including X10 modules, output

36Copyright (c) IARIA, 2012. ISBN: 978-1-61208-225-7

SMART 2012 : The First International Conference on Smart Systems, Devices and Technologies

of Internet Applications, etc.). The project uses a visual
graph based editor to allow run-time interconnection of
modules.

Plan B OS can be considered as a software infrastructure
for Smart Spaces [11]. Plan B is an operating system
based on Plan 9 [12][13] which exports the resources (both
hardware and software of a device) as synthetic file systems.
These resources can then be shared with other devices
in the Smart Space using 9P protocol and can be used
through file system operation. Our research prototype shares
a common design principle with Plan B, which is to expose
resources as file systems. However, our approach relies on
HTTP, which is a very common protocol whereas Plan B
relies on 9P/9P2000 for sharing resources. Implementing
9P protocol even on open source operating system like
GNU/Linux is challenging [14]. Moreover PlanB has been
implemented on desktop systems, whereas, the RESTful
Platform Broker has been implemented on top of Android,
which is a mobile platform. Such a platform is more apt for
developing Smart Spaces as mobility of devices is one of the
key characteristics of a Smart Space. Further, PlanB is an
operating system and hence it is difficult to port as compared
to RESTful Platform Broker which is implemented as a
middleware.

Nokia Research has designed and developed a RESTful
framework [15] for Smart Spaces. It supports resource
discovery, authorizing access to resources with group-based
security and sharing context information on a device with
other devices in the Smart Space. Though their research
also uses REST paradigm, they have not reported the use of
Hypermedia in their architecture. RESTful Platform Broker
uses Hypermedia as an engine for application state and
hence has a higher level of maturity in accordance with the
3 Level REST Maturity Model (RMM), which was proposed
by Richardson [16]. The advantage of using Hypermedia as
an engine for application State is that, all the operations
supported by resources need not be presented to a client
up front. They get to know them, as they interact with the
resources and are presented to them during the appropriate
time. This allows better separations between the client and
server component within a Smart Space and allows them to
evolve independently of each other.

It is also remarked that Google has recently designed
a framework called Argos [17], which aims at building a
Web Centric Application Platform on top of Android. Argos
allows developers to access the components of the platform
(e.g., Media Player, Camera, Sensors, etc.) by using Java
Script instead of Java Programming Language. It does not,
however, expose Android resources over the network as done
by the RESTful Platform Broker. Further, the aim of the
project is to tap a large potential of developers who are
trained in Web Application programming and are familiar
with scripting languages such as JavaScript but not Java.

III. RESTFUL PLATFORM BROKER

The RESTful Platform Broker is designed and developed
using the REST paradigm [18]. REST is an acronym for
Representational State Transfer. REST by itself is not an
architecture, but a set of constraints, which, when applied,
leads to a System Architecture. In order to design or archi-
tect a RESTful system, a system designer/architect should
visualize the system through the following abstractions:

Resource: A resource is a fundamental building block of a
RESTful architecture. A resource is anything that is exposed
by the system and is addressable. By addressable, we mean
that it can be accessed by other components of the system.
Using the REST paradigm, anything can be modeled as a
resource and can be manipulated by the components within
the system. For example, a camera in a mobile phone, a
media player, the reading of a sensor, etc., can be considered
as a Resource.

Representation: All the identified resources in the system
will have a representation. The representation of a resource is
the data being transferred from a server to a client and vice-
versa. The representation contains the state of the Resource
at a given point in time.

Uniform Resource Identifier (URI): A Uniform Resource
Identifier can be considered as a Hyperlink to a resource.
By accessing the URIs, the clients and servers can exchange
Representations of Resources in the system.

The major advantage of REST architecture as compared
to a typical RPC based architecture is that by using REST
principles, one can organize a very complex application
into simple resources. Once the resources are identified,
all operations on these resources can be broken down into
Create, Read, Update and Delete (CRUD) operations. This
simplicity makes it easy for new clients to use an application,
even if it was not specifically designed for them.

The RESTful Platform Broker is implemented as a mid-
dleware on top of the Android Platform. It views the network
of the Smart Space as a system bus and exposes resources
present on the Android platform like Camera, Media Player,
Sensors, etc., onto a Smart Space network as a Service Ori-
ented Filesystem [3]. Service Oriented Filesystem provides
a Service Oriented Interface (usually based on REST) to the
resources in a system. These resources can thus, be accessed
by other devices present in the Smart Space. This systemic
view has been shown in Figure 1.

Each of the exported resource has a URI associated with
it. For example, the Accelerometer Sensor present on the
Android Platform may have a URI as shown in [24]. Once
the resource has been exposed onto the network, it can
be used by other devices, which are present in the Smart
Space through its URI . The interaction between a device
and a resource exposed by the RESTful Platform Broker is
through HTTP. For example, sending a HTTP GET to URI
of the Accelerometer will return the current reading of the

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-225-7

SMART 2012 : The First International Conference on Smart Systems, Devices and Technologies

Figure 1. Systemic view of RESTful Platform Broker

Figure 2. Interaction of RESTful Platform Broker with GNU/Linux

accelerometer. This way, resources are not confined to the
physical boundaries of a device, but are available throughout
the Smart Space.

Therefore, through the use of the RESTful Platform Bro-
ker, devices which may not have a particular resource may
use a resource which is present in some other device. The
interaction of RESTful Platform Broker with a GNU/Linux
system is show in Figure 2.

RESTful Platform Broker uses Hypermedia as the engine
of application state (HATEOAS). A Hypermedia system
is characterized by the transfer of links in the resource
representations, which are exchanged between the client
and the server. These links advertise other resources that
are participating in the application protocol. For example,
consider a media player resource which is exposed by the
RESTful Platform Broker. An initial HTTP GET on its entry
point, e.g., [26] would result in an XML File as shown in
Listing 1.

The XML in Listing 1 is an XML representation of the

media player resource. The representation has a semantic
markup definition provided through link and rel tags. Con-
sider the first link tag, which points to the URI of Media
Player Resource itself. The associated rel tag has the value
self. This represents that the URI [26] can be accessed
via a HTTP GET to retrieve the latest representation of
the Media Player resource. It is remarked that in RESTful
Platform Broker, a resource representation will always have
a link to itself. This is because when using GET, we always
get the latest state of a resource. For example, a subsequent
GET to the URI [26] may result in an XML with the status
value as Playing instead of Idle. This information can be
used by layers above the platform broker to make decisions.
For example, a client program can view the status of the
media Resource and make a request to playa file only if it is
idle. The XML representation of the MediaPlayer Resource
has link to another resource namely the SongList.

The SongList Resource can be accessed using HTTP GET,
which is inferred by looking at the value of the rel tag. A
GET to the URI [25] results in an XML representation of a
Song List. The XML representation provides the information
of the current state and also provides a mechanism to
advance to the next state. By reading the XML representation
mentioned in Listing 1, a consumer can infer that there are
two states possible from the current state namely; getting the
representation of the media player by issuing a HTTP GET
to the URI [26] or, navigate to get the Song List by issuing a
HTTP GET on the URI [25]. A consumer of a resource can
therefore, advance through the Domain Application Protocol
of the resource exposed by the RESTful Platform Broker.
When a consumer issues a HTTP GET on the URI [25],
the RESTful Platform Broker generates the following XML
Representation of the Song List as shown in Listing 2.

Listing 1. Response of RESTful Platform Broker on the initial GET of
the Media Player Resource

<mediaresource
xmlns=http://platformbroker.iitd.ac.in
xmlns:mediadap=”http://schemas.platformbroker.iitd.ac.in/mediadap”>

<mediadap:linkmediaType=”application/vnd.platformbroker+xml”
uri=http://ipAddress/mediaPlayer/ rel=”self”/>

<mediadap:linkmediaType=”application/vnd.platformbroker+xml
uri=”http://ipAddress/mediaPlayer/songList/”rel=”self”/>

<status>Idle</status>

</mediaresource>

The XML representation shown in Listing 2 of the song
List shows different URIs of songs and their associated rel
values which provide the semantic markup definition.

Listing 2. XML Representation of Song List

<songList xmlns=”http://platformbroker.iitd.ac.in”

38Copyright (c) IARIA, 2012. ISBN: 978-1-61208-225-7

SMART 2012 : The First International Conference on Smart Systems, Devices and Technologies

xmlns:mediadap=”http://schemas.platformbroker.iitd.ac.in/mediadap”>

<mediadap:linkmediaType=”application/vnd.platformbroker+xml”
uri=http://ipAddress/mediaPlayer/songList/ rel=”self”/>

<song mediadap:linkmediaType=”application/vnd.platformbroker+xml”
uri=”http://ipAddress/mediaPlayer/songName1/ rel=”self”/>

<song mediadap:linkmediaType=”application/vnd.platformbroker+xml”
uri=”http://ipAddress/mediaPlayer/songName2/ rel=”self”/>

</songList>

The XML presented in Listing 3 is generated when a
consumer issues a GET to URI [27]. In this XML, apart from
self, a song’s rel tag points to service.put. By accessing
this URI, a consumer can play the Song mentioned in the
URI by using HTTP PUT along with a suitable payload,
as defined in the platform broker media Type. Therefore,
through the use of Hypermedia, a client can proceed ahead to
relevant states of a resource by following the corresponding
URIs. This is very similar to the way in which a user
navigates the World Wide Web. The advantage offered by
Hypermedia is therefore loose coupling between the client
and server components of the Smart Space. This allows the
server components to change its rules and expand available
states as needed without affecting the clients.

Listing 3. XML Representation of Song

<songxmlns=”http://platformbroker.iitd.ac.in”
xmlns:mediadap=”http://schemas.platformbroker.iitd.ac.in/mediadap”>

<mediadap:linkmediaType=”application/vnd.platformbroker+xml”
uri=”http://ipAddress/mediaPlayer/songName1/”
rel=”self”/>

<mediadap:linkmediaType=”application/vnd.platformbroker+xml”
uri=”http://ipAddress/mediaPlayer/play/songName1”
rel=”service.put”/>

</song>

A. Implementation

The implementation of the RESTFUL Platform Broker
is given in Figure 3. The implementation is done on top
of the Android Platform. A small footprint HTTP Server
has been placed on top of Android. The HTTP server
has been implemented as a pure Java based HTTP Server
and can be treated as a Virtual Appliance on top of the
Dalvik Virtual Machine. The RESTful Platform Broker
has a layered architecture and is implemented as a hosted
service on top of this HTTP server. The system’s core layer
consists of the Namespace Generator, which generates a
namespace entry of a resource by the information given in
the Namespace.xml. The Namespace.xml indicates the URIs
of the Resources. The advantage of separation of URIs from

Figure 3. Implementation of RESTful Platform Broker

the RESTful Platform Brokers codebase is that the URIs
of the resource can be changed without changing the code.
Another component at this layer is the Resource Lookup
Manager. The Resource Lookup Manager is a component,
which queries the Platform for resources. Once a resource
is found it works with the Namespace Generator and the
Resource Exporter to export the Resource. The components
of this layer of the RESTful Platform Broker, namely
the Namespace Generator, Resource Lookup Manager and
Resource Exporter are implementations of specific interface
INamespaceGenerator, ResourceLookUpManager and IRe-
sourceExporter respectively. Throughout the implementation
of Platform Broker, programming to an interface paradigm
has been followed. This paradigm is useful as it allows
multiple implementation of the same concept. For example,
the IResourceLookUpManager can have different implemen-
tation depending on the Platform, it is being implemented
for. This helps in easier porting of the RESTful Platform
Broker to other Platforms.

The REST Handler and the URI Handler are handlers
for the HTTP commands namely GET, PUT, POST and
DELETE. These HTTP commands, when sent to the re-
sources (e.g., TTS, Sensors, etc.), are handled by the REST
Handlers and URI Handlers for these resources. The differ-
ence between the REST handler and the URI handler is as
follows. The REST handler can be considered as a singleton
class [19] which provides the default behavior to the HTTP
Commands whereas, each URI handler for a resource can
be multiple for a resource, each implementing a specialized
functionality of the resource. For example, the Media Player
resource may support two different URIs; one for managing
the media file and another for enumerating the media files
within the system.

The Service Registry Handler is the component that
handles Service Registry in the Platform Broker. It interacts

39Copyright (c) IARIA, 2012. ISBN: 978-1-61208-225-7

SMART 2012 : The First International Conference on Smart Systems, Devices and Technologies

with DNS based Service Registry to register and query for
services that are registered with it. It also interacts with
the Service Receiver. The Service Receiver is a broadcast
receiver, which informs the Service Registry Handler of new
services that have been registered. The RESTful Platform
Broker has got two User Interface (UI) components. First,
the Preference Activity UI, through which the user can
specify the list of resources that can be exported onto the
network. Second, the Resource Viewer UI, which shows a
list of resources that have been found by Resource Lookup
Manager and are available throughout the Smart Space. The
Preference Activity writes the list of resources that the user
wants to share across a Smart Space persistently in a file
called Prefs.xml. The Platform Broker reads this file before
exporting the resources to the Network. Further, the user can
change the preference of exporting a resource at any point
of time. Any such change triggers the export mechanism
to reflect the changes in the preferences. This change also
triggers the Service Registry Handlers to make suitable
changes in the DNS based Resource Registry. Mandatory
Access Control (MAC) mechanisms are implemented within
the RESTful Platform Broker to prevent the use of resources
which are not exposed by the user. The RESTful Platform
Broker service interacts with two kinds of Broadcast Re-
ceivers namely the Network Receiver and the Boot Re-
ceiver. The Network Receiver is an important component
especially from the mobility point of view. The Network
receiver informs the Platform Broker, when the network
is not available. This allows the Platform Broker to stop
its activities, thereby conserving the battery of the Mobile
device, on which the Platform Broker is installed. Further,
when the Network strength is getting weak, it can de-register
resources from the DNS Resource Registry. Similarly, when
the device moves from a location where there is no network,
to a place where network is available, the Network Broadcast
Receiver informs the Platform Broker, to start its activities.
The Boot receiver is used to start the RESTful Platform
Broker, whenever the Android Platform is booted. These
are examples of context aware adaptation that has been
implemented in the RESTful Platform Broker.

The DNS Server is not a part of the RESTful Platform
Broker, but has been implemented separately to provide a
centralized mechanism for service registry and discovery.
The implemented DNS Server provides a RESTful interface
for service registration and service discovery. The RESTful
Platform Broker interacts with the DNS Server by using
HTTP constructs. The RESTful Platform Broker uses HTTP
POST to register a service with DNS Server. The HTTP
POST request to register a resource, consists of an XML
payload that specifies the resource to be registered. The
XML payload consists of the details of the SRV, PTR
and TXT records that are required by the DNS Resource
Registry. The details of the records are mentioned in Section
III-B. The RESTful Platform Broker uses HTTP GET to

get information of the available resources within the Smart
Space, HTTP PUT to update a resource and HTTP DELETE
to remove a resource from the resource registry.

Listing 4. SRV Record of DNS
pb http. tcp.local IN SRV 0 0 80 GovindPhone.local

Listing 5. DNS Reply to Query
pb http. tcp.local IN SRV 0 0 80 GovindPhone.local
pb http. tcp.local IN SRV 0 0 80 GovindLaptop.local
pb http. tcp.local IN SRV 0 0 80 GovindTablet.local

B. DNS Based Service Discovery

The RESTful Platform Broker supports DNS based ser-
vice discovery. DNS Service Discovery is a way of using
standard DNS programming interfaces, servers, and packet
formats to browse the network for services [20]. Since,
Hypermedia has been introduced as an engine for application
state within the RESTful Platform Broker; a client only
need to know the entry URI of a resource. Other URIs are
presented as the user uses the resource. For example, a client
may only need to know the URI of a media player which
may be available in a particular device. Once a client issues a
GET command onto this URI, other related URIs relating to
usage of the Media player like getting a Song List, Playing
a song, Pausing a song, Stopping a song, etc., is presented
as and when needed.

A DNS Server can be used to associate various kinds
of Resource Records on a particular domain. Apart from
records like A-record (for address lookup) or MX-records
(for mail server records), DNS also defines resource record
types SRV (used to provide location and port for service
instances.), TXT (Text Record, used to provide additional
meta data about service instances) and PTR (Pointer Record,
used to map service types to named service instances). A
DNS can be used for service discovery by a combination of
SRV, TXT and PTR records. SRV, TXT and PTR records
are described below.

Listing 6. DNS SD Configuration
camera pb http. tcp PTR GovindPhoneCamera. pb http. tcp.local
camera pb http. tcp PTR GovindTabletCamera. pb http. tcp.local
camera pb http. tcp PTR GovindLapCamera. pb http. tcp.local
mPlayer pb http. tcp PTR GovindPhoneMPlayer. pb http .tcp.local
mPlayer pb http. tcp PTR GovindLapMPlayer. pb http. tcp.local
tts pb http. tcp PTR GovindPhoneTTS. pb http. tcp.local
accmeter pb http.tcp PTR GovindPhoneAccmeter. pb http. tcp.local

GovindPhoneCamera. pb http. tcp SRV 0 0 80 GovindPhone.local.
TXTpath=/camera

GovindTabletCamera. pb http. tcp SRV 0 0 80 GovindTablet.local.
TXTpath=/camera

GovindLapCamera. pb http. tcp SRV 0 0 80 GovindLap.local.
TXTpath=/camera

GovindPhoneMPlayer. pb http SRV 0 0 80 GovindPhone.local.
TXTpath=/mediaPlayer

40Copyright (c) IARIA, 2012. ISBN: 978-1-61208-225-7

SMART 2012 : The First International Conference on Smart Systems, Devices and Technologies

SRV Resource Records: SRV Resource Records are used
to provide information about host and port within a zone
on which a service is available. As an example, the SRV
record for a camera resource is given at Listing 4. The line
in the Listing specifies that a Platform Broker is accessible
at port 80 on the device whose name is GovindPhone.local.
The .local is a pseudo top level domain identifying a local
domain. The Listing 5 shows a reply to a DNS query. This
shows that Platform Broker is running on three devices
namely GovindPhone, GovindLaptop and GovindTablet at
port 80.

PTR Records: The SRV records have a limitation that
they cannot be used to configure named instances of a
service type. Further, they only support a single service for
any given host and port combination. For example, just by
using SRV records, we may not be able to specify all the
resources that Platform Broker has exported on a specific
device. Therefore, PTR records are used to map service type
names to service instance names. The configuration snippet
displayed in Listing 6 shows that, on the left hand side of
each PTR line, a service type domain name is given and on
the right hand side, a corresponding instance of that type is
given.

TXT Records: The TXT Records are in the form of a
key value pair. In order to use a resource exposed by the
RESTful Platform Broker, an entry point of the resource is
required. Once this entry point is discovered, other related
URIs are presented by the RESTful Platform Broker as and
when needed. TXT Records is used for providing an entry
point into the resource. The example configuration in List-
ing 6 specifies that the service instance GovindPhoneCam-
era. pb http. tcp can be accessed on GovindPhone.local. at
port 80. The TXT record specifies path parameter, which the
client must use for constructing the entry URI of the service.
In this case, the resource GovindPhoneCamera. pb http. tcp
can be accessed by the URI [28].

The configuration file snippet below in Listing 6 provides
PTR, SRV and TXT records for the various resources
registered with the DNS Server of the Smart Space.

IV. APPLICATION DEVELOPMENT USING RESTFUL
PLATFORM BROKER

Wireless Accelerometer Based Mouse: This scenario
shows the usage of reading sensor information which is
available in Android on a Linux Platform. The sensor in this
case is an accelerometer. The sensor reading is then used to
move a mouse on the laptop by tilting the Android Phone. To
construct an accelerometer based mouse using the RESTful
Platform Broker, an HTTP client is designed and developed
which issues a GET command to an URI at [24] to get the
acceleration in X, Y and Z axis. Thereafter, a translation
algorithm is used to convert the sensor values onto mouse
movements on the target device. By using Gesture Based
Toolkits [21][22] mouse events like clicks and double clicks

can be made just using Mouse Motion. This could be useful
in Smart Space, wherein the users of the Smart Space needs
to Control/navigate a big display screen by using their smart
phone as a remote mouse. This application demonstrates
that while using the RESTful Platform Broker, resources
are not constrained onto a particular device and can be
made available Smart Space wide. Further, Smart Space
programmers can evolve the Smart Space by composing
resources (e.g., Accelerometer) and making new services
(Wireless Mouse), which were not earlier available.

Reading Contents of a File using a Remote Text To
Speech (TTS): Most of the commercially available Android
Platforms contains a Text to Speech Engine. This TTS can be
made available across the Smart Space through the RESTful
Platform Broker and can be used by other devices inside a
Smart Space. This arrangement can be used to read a content
of file which is present on a remote system (e.g., Linux
based Laptop) through TTS present in the Android device.
The RESTful Platform Broker exports the TTS at [29]. The
Smart Space programmer can write a small program which
issues a HTTP PUT command and send a payload consisting
of an XML which contains the content to be spoken by the
TTS in the Android. This way, the TTS is not restricted to
the Android device but is available throughout the Smart
Space.

Recording and Playback of Meeting Notes: A common
scenario in a smart meeting room is to record minutes of the
meeting as soon as the meeting starts. Thereafter the minutes
can be played back at a different point in time. RESTful
Platform Broker can be used to realize this scenario. The
RESTful Platform Broker, exports the Media Recorder at
[30]. A very simple client application can be made on any
platform to send a HTTP PUT command to start and stop
the Recording. The stimulus to start/stop recording may be
gathered by systems like RFID or simply by the meeting
convener. Later on, the recorded information can be played
back using the exported Media Player resource.

Location Aware Services: The RESTful Platform Broker
can be used to make Location aware services. Android Based
systems typically have a GPS. The RESTful Platform Broker
can be used to share the location information from the GPS
on the Android throught the Smart Space. The RESTful
Platform Broker exports the GPS on the Android device as
a URI at [31]. A client application can issue a HTTP GET
command to read a geographic location sensed at a particular
time (also called a ”fix”). The location information consists
of latitude and longitude, a UTC timestamp and optionally,
information on altitude, speed, and bearing. This information
can then be used by other systems within the Smart Space
to design and develop Location Based Application. For
example, an application could be designed and developed on
a client to do Google search based on the location provided
by the GPS. Therefore, a case like searching a hospital
through Google could lead to results which are nearer to

41Copyright (c) IARIA, 2012. ISBN: 978-1-61208-225-7

SMART 2012 : The First International Conference on Smart Systems, Devices and Technologies

Figure 4. Performance of RESTful Platform Broker

a person who is in the Smart Space.

V. APPLICATION PROFILING

The test setup for profiling RESTful Platform Broker
includes a DELL Latitude E5400 Laptop machine, with Intel
Core 2 Duo CPU T7250 at 2.00GHz, 1 GB RAM, 160 GB
Western Digital Hard Disk Drive running GNU/Linux. This
laptop interact with the RESTful Platform Broker installed
on Samsung Based Android Phone (Samsung Galaxy Pop
GT-S5570) using a Wireless LAN. In the GNU/Linux system
Laptop, a shell script using curl [23] was developed to
send HTTP Request to the RESTful Platform Broker on the
Phone. While the HTTP Requests was being handled by the
RESTful Platform, an application trace file is created in the
sdcard of the Android Phone. Android SDKs Trace view
utility was then used to analyze the created trace file. The
Trace captures the time taken while processing the request
apart from other information. A graph is prepared based on
the Trace file created while the RESTful Platform Broker
was processing the HTTP requests. The graph in Figure 4
shows the comparisons of the time taken to complete various
operations by the RESTful Platform Broker. It can be seen
that the slowest operations were enumerating media files.
This may be attributed to the nature of this operation, which
involved searching the Flash Drive for media files. Other
operations do not require much of an I/O operation and
are hence much quicker. We plan to further enhance the
responsiveness of RESTful Platform broker with respect to
these operations.

VI. CONCLUSION

This paper described the design and development of
a software system capable of exposing the resources on
a Platform (e.g., Android) as RESTful Service Oriented
Filesystem. This software has been implemented on top of
the Android Platform and an experimental setup has been
made to inter-operate with other systems like GNU/Linux.
The software is called the RESTful Platform Broker, as it
exposes, the entire platform namely the software resources
and the hardware resources onto the Smart Space network
as a RESTful resource. The RESTful Platform Broker is
capable of exposing almost the entire Android Platform as
RESTful resources. The exported resources include Media
Player, Camera, Telephony Stack (through which Telephone
calls and SMSs can be sent), Text to Speech Engine and
Sensors such as Accelerometer, Magnetic Field Sensors,
Orientation Sensors, Proximity Sensor, etc. Though the
implementation of the RESTful Platform Broker is on top
of Android, it can be easily ported to other platforms which
support a Java Virtual Machine.

RESTful Platform Broker has been designed as a frame-
work for engineering programmable Smart Spaces. There-
fore Smart Space programmers can evolve the Smart Space
by introducing new services by composition of existing
services. However, unlike previous attempts like Gaia [4],
our approach does not require use of a particular pro-
gramming language or use a particular API to do Smart
Space programming. Though this feature is similar to PlanB
Operating system, the advantage of our approach is that,
since it is based on a popular virtual machine, namely the
Java Virtual Machine, it can be installed on larger number
of device and platforms as compared to PlanB. Further,
PlanB was built on Desktop based system, whereas our
approach has been to use a Mobile Platform, namely the
Android Platform from the inception of the project. One of
the major advantages of the RESTful Platform Broker is the
use of Hypermedia. Through the use of Hypermedia, it is
envisaged that there would be a greater decoupling between
the RESTful Platform Broker and the HTTP Clients that
uses it. This decoupling, therefore, allows RESTful Platform
Broker to grow independently with respect to the clients
that use it. The paper also describes some of the scenarios
which are typical in a Smart Space environment that can be
easily implemented using RESTful Platform Broker, with
some amount of programming. It is however, envisaged that
with the improvements in Visual Programming, Scripting
Languages and Domain Specific Languages (DSL), the use
of RESTful Platform Broker, may become easier and maybe
used by non programmers also. The current version of the
RESTful Platform Broker uses the MAC mechanism to
control the visibility of resources within the Smart Space.
In the future versions of RESTful Platform we plan to
incorporate OpenID [32] and OAuth [33] for implementing

42Copyright (c) IARIA, 2012. ISBN: 978-1-61208-225-7

SMART 2012 : The First International Conference on Smart Systems, Devices and Technologies

a more robust security mechanism.

REFERENCES

[1] M. Satyanarayanan, “Pervasive computing: Vision and chal-
lenges”,IEEE Personal Communications, vol. 8, pp. 10-17,
2001.

[2] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura and
E. Jansen, “The Gator Tech Smart House: A Programmable
Pervasive Space”, Computer, vol. 38, March 2005 pp. 50-60.

[3] E. Hensberg, N. Evans and P. S. Marble, “Service oriented
filesystems”, IBM Research Report, RC24788 (W0904-091),
IBM Research Division Austin, IBM Research Zurich, 2009.

[4] M. Roman and R.H. Campbell, “Gaia: Enabling active spaces”,
Proc. 9th Workshop on ACM SIGOPS European Workshop,
ACM Press, New York, pp. 229-234, 2000.

[5] J. Al-Muhtadi, R. Campbell, A. Ranganathan, S. Chetan and
M. Mickunas, “Olympus: A high-level programming model for
pervasive computing”, Proc. 3rd IEEE Intl. Conf. on Pervasive
Computing and Communications, pp. 7-16, March 2005.

[6] J. Al-Muhtadi, R. Campbell, E. Chan, and J. Bresler, “Gaia
Microserver: An Extendable Mobile Middleware Platform”,
Proc. 3rd IEEE Intl. Conf. on Pervasive Computing and
Communications, pp. 309-313, March 2005.

[7] B. Johanson, A. Fox and T. Winograd, “The Interactive
Workspaces Project: Experiences with Ubiquitous Computing
Rooms”, IEEE Pervasive Computing 1(2), pp.67-74, April-
June 2002.

[8] A. Fox, B. Johanson, P. Hanrahan and T. Winograd, “Integrat-
ing Information Appliances into an Interactive Workspace”,
IEEE Computer Graphics & Applications, pp.54-65, May-June
2000.

[9] S. Sen, J. Erman and A. Gerber, “HTTP in the Home: It is not
just about PCs”, Proc. ACM SIGCOMM Workshop on Home
Networks (HomeNets), pp.90-96, 2010.

[10] J. Mathrick, J. Humble, C. Greenhalgh, S. Izadi and I. Taylor,
“ECT: A Toolkit to Support Rapid Construction of Ubicomp
Environments”, Proc. UbiComp 2004, pp.207-234, Springer,
2004.

[11] F. J. Ballesteros, E. Soriano, G. Guardiola, K. Leal, “Plan B:
Using Files Instead of middleware abstractions for pervasive
computing environments”, IEEE Pervasive Computing 6(3) pp.
58-65, Aug 2007.

[12] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson,
H. Trickey, and P. Winterbottom, “Plan 9 from bell labs”,
Computing Systems, vol. Vol. 8, pp.221-254, Summer 1995.

[13] R Pike, D. Presotto, K. Thompson, H. Trickey and P. Winter-
bottom, The Use of Name Spaces in Plan 9“, ACM SIGOPS
Operating Systems Review, Vol.27(2), pp.72-76, Apr. 1993.

[14] E.V. Hensbergen and R. Minnich, ”Grave robbers from outer
space: Using 9P2000 under linux“, USENIX 2005 Annual
Technical Conference, FREENIX Track, pp.83-94, 2005.

[15] C. Prehofer, J. Gurp, V. Stirbu, S. Sathish, P.P. Liimatainen,
C. Flora and S. Tarkoma, ”Practical web- based Smart Spaces“,
IEEE Pervasive, Vol 9(3), pp.72-80, 2010.

[16] L. Richardson, ”Justice will take us millions of intri-
cate moves“, http://www.crummy.com/writing/speaking/2008-
QCon/, QCon San Francisco, 2008 [retrieved: March, 2012].

[17] R. Gossweiler, C. McDonough, J. Lin, and R. Want, Argos:
Building a web-centric application platform on top of android,
IEEE Pervasive Computing, vol.10(4) pp.10-14, 2011.

[18] R. Fielding, Architectural Styles and the Design of Network
based Software Architectures, PhD thesis, Doctoral disserta-
tion, University of California, Irvine, 2000

[19] E. Gamma, R. Helm, R. Johnson and J. Vlissides, De-
sign Patterns: Elements of Reusable Object-Oriented Software,
Addison- Wesley, 1994.

[20] Dns service discovery, http://www.dns-sd.org/ [retrieved:
March, 2012].

[21] Easystroke: A gesture recognition application for x11,
http://sourceforge.net/apps/trac/easystroke/wiki, [retrieved:
March, 2012].

[22] Gestikk - Mouse gesture recognition in Ubuntu,
https://launchpad.net/gestikk, [retrieved: March, 2012].

[23] Curl and libcurl, http://curl.haxx.se/, [retrieved: March, 2012].

[24] http://ipAddressOfAndroid/Sensors/Accelerometer [retrieved:
March, 2012]

[25] http://ipAddress/mediaPlayer/songList/ [retrieved: March,
2012]

[26] http://ipAddress/mediaPlayer [retrieved: March, 2012]

[27] http://ipAddress/mediaPlayer/songName1 [retrieved: March,
2012]

[28] http://GovindPhone.local/camera [retrieved: March, 2012]

[29] http://ipAddress/tts [retrieved: March, 2012]

[30] http://ipAddress/MediaRecord [retrieved: March, 2012]

[31] http://ipAddress/GPS [retrieved: March, 2012]

[32] B. Ferg et al., OpenID Authentication 2.0Final, OpenID
Community, Dec. 2007; http://openid.net/specsopenid-
authentication-2 0.html [retrieved: March, 2012]

[33] M. Atwood et al., OAuth Core 1.0, OAuth Core Workgroup,
Dec. 2007; http://oauth.net/core1.0. [retrieved: March, 2012]

43Copyright (c) IARIA, 2012. ISBN: 978-1-61208-225-7

SMART 2012 : The First International Conference on Smart Systems, Devices and Technologies

