
Event-Driven Communication on Application Level in a Smart Home

Christoph Soellner, Uwe Baumgarten
Chair for Operating Systems (F13)
Technische Universitaet Muenchen

Munich, Germany
{cs, baumgaru}@tum.de

Abstract—In recent years, research on the Internet of Things
focused on wired or wireless information transport. Progress has
been made in energy-efficiency, reduction of bandwidth usage
and bringing standard Internet protocols to small resource con-
strained devices. Yet, an application level protocol that not only
aims at enabling such devices for remote control but at the same
time also offers semantic description features to human users is
not found. Based upon previous work, we introduce further se-
mantic schema extensions, add event-based communication on
application level and compare our approach to existing work.

Keywords—Smart Home; Smart Grid; Smart Device; remote
control; Internet of Things; embedded system

I. INTRODUCTION
In a previous work [1], we introduced a straightforward

concept aimed at tiny embedded devices to enable them for
remote control on application level via Internet standard proto-
cols. We showed how to use the Extensible Markup Language
(XML) [2] to describe devices and their capabilities. Further-
more, we used two methods (GET and POST) from the ReSTful
hypertext transport protocol (HTTP) [3] to enable devices for
basic remote control by standard HTTP clients.

We also described briefly our implementation that was
written for the Atmel microcontroller unit (MCU) families
ATmega [4] and XMega [5] with at least 16 kByte of program
memory and 1 kByte of static RAM. The software features a
state machine based HTTP parser written in C to process mes-
sages in a byte-sequential manner. Thus, it was intended be
used over low-performance communication links that transmit
one byte at a time only, such as a universal asynchronous re-
ceiver / transmitter (USART) link.

To also achieve a reduced memory footprint, the parser will
process an HTTP message separated according to its compo-
nents such as the method, the URL path, optionally its header
information and body values. It does not store the message
completely, but processes it on-the-fly instead.

In our concept we identified a few unresolved issues. First,
numeric XML elements in some cases may not carry enough
semantic information for a human user. Secondly, a Smart
Home setup will require sensors and actuators to communicate
upon certain conditions without a third party.

After recapitulating key elements of our concept in section
II, we describe the introduction of additional XML elements to
our schema and the extension of the control interface to also
support event driven communication between Smart Devices in
section III, and finally, compare our solution to existing proto-
cols in section IV.

II. RELATED WORK
In our previous work [1], we proposed a hierarchical three-

level XML based description of devices, where the first level
offers device and meta information, the second level serves as a
container to group machine state information semantically, and
the third level carries said machine state information. We also
introduced a ReSTful control interface, the commands of which
are derived from a device’s XML description.

Principal goals with our new approach were to show that al-
ready proven internet standard protocols can be processed on
very resource constrained MCUs and to demonstrate the im-
portance of communication layer separation. Within a Smart
Home, IP based communication between all devices cannot be
assumed; tasks such as addressing must be handled on applica-
tion level alone, when only a broadcast message transport is
available.

To demonstrate the protocol efficiency, we implemented
our concept in C for Atmel AVR MCUs. By utilizing prepro-
cessor macros, we ensure small code while at the same time
providing comfortable configuration options to the developer.
Modification of machinery state is done through callback func-
tions which are implemented by the developer and registered
with our library; they are called whenever the HTTP parser has
determined a specific action from a received message.

An exemplary binary code, which utilizes our library, a
USART communication driver and basic get/set functions
consumes roughly 14 kByte of program memory space and
thus fits into our target MCU family. It simulates a combined
refrigerator / freezer device and serves as example in the sub-
sequent sections, in which we will cover the ideas of the appli-
cation level interface.

A. Service description
In general, we assume a Smart Device to be a black box

and unique; there is no schema to a device, since, in principle,
every vendor may choose to implement certain functionality in
their own way. Therefore, a device must be queried for its
capabilities, at least once before control operations are possible.
Any Smart Device that implements our application interface
and is queried for its features, will output an XML description
as given in Fig 1. As mentioned, we operate solely on applica-
tion level and cannot make any assumptions as to how the
messages are relayed. In particular, we cannot assume IP based
communication.

Furthermore, a principal concept is our integration of both
semantic and machine-interpretable information into one single
description, as depicted in Fig. 1.

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-282-0

SMART 2013 : The Second International Conference on Smart Systems, Devices and Technologies

<dev00010>
 <meta type="deviceName">TUM Refridgerator</meta>
 <meta type="manufacturerName">Chair F13, TUM</meta>
 <meta type="manufacturerURL">http://www.os.in.tum.de/</meta>
 <Fridge>
 <Door type="string" access="readonly">closed</Door>
 <CurrentTemperature type="float" access="readonly" @
 unit="°C">8.6</CurrentTemperature>
 <TargetTemperature type="float" access="readwrite" @
 min="4.0" max="16.0" unit="°C">8.0</TargetTemperature>
 </Fridge>
 <Freezer>
 <Door type="string" access="readonly">closed</Door>
 <CurrentTemperature type="float" access="readonly" @
 unit="°C">-17.6</CurrentTemperature>
 <TargetTemperature type="float" access="readwrite" @
 min="-30.0" max="-8.0" unit="°C">-18.0</TargetTemperature>
 </Freezer>
</dev00010>

Figure 1. XML discovery message of a Smart Device

We use one single XML document generated on-the-fly by
the Smart Device to deliver both semantic information suited
for a human user and machine state information intended for
automated processing. Semantic information is given by nam-
ing XML elements appropriately, data relevant to machines is
provided through a node’s respective attributes and values.
Thus, element names differ from device to device and are cho-
sen appropriately according to generic XML node naming rules
[6] by the developer. Node names are treated case-sensitive.

1) Device level
As denoted in the example, the first level node carries a

unique id for a device (dev00010) and may further contain
meta elements. Each of those consists of a designating type
attribute and a corresponding value. It has, by definition, no
meaning for machine-to-machine communication and is only
presented to help a human user understand the device’s pur-
pose. Thus, it will be displayed unmodified to the user by the
application. We allow and encourage simple interpretation such
as displaying hyperlinks in a clickable manner.

2) Service level
The service level offers a way of displaying separate hard-

ware parts within a Smart Device to a user. As shown in Fig. 1,
both the refrigerator and the freezer can be described in a simi-
lar fashion; simply by naming the service nodes differently and
semantically plausible, a human user is able to distinguish and
interpret contained data more easily.

3) Data point level
The actual machine state information is contained in nodes

on this level. Each service has at least one data point, where a
data point represents a single value of one of three types: inte-
ger, floating point number and string. Each value will be de-
rived from internal machine state by a callback function when
queried and will be modified by a different callback function
when written to.

Our library also features the definition of other attributes
such as min and max boundaries for numerical data points,
access restrictions to allow for readonly or writeonly data
points and a unit string helping human users interpret a data
point’s value. When set, restrictions will automatically be en-
forced upon modification of data points before they are passed
to the respective callback function.

>>> GET /dev00010/ HTTP/1.0
>>> GET / HTTP/1.0
 Host: dev00010
>>> GET /*/ HTTP/1.0
>>> GET / HTTP/1.0
 Host: *

Figure 2. A single or all devices are addressed via HTTP.

B. Control interface
In this subsection, we describe the ReSTful command inter-

face for a Smart Device. The importance of a ReSTful interface
for resource constrained devices has been discussed in [8].
Control messages follow the HTTP message specification. We
allow GET to retrieve one or more data points and POST to modi-
fy machine states. Other verbs are not supported.

1) Device addressing
The message transportation layer is not required to feature

device addressing on hardware or protocol level. Instead, ad-
dressing is done in software on application level with HTTP
alone.

To address one single or all devices connected to the same
medium, a regular HTTP request is used with the first part of
the URI being the target device id or the asterisk, meaning
‘any’, as shown in Fig. 2.
>>> GET / HTTP/1.1
 Host: dev00010
 Host: anotherDevice0293
 Host: technicsStereo10023

Figure 3. Several devices are addressed in a multicast manner.

When communication with several devices in a single (ap-
plication level) multicast request is required, we utilize HTTP’s
Host:-header to address those devices by their respective id.
As allowed by the specification [3], the Host:-header is set
several times in this case. Fig. 3 gives an example. Note that
the host values could also be sent as comma separated values in
one single line; however, this would increase parser complexity
and is not supported by our code.
<?xml version="1.0">
<bus>
 <dev00010><!-- […] --></dev00010>
 <anotherDevice0293><!-- […] --></anotherDevice0293>
</bus>

Figure 4. The enclosing bus element is displayed.

Each well-formed XML document must have exactly one
root element. Therefore, the first device to respond will output
the XML header and an enclosing XML root element named
bus, when more than one device is addressed, as shown in Fig.
4. It will be ignored in all requests to the devices; its purpose is
merely to fulfill XML document specification.

2) Service discovery
Previous example requests already depicted the Smart De-

vices’ service discovery procedure: The command GET / is
used query all connected devices for their complete XML de-
scription, which includes any meta information and data point
attributes. The resulting document is generated on-the-fly each
time a discovery procedure is initiated. Note that reliability and
security issues are handled on underlying levels according to
application requirements.

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-282-0

SMART 2013 : The Second International Conference on Smart Systems, Devices and Technologies

>>> GET /dev00010/*/Door HTTP/1.1
<<< <dev00010>
 <Fridge><Door>closed</Door></Fridge>
 <Freezer><Door>closed</Door></Freezer>
 </dev00010>

Figure 5. Machine state information is retrieved by specifying an XPath
selector in the URL path.

3) Retrieving data point values
We utilize a reduced XPath [7] implementation to retrieve

machine state stored in data point values. To that end, the URL
path is used as XPath selector of the virtual document of the
discovery output of devices. The asterisk character may be
used on any of the three hierarchical levels to select all instanc-
es on that level, as depicted in Fig. 5.

As shown, no meta information and no attributes are output
when not in discovery mode; it is assumed that a client already
completed the discovery procedure and stored its result for
subsequent requests. Thus, a retransmission serves no purpose.

4) Modifying data point values
The HTTP method POST is used to modify machine state.

>>> POST /dev00010/Freezer/TargetTemperature HTTP/1.1

 -18.5

Figure 6. A single value is modified through a POST request.

To set a single data point on a single Smart Device, the
URL can be used in the same manner as in II.B.3). The value to
be written is transmitted in the message’s body (Fig. 6).
>>> POST /dev00010/ HTTP/1.1

 Fridge.TargetTemperature=6.0&Freezer.TargetTemperature=-18.5

>>> POST /*/ HTTP/1.1

 *.TargetTemperature=0.0

Figure 7. Several values are changed in a single message.

In order to achieve application level manycast, several or
all values within a single device or even several devices can be
changed through one single broadcast message, as depicted in
Fig. 7.

Note that the separating character in the HTTP body is the
decimal instead the forward slash. Thus, we achieve compati-
bility with hypertext markup language (HTML) forms and can
offer a simple web interface that is automatically generated
from the service and data point definition.

III. CONCEPT EXTENSION
In our research, we came across certain use cases where the

current schema does not suffice. In this section, we extend the
description schema and the protocol.

A. Data point labels
Numeric data points can not only be used to represent sen-

sor readouts, they may also represent discreet machine states. A
door for instance may either be locked or unlocked; instead of
using a string representation, in this case a Boolean value suf-
fices.

In general, a numeric data point with its name alone may
not offer sufficient semantic information to a human user for
interpretation. We give examples within a Smart Home:

• A window handle sensor may for instance only take on
values of 0, 1 and 2; where one could guess a semantic
meaning for 0 (closed) it would be feasible to describe 1
as flipped and 2 as open during discovery.

• A laundry machine that features a static program list
may encode the currently selected program only in a
numeric value. However, also a human interpretable
text representation is required for a consumer.

• A Smart Radio receiver may output a station list derived
from an auto tune process or decoded radio data system
messages to be displayed in a remote control applica-
tion.

<radio00295>
 <meta type="deviceName">Smart Radio</meta>
 <Tuner>
 <Frequency type="float" access="readwrite" @
 min="87.5" max="108.0" unit="MHz">
 96.3
 <Label from="96.3" >Bell 96,3</Label>
 <Label from="97.5" >Antenna Bavaria</Label>
 <Label from="107.2">Antenna Bavaria</Label>
 </Frequency>
 </Tuner>
</radio00295>

Figure 8. The Label element with its attributes “from” and “to” is introduced.

We therefore introduce the <Label> element for data point
elements with two attributes, describing a label’s valid range:
from and to. The attributes’ restriction base is equal to the par-
enting data point’s data type, i.e., from and to may carry float-
ing point values only if the parent data point is of the type float.
In case a label is only valid for a single data point value and
thus both attributes would show the same value, to may be
omitted (Fig. 8).
<sensor20912>
 <Brightness>
 <Value type="int" access="readonly" @
 min="0" max="120000" unit="lx">
 1050
 <Label from="0" to="2000">darkness</Label>
 <Label from="60000" to="120000">daylight</Label>
 <Label from="80000" to="90000" >bright sunlight</Label>
 <Label from="90001" to="120000">bright sunlight</Label>
 </Value>
 </Brightness>
</radio00295>

Figure 9. Overlapping ranges for Label elements are displayed.

To specify a range, to must be given. Both boundaries can
also take on INF or -INF within float data points. Ranges of
different labels may overlap (Fig. 9). In this case, the client
presents all suitable Label element values for a given data point
value to the user. Label values that are valid for more than one
data point value are given as many times as required (third
Label element servers as demonstration).

Note that the specified element has no impact on the HTTP
parser complexity on the MCU; it is output in discovery mode
only.

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-282-0

SMART 2013 : The Second International Conference on Smart Systems, Devices and Technologies

B. Event initiated communication
Our concept, so far, only supports communication for re-

trieval or modification of machine state initiated by control
software through GET or POST. We extend it to also support
event driven notifications sent by Smart Devices upon certain
conditions. To signal an event, we introduce a new HTTP verb
and define the message format in the following subsections.

1) HTTP message format
An event message can be sent for any data point. All event

messages will be broadcast by the Smart Device generating it,
thus being received by all other Smart Devices on the same
logical message transport segment. Also, it may be forwarded
into other networks by different protocols such as UDP/IP.
>>> EVENT /dev00010/Fridge/Door HTTP/1.1
>>>
>>> open

Figure 10. An exemplary Event message by the Smart Fridge device is shown.

Event messages have the same structure as HTTP messag-
es; the verb designates an operation concerning a specified
resource designated by the URL path and the body contains the
new value.

To that end, we introduce the method EVENT. As opposed to
regular HTTP messages and in compliance with our previous
statement however, the URI path designates the path to the
originating (and not the destination) data point as shown in Fig.
10.

Furthermore, each EVENT message carries exactly one data
point value in its body. In case there are several changed data
points, the respective amount of messages is required. As al-
ready mentioned, we rely on lower layers to implement relia-
bility and security.

The advantage of keeping event notifications in an HTTP
format and allowing only singular values within the body is,
that only little modification to the HTTP parser is necessary.
We still do not require XML parsing capabilities, but can rather
utilize already present code to process an event.

Since there is no publish/subscribe mechanism with our
concept, EVENT messages are not being replied to.

2) Implementation overview
To achieve described functionality we extend the HTTP

parser: in case of an EVENT notification, a hash table stored on
the device is queried to find a suitable mapping of the event’s
URL path and an internal data point address. The hash table
stores every such path as a mapping between a zero-terminated
character string and an unsigned integer containing the pro-
gram memory address of the respective data point.

If a mapping is found at least once, the event’s body value
is passed to the registered callback function for each such
match. Restrictions and other data type mapping apply in the
same way as with a regular POST message.

Event notifications usually do not generate a response.
However, when a data point is modified through an event, it
may be configured to in turn broadcast an event to confirm the
change. This is particularly useful for monitoring machine
state: a light for instance may have been turned on by a hard-

ware button, an event message or a POST request – in all three
cases events may be generated and could displayed on a moni-
toring instance, regardless of the source of the modification.

We make no assumption as to when an event message
needs to be sent; it ultimately depends on the application. The
Smart Light controller for instance may send events for each
light affected as soon as there is no change for a certain period
of time; in this case, dimming the light would not result in
event message flooding.

For efficient implementation we recommend placing the
hash table into the MCU’s EEPROM with a static limit on its
size. Thus, a Smart Device may offer only a limited number of
such direct connections with other Smart Devices.

We are aware that ReSTful interfaces were designed for re-
quest / response operation only and that it may seem inappro-
priate to encode origination information in a resource locator at
first. However, ReST can also be viewed as a concept where
the method operates on the resource specified, with no actual
locations or addresses given.
<smartLight>
 <Bulb>
 <State type="int" access="readwrite" min="0" max="1">1</State>
 <Toggle type="int" access="writeonly" min="1" max="1" />
 </Bulb>
</smartLight>

Figure 11. An exemplary service description for a Smart Light controller is
displayed.

3) Example
Consider a Smart Light controller that features two data

points (Fig. 11). The first one, “State”, turns the light on and
off, according to the values 1 and 0 written to it, respectively.
The second one, “Toggle”, negates the current switch’s state in
case a “1” is written to it.

Secondly, consider a Smart Switch (“sw2013”) with a sin-
gle button (service “Button”), which in turn contains one data
point names “Pressed”. It broadcasts an Event on two occa-
sions: a 1 when pressed, and a 0 when released.

We configure the Toggle data point on the light controller
to accept event messages from /sw2013/Button/Pressed.
Since Toggle only accepts a 1 value, all release events are
ignored. Therefore, this configuration results in push button
functionality.

IV. COMPARISON WITH OTHER PROTOCOLS
In this section, we compare our approach with existing ap-

plication level protocols with regards to functionality, features,
message size and –if possible– implementation details. Note
that no assumptions over message transport or underlying pro-
tocols can be made, i.e., the Internet Protocol in particular and
other well-known protocols like TCP / UDP or the DNS are not
available.

A. XML protocols
There are already some protocols available to be used with-

in a Smart Home scenario, mostly based on XML. Yazar and
Dunkels compared a ReSTful control interface with a SOAP
[9] based approach; they found SOAP to have a significantly
larger memory footprint, execution time and message size [10].

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-282-0

SMART 2013 : The Second International Conference on Smart Systems, Devices and Technologies

Also, SOAP based protocols rely on a service schema de-
scription written in the Web Service Description Language
(WSDL) which must be stored and processed separately.

Even with a limited subset of SOAP functionality, e.g., the
devices profile for web services [11] (DPWS), we are restricted
to SAX like parsing on the target embedded hardware, since a
request may not fit into the device’s memory as a whole. Thus,
essential features such as name spaces, message integrity
checks or verification against a given WSDL schema may not
be available and limit compatibility with standard clients.

Lastly, SOAP makes heavy use of DNS and IP for message
routing. As stated, those may not be available on a Smart De-
vice network. Therefore, a SOAP based approach for message
exchange seems not feasible for the Smart Home Scenario.

B. Constrained Application Protocol
Mainly designed as a binary replacement for HTTP, the

constrained application protocol [12] (CoAP) aims at enabling
resource constrained embedded devices for internet communi-
cations. It introduces application level reliability, offers simpli-
fied parsing through binary header representation instead of a
text based one and remains largely compatible with HTTP
through standardized command mappings.

CoAP achieves a reduced message size compared to HTTP.
We can easily confirm this by counting octets, e.g., for the
message in Fig. 6: while HTTP results in 58 octets, we achieve
a significantly smaller size for the CoAP equivalent, 47 octets
(4 header, URI-Path 1+8, URI-Path 1+8, URI-Path 2+17, 1
octet separator, 5 octets payload).

However, major disadvantages, as we noted in [1], include
the limitation to only four methods, the duplication of TCP’s
features of reliability on application level (where this should
remain on the transport layer) and the tight integration with
IP/UDP respectively. Also, the code size of a commonly used
reference implementation is about ~25 kByte of program
memory space, and additionally, CoAP does not cover service
description or discovery procedures.

C. Constrained restful environments link format
To overcome the latter, Shelby et al. [14] also proposed ap-

plication layer schemata for service consumption, service di-
rectories and caches [13], the Constrained ReSTful Environ-
ments link format (CoRE). While in principle the CoRE can be
run over any ReSTful interface, it was designed to specifically
work over CoAP, since it relies on CoAP’s request and re-
sponse code mapping and requires it to handle all machine
addressing tasks.

In the current version of the RFC, we can identify weak-
nesses in the text based protocol:

• Use of angle brackets (“<>”): Both characters are used
in markup languages to denote descriptive information.
Within CoRE, an actual resource location is designated
between those characters, which may confuse both de-
signers and restrictive firewall software; moreover, as
the forward slash (“/”) is explicitly allowed.

• Discovery entry point: It is not clear why a /.well-
known/core URI is used for discovery. Common web

browsers, for instance, use the much shorter GET com-
mand GET /.

• Parser complexity: While CoAP was designed specifi-
cally to reduce parser complexity on application level,
this is negated with the CoRE approach. According to
[14], complex query search and filtering tasks can op-
tionally be supported by Smart Devices with query fil-
tering. All optional parts introduce uncertainty and un-
reliability into a concept; moreover, it is not evaluated
which filtering options are required in the first place on
resource constrained devices.

Although CoAP is routed over UDP links and supports de-
layed responses, neither CoRE nor CoAP specify event based
broadcast messages. A Smart Device would therefore always
have to have routing and IP address information about desired
recipients. Particularly in scenarios with dynamic IP addresses
(met constantly within a Smart Home), CoAP message links
may become cumbersome to maintain.

While we acknowledge that Smart Home functionality, i.e.,
retrieving and modifying machinery state, can be achieved by a
CoRE protocol design, the authors fail to clarify the advantages
of their concept over regular XML and XPATH expressions; a
reference implementation enabling a comparison of both ap-
proaches under similar circumstances is not yet available.

Lastly, both CoAP and CoRE have a strong disadvantage in
common: They both need to be implemented again for each
programming language and type of network equipment (such
as firewalls and application level gateways) that is to feature
the protocol. This is not necessary with HTTP and XML.

V. CONCLUSION AND OULOOK
With the extension of our concept targeted at tiny embed-

ded Smart Devices, we resolved the issues occurring with some
use cases on application level.

Furthermore, with the introduction of the HTTP method
EVENT we demonstrated how Smart Devices can initiate com-
munication and how this approach can be leveraged to enable
vendor-independent application level communication between
Smart Devices without application level translation.

In future work, we address repeated transmission of event
messages in case a certain condition persists and demonstrate
an application level message routing software that allows third
parties, such as a power utility, to influence machine behavior
on occasion (e.g., emergencies or power overproduction).

Also, we evaluate our implementation against CoRE in
more detail, once a properly maintained implementation be-
comes available.

REFERENCES
[1] C. Soellner and U. Baumgarten, “Bridging the Last Mile in a Smart

Home on Application Level”, The 4th Int. Conf. on Smart
Communications in Network Technologies (SaCoNeT2013), in press.

[2] E. Ray, “Learning XML”, 2nd ed., O'Reilly, 2003.
[3] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, “Hypertext Transport Protocol”, Internet RFC 2616,
Sep. 2004, Available: http://www.w3.org/Protocols/rfc2616/rfc2616-
sec4.html#sec4.2, [retrieved April, 2013].

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-282-0

SMART 2013 : The Second International Conference on Smart Systems, Devices and Technologies

[4] Atmel vendor website, “megaAVR Microcontroller”, Available:
http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx,
[retrieved May, 2013].

[5] Atmel vendor website, “AVR XMEGA Microcontroller”, Available:
http://www.atmel.com/products/microcontrollers/avr/avr_xmega.aspx,
[retrieved May, 2013].

[6] J. E. Simpson, “O’Reilly xml.com - The Naming of Parts”, Available:
http://www.xml.com/pub/a/2001/07/25/namingparts.html, [retrieved
April, 2013].

[7] M. Kay, “XPath 2.0 programmer's reference”, Indianapolis, IN: Wiley,
2004.

[8] D. Uckelmann, M. Harrison, and F. Michahelles, “Architecting the
Internet of Things”, Springer-Verlag, Berlin, 2011, chapter 5.

[9] M. Gudgin et al., “SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition)”, W3C Recommendation, Available:
http://www.w3.org/TR/soap12-part1/, [retrieved May, 2013].

[10] D. Yazar and A. Dunkels, “Effcient application integration in IP-based
sensor networks”, In Proceedings of the First ACM Workshop on
Embedded Sensing Systems for Energy-Effciency in Buildings,
BuildSys'09, pages 43-48, New York, NY, USA, 2009. ACM.

[11] T. Nixon and A. Regnier, “Devices Profile for Web Services (DPWS)”,
OASIS Standard, Available: http://docs.oasis-open.org/ws-
dd/ns/dpws/2009/01, [retrieved April, 2013].

[12] Z. Shelby, K. Hartke, and C. Bormann, “Constrained Application
Protocol (CoAP)”, Internet-Draft 16 (work in progress), Available:
http://tools.ietf.org/html/draft-ietf-core-coap-16, [retrieved May, 2013].

[13] Z. Shelby, S. Krco and C. Bormann, “CoRE Resource Directory”,
Internet-Draft 5, Available: http://www.ietf.org/id/draft-shelby-core-
resource-directory-05.txt, [retrieved May, 2013].

[14] Z. Shelby, “Constrained RESTful Environments (CoRE) Link Format”,
IETF RFC 6690, Available: http://www.rfc-editor.org/rfc/rfc6690.txt,
[retrieved May, 2013].

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-282-0

SMART 2013 : The Second International Conference on Smart Systems, Devices and Technologies

