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Abstract— In this paper, we investigate the problem of 

representing transaction data in PAAS cloud-based systems.  

We compare traditional database normalization techniques 

with our denormalized approach.  In this research, we focus on 

transactional data related to an organization’s customers.  Some 

optimization comes from the absence of a known customer 

object, which allows for the vertical merging of tuples. Instead 

of storing detail transactional data, data is stored in aggregate 

form. The journaling features of the data store allow for full 

audits of transactions while not requiring anonymous data to be 

materialized in fine-grained levels.  The horizontal merging of 

objects is also deployed to remove detail lookup data instance 

records and one-to-many leaf node records. 

Keywords-web services; distributed database; modeling; cloud 

computing  

I.  INTRODUCTION 

In this work, we investigate the problem of representing 
transactional data in a platform as a service (PAAS) cloud-
based system. In traditional client-server architectures, 
database normalization is used to ensure that redundant data 
does not exist in the system.  Redundant data can lead to 
update anomalies if the developer is not careful to update 
every instance of a fact when modifying data.  Normalization 
is also performed to ensure unrelated facts are not stored in the 
same tuples resulting in deletion anomalies. Our earlier work 
[1] focused on the minimization of storage requirements for 
anonymous transaction data in PAAS cloud storage. This 
work extends that research, by increasing the optimizations to 
include enterprise integration, mobile integration and the 
modeling of the workflow and lifecycle of objects in a PAAS 
system. 

Data representation in the cloud has many of the same 
challenges as data representation in client/server architectures.  
One challenge data representation in the cloud has that is not 
shared with client/server is the minimization of data.  This 
challenge exists because the costs of cloud data storage are 
significantly higher than the costs for local storage.  When we 
say higher costs, we mean the simple, measurable costs for the 
disk storage, not the true costs of managing and accessing the 
data over the life of the application.  Organizations have 
traditionally budgeted the costs of disk drives for local storage 
which are in the tens of dollars per gigabyte.  Similar cloud 
storage can be in the hundreds of dollars per gigabyte per 
month [1]. Often this storage is expressed as the number of 
tuples in the data store instead of the number of bytes on the 
disk drive holding the data. For example, force.com [2] 
charges for blocks of data measured in megabytes but they 
calculate usage as a flat 2KB per tuple.    Zoho Corporation 
also tracks data storage by the tuple for serval of their cloud 
products including Creator [3] and CRM [4]. The tuple count 

method is used as it is easier to calculate in a multi-tenant 
system where the physical disk drives are shared by many 
clients. 

In this paper, we present an algorithm that will minimize 
the number of tuples used to store the facts for a software 
system.  We use a motivating example from a cloud software 
system developed by students in our lab.  The algorithm 
performs three main operations: 

• The horizontal merging of objects – several distinct 
relations are combined into one. 

• The vertical merging of objects – several distinct 
instances of the same type of facts is combined into 
one. 

• Business rule adoption – instead of storing tuples to 
represent availability of lookup data, we replace the 
tables with pattern based business rules  

We apply our algorithm to a system in the humanities 
application domain and show an approximately 500% 
reduction in tuple storage. 

Date [5] invests a good deal of his text on the definition 

of denormalization.  He argues that denormalization is when 

the number of relational variables is reduced, and functional 

dependencies are introduced where the left-hand side of the 

functional dependency no longer is a super key.  The practical 

realization of Date’s denormalization is that the primary key 

does not directly determine attributes in the tuple, leading to 

update and deletion anomalies in exchange for better 

performance or storage. In our work, we perform many 

optimizations.  When we horizontally merge relations, then 

we are performing a true denormalization in Date’s 

definition.  Other optimizations such as vertical merging do 

not fit Date’s definition of denormalization.  We choose to 

stay with the term denormalization algorithm as it is a set of 

steps taken after the normalization process to optimize an 

aspect of the data model.   

The organization of the paper is as follows. Section II 

describes the related work and the limitations of current 

methods. In Section III, we give a motivating example where 

our algorithm is useful and describe our denormalization 

algorithm.  Section IV describes additional enhancements 

through the design of business rule objects. Section V 

explores reporting from the denormalized objects utilizing 

the object version history stored in the journal. Section VI 

contains our comparison of the proposed method and the 

traditional database normalization method. We explore the 

denormalization when applied to an object’s workflow and 

lifecycle in Section VII. In Section VIII, we add an additional 

optimization to handle one-to-many lookup storage of data.  

Section X investigates the denormalization algorithm when 

applied to mobile computing.  Section XI considers our data 
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model in the context of web-service database.  In Section XII, 

we analyze the security vulnerabilities that are reduced 

through our data modeling technique. Section XIII gives a 

discussion of our experience through this work. We conclude 

and consider future work in Section XIV. 

II. RELATED WORK 

Sanders and Shin [6] investigate the process to be 

followed when denormalization is done on relational data 

management systems (RDBMS) to gain better query 

performance. Their research was performed before the cloud 

database offerings became prevalent.  In the cloud, database 

performance is less of an issue to storage requirements 

because the systems are designed to distribute queries across 

many systems. 

Conley and Whitehurst [7] patented the idea of 

denormalizing databases for performance but hiding the 

denormalization for the end user.  Their work focuses on 

merging two relations into one relationship to eliminate the 

processing required to join the records back together.  Their 

work uses horizontal denormalization to gain performance.  

Our work uses both horizontal and vertical denormalization 

to minimize storage space and increase usability. 

Most denormalization research work was done in the late 

1990s and was focused on improvement in query 

performance.  The performance was an exchange for a loss of 

correctness and usability of the data.  Recently, folks like 

Andrey Balmin have looked at denormalization as a 

technique to improve the performance of querying XML data.  

Like the previously mentioned research, this work differs 

from our work in the desired end goal.  Our end goal being 

the minimization of data storage and improvement in end user 

usability. 

In Bisdas’ [8] blog, he demonstrates ways that end users 

can improve data visualization by vertically merging 

hierarchical data in the Salesforce, data model.  He takes 

advantage of the trigger architecture to create redundant data 

in the hierarchy.  Taber [9] also recommends denormalization 

to improve data visualization.  The problem with both 

solutions is that data storage requirements are increased while 

correctness is jeopardized by the redundant data. 

In one of our previous publications [10], we study UML 

models from the perspective of integrating heterogeneous 

software systems.  In this work, we create an algorithm to sort 

cyclical UML class data diagrams to enable transaction 

reformation in the integration.  In the process, discoveries 

were made on the freshness of data at different layers in the 

UML graph.  The knowledge is useful in this study when 

considering anomalies that can happen in response to data 

updates. 

Additional semantics for models can be added by the 

integration of the matching UML Activity and Class 

diagrams. UML provides an extensibility mechanism that 

allows a designer to add new semantics to a model.  A 

stereotype is one of three types of extensibility mechanisms 

in the UML that allows a designer to extend the vocabulary 

of UML to represent new model elements [11].  Traditionally 

the semantics were consumed by the software developer 

manually and translated into the program code in a hard 

coded fashion. 
Developers have implemented business rules in software 

systems since the first software package was developed. Most 
research has been around developing expert systems to 
process large business rule trees efficiently.  Charles Forgy 
[12] developed the Rete Algorithm, which has become the 
standard algorithm used in business rule engines.  Forgy has 
published several variations on the Rete Algorithm over the 
past few decades.  In this work, we focus on the representation 
of the business rules in the data model. 

Our previous work [13] on data modeling for the cloud 
focuses on benefits gained by aggregating anonymous data.  
These benefits and the research behind that study is covered 
here along with further work to minimize data storage 
requirements for one-to-many data along with schema 
denormalization when using predefined object schemas. 

 
 

III. DENORMALIZATION 

We demonstrate our work using a Tour Reservation 

System (TRS).  TRS uses web services to provide a variety 

of functionalities to the patrons who are visiting a museum or 

historical organization.    We use the UML specification to 

represent the meta-data. Figure 1 shows a UML class diagram 

for an implementation of this functionality. The Unified 

Modeling Language includes a set of graphic notation 

techniques to create visual models of object-oriented 

software systems [13].  In this study, we use data collected 

by the Gettysburg Foundation on visitors to their national 

battlefield.  The system is modeled and implemented on the 

force.com [2] cloud platform. 

Figure 1 shows a normalized UML class model of 

reservation transactions of visitors to the Gettysburg National 

Battlefield.  In the model, the central object ticket represents 

a pass for an entry that is valid for a specific date and time 

and a specific activity.  Activities are itinerary items the 

visitor can be involved in while visiting the battlefield.  In the 

normalized model, each ticket is linked to a specific activity 

Figure 1. Normalized Transaction Model. 
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schedule entry that will designate the date and time the pass 

is valid for entry.  Each activity schedule is linked to an 

activity object that designates the name and location of the 

activity. 

Each ticket is linked to a user in the Gettysburg 

organization who was responsible for the transaction.  Each 

ticket can be linked to a patron object.  In the case of 

advanced reservations, there will be a valid patron object 

linked to the ticket.  Advanced reservations are transactions 

that take place through the organization's website or over the 

phone to a reservation agent. In the case of walk-up 

transactions, there will not be a linked patron.  A walk-up 

transaction is a transaction that takes place when a visitor 

arrives on the site without a prior reservation and pays for the 

ticket at the front desk. 

In Figure 1, the multiplicity of the association between the 

patron and the ticket is a zero or one to many.  A multiplicity 

that can be zero represents anonymous data.  Anonymous 

data is data that does not need to be specified in order for the 

transaction to be valid.  In the example transaction, the patron 

can remain anonymous but still visit the battlefield and 

partake in the activities.  In the case of the sample Gettysburg 

data, 60 percent of ticketing transactions were anonymous. 

In the case of the force.com [2] PAAS, data storage is 

charged by the tuple.  With an enterprise license to the 

platform, the organization is granted access to one gigabyte 

of data storage.  The storage is measured by treating every 

tuple as two kilobytes.  This form of measurement allows the 

organization 500,000 tuples in the enterprise data storage 

option.  The data collected for the normalized data model 

would allow the Gettysburg organization to store around nine 

months’ worth of data.  With the anonymous transaction, the 

ticket and the payment data is only important on the original 

transaction level for auditing.  For example, the accounting 

department may want to see the details behind a specific 

ticket agent’s cash total for the day.  Another example would 

be the marketing department wants to see the ticket price 

patterns within an hour of the day. 

The force.com [2] platform uses an Oracle relational 

database to deliver the data storage services but adds a journal 

feature so history can be stored on all changes to an object 

over time.  This journal can be used at no additional data 

storage cost.  The field level changes stored in the journal 

would allow aggregate data to be stored for anonymous 

transactions and still have the detail to perform the audits 

mentioned earlier. 

If an object is used between two other objects where the 

middle object is the “many” side of the one-to-many 

relationship and the one side of the other relationship, then 

the same data can be represented by moving the attributes to 

the object on the composition side of the relationship.  The 

middle object is then able to be removed, reducing the 

number of tuples representing the same amount of data.  In 

Figure 1, the “Activity Schedule” object fits this profile and 

can be horizontally merged with the “Ticket” object.  In our 

previous work [10], we study UML data model freshness 

requirements and document the relationship between data 

changes and location in the UML graph.  In our findings, we 

see that middle object nodes are less predisposed to changes 

than leaf nodes.  The lower amount of data changes reduces 

the change of update anomalies. 

In Figure 1, we also designate objects that are updated in 

transactions differently than objects that are navigated for 

transactional lookup values.  Two stereotypes are added to 

the diagram: 

• Transactional – The classes designated with the 

orange color and the <<Transactional>> tag are 

updated during transactional activities. 

• Lookup – The classes designated with the green 

color and the <<Lookup>> tag are not updated 

Algorithm 1. Denormalization Algorithm. 

INPUT: normalizedObjects (XMI representation of 

UML class diagram) 

OUTPUT: denormalizedEntities (XMI representation 

of denormalized entities) 

foreach object in normalizedObjects 

    add entity to denormalizedEntities 

    foreach attribute in object 

       add attribute to entity 

       if object is transactional 

          mark attribute as unique 

    add id attribute as primary key 

    mark id as autoincrement 

 

foreach entity in denormalizedEntities 

    if entity is both a many side and a one side of two 

relationships            

     and  a lookup object 

       foreach attribute in object 

          if attribute is PK 

             add attributes to many side entity  

             if attribute is a datetime type expand date pattern 

       swap graph location entity of the one sides 

  

foreach association in normalizedObjects 

    if association is one-to-may and many side is transactional 

        add foreign key to many side entity 

        add quantity field to entity on many side              

Figure 2. Denormalized Transaction Model. 
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during transactional activities.  The data in these 

classes are created by administrative activities.  

During transactions, the data is searched for the 

proper values. 

The Denormalization Algorithm, Algorithm 1, transforms 

a normalized model stored in a UML class diagram into a 

denormalized model represented as an entity-relationship 

diagram.  The algorithm assumes input and output of the 

models in the XMI [14] format.  XMI is a standard exchange 

format used to represent structural models in a non-

proprietary way. 

The algorithm first loops through each object in the 

normalized model and adds the object and attributes as 

entities in the denormalized entity-relationship diagram. If 

the object has the transactional stereotype, then the attributes 

are marked unique.  Surrogate Identifier fields are added to 

each object’s definition to be used as an auto-incrementing 

primary key. 

The next pass of the algorithm is to find objects that can 

be eliminated from the middle relationship of two “one-to-

many” relationships.  The original model, in Figure 1, had an 

activity schedule object that consumed a lot of data space by 

storing a lot of tuples to represent the occurrences an activity 

can take place.  We use a stereotype of “PK” applied to 

attributes in the original model to designate the primary 

identifier for instances of an object.  This designation allows 

us to shift the attribute down the association and swap the 

positioning of the objects.  In this iteration over the objects, 

we also look for date-time data types that are part of the 

primary key.  When we locate an occurrence, we replace the 

attribute with a date-time specification occurrence.  The date-

time specification includes a starting date, ending date, 

starting time, ending time and day of the week pattern. 

The final pass of the algorithm adds foreign keys and 

aggregation counters.  The aggregation significantly reduces 

the count of tuples stored.  An example of this is shown in 

Figure 1. Instead of having an instance of each ticket, we add 

the quantity field to store the aggregate count for the unique 

attributes. 

Figure 2 shows an entity-relationship diagram of a 

transformed model of Figure 1. Unique attributes have been 

applied where aggregations should be performed.  The 

activity schedule entity has been shifted out in the graph, and 

the quantity fields have been added to the aggregated 

transactional objects. 

 

IV. BUSINESS RULES 

Business rule engines have sprung up to allow the 

separation of business rules from the core application code.  

The systems are designed to allow the end users to change the 

business rules freely without changing the original 

application code. In 2007, International Data Corporation 

implemented a survey where they asked 'How often do you 

want to customize the business rules in your software?’. 

Ninety percent of the respondents reported that they changed 

their business rules annually or more frequently.  Thirty-four 

percent of the respondents reported that they changed their 

business rules monthly [15]. 

Figure 2 shows two tables that implement business rules:  

• Activity Schedule – This table implements the 

date-time pattern mentioned earlier to store the 

business rules for when a particular activity is 

valid. 

• Price Schedule – This table implements the date-

time pattern mentioned earlier to store the 

business rules for when a particular price is 

available. 

In each case objects in Figure 1, which inserted instances to 

represent availability, are replaced with rule instances to 

represent the availability.  So instead of having a tuple per 

availability instance, a single tuple can represent the pattern. 

In the case of activity schedules, the example year had over 

26,000 instances of availability that were replaced with 30 

instances of the business rule. 

 

V. OBJECT HISTORY ANALYSIS 

One of the main reasons an enterprise develops or 

purchases a software solution is to allow the organization to 

increase their knowledge of their operations through the 

analysis of the data collected in the software solution.  The 

denormalization solution presented earlier may limit the data 

TABLE I. EMPIRICAL RESULTS. 

Table Normalized 

Tuples 

Denormalized 

Tuples 

user 31 31 

patron 17,610 17,610 

ticket 738,981 157,780 

activity 

schedule 

26,697 30 

price schedule 220 24 

activity 17 17 

Total 783,556 175,492 

 

Algorithm 2. History Creation Algorithm. 

INPUT: object 

OUTPUT: collection of object’s version history 

 

Set thisObject = newest version of object 

Set objectVersions = empty list 
Set fieldVersions = distinct saveDates values from object journal  

Sort fieldVersions by saveDate descending 

Set lastDate = maximum(saveDate) 
Foreach version in fieldVersions 

     If lastDate = version.saveDate 

        objectVersions.add(thisObject) 
    Set thisObject.[version/attribute] = version.value 

    Set lastDate = version.saveDate 

Return objectVersions 
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available from the denormalization process.  The data is 

presented to the users through dashboards, reports or exports.  

A dashboard is presented as a graphical chart to measure 

where the organization stands compared to a goal.  Examples 

of these would be sales to date compared to same period last 

year.  A report has a set of input parameters that control the 

data displayed.  The data displayed in the report tends to 

include tables with aggregated values.  Exports allow for the 

exporting of data into a two-dimensional table saved as a 

comma separated value (CSV) format.  In this format, 

attributes represent the columns of the data.  Columns are 

escaped with double quotes and separated by commas.  For 

our purposes, we will refer to all three categories generically 

as reports. 

Current state and historical comparison are the two 

categories of reports a user may want to pull in their analysis. 

In current state reports, only the latest version of the object is 

needed.  In historical comparison reports, all versions of an 

object may be needed depending on the level of aggregation. 

An example of a historical comparison report would be a 

report that compares sales for the month compared to sales 

last year in the same month. 

In our work, we developed Algorithm 2 to create an in-

memory copy of all historical versions of a specific object.  

We use code to generate the data and then generate the report 

output. If the organization wanted to allow end users to report 

on historical versions, they could modify Algorithm 2 to 

write records as temporary tuples and then call the reporting 

tool. 

 

VI. EMPIRICAL RESULTS 

The empirical results demonstrate the success of 

representing the example transaction data with significantly 

lower cloud storage costs. TABLE I shows the tuple counts 

for the original data model and the denormalized data model.  

Both data models represent the complete 2014 calendar year 

of visitor transactions for the Gettysburg National Battlefield. 

The denormalized model creates a 78% reduction in the 

number of tuples. In the specific case of the force.com [2] 

platform, the reduction in the number of tuples allows the 

Figure 4. Advanced Reservation Workflow Model. 

Figure 3. Order Data Model. 
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organization to store nearly three years of transaction data in 

the data storage provided without additional subscriptions 

costs.  In the minimal data storage provided to an enterprise 

customer of force.com [2], the organization receives 500,000 

tuples. Additional data storage is available to the organization 

for a monthly subscription price of 2,000 tuples per dollar. 

Using the normalized data model to represent the 

transactional data a complete year of cannot be stored without 

purchasing more data storage. 

 

VII. MODELING WORKFLOW 

The first phase of research in this paper modeled the 

reservation transactions using domain specific objects.  Using 

domain-specific objects is the method to use if a designer is 

implementing greenfield engineering. The cloud PAAS 

platform we used in the first phase of the research, includes a 

full Customer Relationship Management (CRM) system to 

store interactions with customers   Out of the box the CRM 

provides objects to hold sales orders and the workflow with 

the customer before they place an order. Figure 4 shows the 

model of the workflow for the advanced sales operations.  

Leads are acquired through public events such as conference 

tabeling and information sessions.  After a lead is acquired a 

marketing activity takes place where the lead is related to the 

new activity.  Marketing activities may include email 

marketing, phone calls, in-person meetings and online 

meetings using a technology such as Skype or Google 

Hangouts.  When more information is gathered about the 

potential visit from the customer, the lead is converted into a 

contact object, account object, and opportunity object.  The 

contact object holds an individual's biographical details such 

as first name, last name, email, address, and phone numbers.  

The account object holds details about the organization the 

customer is associated with.  This data includes organization 

name, address, and phone number.  The opportunity object 

stores the details of the products the visitor is likely to order.  

These objects are shown in Figure 3. 

The workflow continues when the customer makes a 

commitment about their visit.  At this point, the opportunity 

is converted into two new out-of-the-box objects; Orders and 

OrderProducts.  Finally, when the payment is made by the 

customer, a PaymentSummary record, and a PaymentDetail 

record is inserted into the system.  The PaymentDetail record 

is stored for auditing purposes and is purged after the fiscal 

period is closed out.  Individual payment details were only 

used by the individual operators to settle out their daily cash 

drawers and by management to audit individual operator cash 

drawers.  Once the fiscal period has closed the details of 

multiple payments related to individual transactions is no 

longer needed.   

Figure 4 models the workflow used with non-anonymous 

transactions.  To model the collection of the anonymous data, 

we included Figure 5.  The model of the collection of 

anonymous data is a much shorter workflow where less data 

is collected.  Figure 3 included two detail objects; 

OrderProductDetails and PaymentDetails.  When data is 

created in the anonymous workflow the summary level object 

is aggregated on the user and visitation date. The detailed data 

is required on anonymous transactions for auditing purposes 

until the fiscal period is reconciled. The payment and order 

detail objects are purged after the fiscal period is closed.  

TABLE II shows the tuple count of the normalized data and 

the denormalized data from this methodology.  The table 

shows an eight-nine percent reduction of the tuple count. 

 

 

TABLE II. EMPIRICAL RESULTS. 

Table Normalized 

Tuples 

Denormalized 

Tuples 

Accounts 7,550 7,550 

Contacts 15,172 15,172 

OrderProducts 519,422 110,675 

Orders 176526 16,545 

Payments 717,446 7,310 

Products 38 38 

Users 178 178 
Total 1,436,332 157,468 

 

Figure 5. Frontdesk Workflow. 

Figure 6. One-to-Many Relationship. 
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VIII. ONE TO MANY LOOKUP CODES 

In traditional database design, one-to-many relationships 

are represented in separate objects.  Figure 6 shows a 

relationship we observed in another organization.  The New 

York Philharmonic stores keywords as a way to tag patrons 

with different attributes.  This design is the output of the 

normalization process used to eliminate update and deletion 

anomalies [16]. Relational databases use b-tree indexes that 

allow a change in the lookup value to be populated down to 

the joining table in log N time. 

An analysis of the data reveals that on average each 

patron had six keywords associated with their record.  To 

represent five hundred thousand patrons with this design 

requires a little over three million five hundred thousand 

tuples.  Bitmap indexes allow a database field to store bits to 

represent different discrete values in a single field.  In the 

example above, a multi-select field stored in patrons to 

represent the keywords associated with patrons would reduce 

the tuples to around five hundred thousand.  A single bit of 

the multi-select field uses a bit to represent the presence or 

absence of the lookup value.  A bitmap index stores separate 

lists of the tuples where the bitmap is turned on to allow the 

search time for queries, updates, and deletes to be below N 

search time.  The bitmap allows more data to be stored in 

fewer tuples but also allows fast retrieval time. 

 

IX. DEPARTMENTAL FUNCTIONAL INTEGRATIONS 

Enterprise transaction processing systems support several 

different use cases to fulfill the entire set of requirements of 

an organization. An organization will partition an enterprise 

system at the department level for several different reasons.  

Two of these reasons are a simplification of the functional 

model and to enable geographic proximity to the users 

entering the transactional data.  

The result of the departmental partitioning is a 

duplication of data across departmental systems, and the 

management of this duplication is a difficult problem.  Often 

an organization will enter this data manually in each local 

system.  The organization is forced to tolerate the data 

inconsistencies that come from the difference in human 

interpretation of the source data and transcription differences.   

We sampled a few enterprise organizations data in search 

of duplication of biographical information (customers, 

addresses, and telephone numbers).  Biographical information 

is easier to correct than other domains as there are standard 

algorithms to clean the data.  These algorithms include address 

standardization using the postal service CASS database [1] 

and move update database [2]. We applied the cleaning of the 

biographical data to the sample.  After, we found there was 

still a 17% duplication of biographical data collected in the 

individual departmental systems over a 10-year period. 

Functional differences across enterprise departments 

make it difficult for a single system to meet all the needs of 

the organization.  An organization could choose to relax 

functional requirements in exchange for better data quality, 

but this option is often not considered.  We surveyed the 41 

member organizations of CIO Arts [3] to find the threshold 

between functional requirement priority and system partition 

preference.  The member organizations are performing arts 

centers that have three specialized departmental system needs 

(Box Office, Fund Development, and Event Management).  In 

the study, it is clear that even low priority functional 

requirements take precedence over choosing a single 

enterprise system. 

Disperse Geographic locations also require departments 

to use separate systems to enable each department to keep its 

data local.  Localization avoids network partition problems 

and improves system performance.  Cloud providers offering 

infrastructure as a service or platform as a service are an 

alternative to geographic partitioning.  Unfortunately, these 

platforms are relatively new compared with the live cycle of 

vertical market enterprise systems.  Typically, vertical market 

systems are built using a client-server architecture that 

requires low latency response time, making them 

inappropriate for cloud providers. In our CIO Arts survey, we 

found all organizations used a Microsoft Windows client-

server application. 

Often system integrations are built to enable data to be 

automatically exchanged between departmental systems.  The 

integration is instead of having a single enterprise system. 

These processes can have high latency in the case of large 

volumes of transactional data updates.  The latency problem 

can lead to incorrect data and improper decision-making.  

With cloud-based enterprise systems, the data needs to be 

pulled or pushed between systems. 

TABLE III shows the bandwidth differences for 

synchronization of one year of our example data between two 

cloud systems.  The denormalized data represents an eighty-

eight percent reduction in bandwidth requirements and also 

represents a similar reduction in synchronization times. 

 

 

X. OFFLINE MOBILE APPLICATIONS 

Mobile computing has become ubiquitous over the past 

decade due to the proliferation of smartphones, tablet 

TABLE III. BANDWIDTH IN KB. 

Table Normalized 

Bandwidth 

Denormalized 

Bandwidth 

Accounts             1,888            1,888  

Contacts             3,793            3,793  

OrderProducts           25,971            5,534  

Orders           35,305            3,309  

Payments           53,808                548  

Products                     8                    8  

Users                   18                  18  

Keywords             1,214                   0    
Total         122,004          15,097  
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devices, and 4G mobile data coverage.  Data storage and 

computation for the applications running on the mobile 

devices are accessed from distributed web services running 

in cloud computing environments.  The software industry has 

responded by developing applications that require continuous 

connectivity, but this assumes safe computing environments 

and no user error.   In reality, applications operate in a very 

different environment from the software developer’s 

assumptions.  Internet connectivity will come and go as the 

mobile device moves between cell and hotspot range.  

Malicious users may want to pollute the data collection 

process by replaying data packets or manipulating data in the 

original request.  Application users may accidentally submit 

multiple times, forget to submit or submit incorrect data. 

To solve the problem of providing mobile application 

access to data in the presence of a network partition, we 

developed a caching algorithm that persisted a local copy of 

the data on the mobile device as data was retrieved from the 

cloud.  The data fetch operation attempts to call a web-service 

to retrieve fresh data when a user interacts with the 

application.  If a network partition is discovered, then the 

locally cached data is used instead of web-service data.  The 

reduced tuples required to store the data (shown in TABLE 

II) and the reduced bandwidth required to transfer the data 

(shown in TABLE III) allows more data to be cached locally.  

These reductions are important with mobile devices that have 

limited storage capacity and lower bandwidth available.  

 

XI. FINE-GRAINED WEB-SERVICE CALLS 

Many No-SQL databases handle tuple insertion via web-

services.  Each tuple create, read, update and delete (CRUD) 

operation requires a web-service call.  When these databases 

are hosted in the cloud, the latency becomes an important 

bottleneck to minimize.  In our testing, a back office web-

service call can be fulfilled in one to three milliseconds on 

average.  The same web-service call to a cloud provider 

requires between thirty and sixty milliseconds to fulfill on 

average. 

The reduction of tuples of our design methodology assists 

in reducing the combined latency required in a typical 

software application.  Over the workflow of a typical 

application the time the reduction is significant. The client 

reads data from the server to display each form.  With our 

methodology, make fewer calls are made on the form setup, 

and there are also fewer calls made when the application 

updates data. 

 

XII. LOSS OF CLOUD DATASTORE AVAILABILITY 

The loss of availability to a system deployed in the cloud 

is a security risk that all enterprises must consider when 

migrating from a self- hosted solution to a vendor-hosted 

solution.  Tuple-based licensing is a treat to availability or 

budget when overages occur. Tuple and data limit overage 

policies vary by cloud service provider, but, the threat of 

system availability loss should cause an organization to 

consider our modeling strategy to minimize the threat and the 

damage when an overflow occurs.  There are three overage 

policies in use by cloud service providers: 

• Bill for overage – The bill for overage policy 

allows continued use of the system after the 

overage occurs, but the organization is charged 

a fee based on the amount of overage.  Often the 

fees are much higher per tuple then they are on 

the fixed price policies.  The fixed price policy 

would be the pre-negotiated subscription fee the 

organization pays for their typical data. 

Salesforce uses the bill for overage policy for 

their cloud hosting data storage system.  When 

an organization surpassed the tuple limits, a 

warning is displayed inside the administrative 

application for the platform to notify the user of 

the overage.  

• Data insert or web-service call denial – This 

policy denies access to future writes, or system 

calls until the overage has been resolved.  

Salesforce uses this policy for web-service calls 

per day.  In the out-of-the-box web services, a 

call is made per tuple affected.  Once the daily 

limit is reached, the organization cannot invoke 

the web-service again until the next day. The 

possibly of no availability represents a large 

vulnerability for an organization and modeling 

must take this vulnerability into effect. 

• Throttling – Throttling is a policy that slows 

access down once tuple limits have been 

reached.  The throttling policy has been used by 

database systems for years in the back office, to 

ensure one thread does not overwhelm other 

concurrent threads on the server.  In the cloud 

several data stores, such as MongoDB, throttle 

inserts per thread [22]. 

In all three of the licensing policies, a design methodology 

that reduced tuples will reduce the potential of downtime and 

over costs. 

 

XIII. DISCUSSION 

At first glance, the problem addressed by our research in 

this study appears to be a self-inflicted problem created by a 

licensing model used by several of the PAAS service 

providers.  As we investigated the problem in depth, we 

quickly realized that traditional client-server database 

normalization models did not fit distributed cloud-based data 

store models.  The normalization algorithms we teach and 

learn in database classes are tiered assuming an iterative 

approach to move down the tiered normalization level.  The 

approach has a single goal of minimizing redundancy to 

alleviate update or deletion anomalies. The iterative approach 

includes a final phase in which the designer will denormalize 

the database structure to gain performance, concurrency or 
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storage enhancements.  In exchange for the better 

performance, concurrency or storage the designer or 

implementer is willing to accept the greater possibilities of 

deletion or update anomalies.  Our initial problem was 

focused on the reduction of the storage requirements. The 

change was not aimed at less disk space usage, but less 

subscription cost for the data service consumed. 

Over the course of the research project, we realized that 

the client-server model adds many other difficulties that can 

be eliminated in the denormalization phase. The client-server 

model has an innate preference for many smaller tables with 

a few attributes each over larger tables with many attributes 

stored per tuple.  In practice, this has led to three major 

difficulties.  The first challenge is experienced when an end 

user, of the application that generated the data,  tries to gain 

access to the data stored in the database.  The difficulty stems 

from the complexity of understanding the relationship 

between the many individual tables and the semantics of each 

table.  Second, there is also complexity added to the 

development of integration systems that consume and write 

the data.  With increased complexity comes increased 

development and maintenance costs.  Finally, there is 

complexity in enforcing higher level constraints on data when 

the data is distributed across many smaller relationships.  The 

need for correct data has increased as more and more data has 

become available for use in Management Information 

Systems (MIS) reports, data science prediction models and 

Executive Information Systems (EIS) visualizations.  The 

best way to ensure correct data is to declare constraints as 

close to the database store as possible.  The constraint 

declaration is simplified when the model is denormalized as 

we did in this project. 

 

XIV. CONCLUSION 

In this paper, we propose several algorithms for object 

denormalization when transforming an application domain 

object model to a data model used in a cloud PAAS data store. 

Our solution is based on navigating the relationships in a 

UML class diagram and horizontally compressing classes 

between multiple one-to-many relationships, aggregating 

relationships on anonymous relationships, using temporal 

offering patterns and rolling up one-to-many relationships. 

The techniques used in our work met our goals of reduced 

tuple storage while increasing the usability of the data for the 

end users.  Like the denormalization methods of the late 

1990s, aimed at squeezing out a little more performance or a 

little more storage, our methods can be applied as individual 

strategies to save tuple space for a particular “use case.”  For 

example, if a developer needed to model data passed between 

a mobile application and a cloud application, the 

denormalized model could be used to represent the data 

transferred.  Likewise, if a developer had many one-to-many 

relationships and needed to reduce tuples, then our specific 

approach could be applied in that instance to reduce the 

storage requirements of the many sides of the relationship. 

In this research, we studied a specific application domain 

related to humanities organizations.  The algorithms can be 

applied to similar application domains that contain entity 

objects representing transactions and customers. Future work 

needs to test our algorithms in other application domains to 

ensure the work applies across different application domains.   
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