
Cloud Data Denormalization for Platform-As-A-Service

Aspen Olmsted

Department of Computer Science

College of Charleston, Charleston, SC 29401

e-mail: olmsteda@cofc.edu

Abstract— In this paper, we investigate the problem of

representing transaction data in PAAS cloud-based systems.

We compare traditional database normalization techniques

with our denormalized approach. In this research, we focus on

transactional data related to an organization’s customers. Some

optimization comes from the absence of a known customer

object, which allows for the vertical merging of tuples. Instead

of storing detail transactional data, data is stored in aggregate

form. The journaling features of the data store allow for full

audits of transactions while not requiring anonymous data to be

materialized in fine-grained levels. The horizontal merging of

objects is also deployed to remove detail lookup data instance

records and one-to-many leaf node records.

Keywords-web services; distributed database; modeling; cloud

computing

I. INTRODUCTION

In this work, we investigate the problem of representing
transactional data in a platform as a service (PAAS) cloud-
based system. In traditional client-server architectures,
database normalization is used to ensure that redundant data
does not exist in the system. Redundant data can lead to
update anomalies if the developer is not careful to update
every instance of a fact when modifying data. Normalization
is also performed to ensure unrelated facts are not stored in the
same tuples resulting in deletion anomalies. Our earlier work
[1] focused on the minimization of storage requirements for
anonymous transaction data in PAAS cloud storage. This
work extends that research, by increasing the optimizations to
include enterprise integration, mobile integration and the
modeling of the workflow and lifecycle of objects in a PAAS
system.

Data representation in the cloud has many of the same
challenges as data representation in client/server architectures.
One challenge data representation in the cloud has that is not
shared with client/server is the minimization of data. This
challenge exists because the costs of cloud data storage are
significantly higher than the costs for local storage. When we
say higher costs, we mean the simple, measurable costs for the
disk storage, not the true costs of managing and accessing the
data over the life of the application. Organizations have
traditionally budgeted the costs of disk drives for local storage
which are in the tens of dollars per gigabyte. Similar cloud
storage can be in the hundreds of dollars per gigabyte per
month [1]. Often this storage is expressed as the number of
tuples in the data store instead of the number of bytes on the
disk drive holding the data. For example, force.com [2]
charges for blocks of data measured in megabytes but they
calculate usage as a flat 2KB per tuple. Zoho Corporation
also tracks data storage by the tuple for serval of their cloud
products including Creator [3] and CRM [4]. The tuple count

method is used as it is easier to calculate in a multi-tenant
system where the physical disk drives are shared by many
clients.

In this paper, we present an algorithm that will minimize
the number of tuples used to store the facts for a software
system. We use a motivating example from a cloud software
system developed by students in our lab. The algorithm
performs three main operations:

• The horizontal merging of objects – several distinct
relations are combined into one.

• The vertical merging of objects – several distinct
instances of the same type of facts is combined into
one.

• Business rule adoption – instead of storing tuples to
represent availability of lookup data, we replace the
tables with pattern based business rules

We apply our algorithm to a system in the humanities
application domain and show an approximately 500%
reduction in tuple storage.

Date [5] invests a good deal of his text on the definition

of denormalization. He argues that denormalization is when

the number of relational variables is reduced, and functional

dependencies are introduced where the left-hand side of the

functional dependency no longer is a super key. The practical

realization of Date’s denormalization is that the primary key

does not directly determine attributes in the tuple, leading to

update and deletion anomalies in exchange for better

performance or storage. In our work, we perform many

optimizations. When we horizontally merge relations, then

we are performing a true denormalization in Date’s

definition. Other optimizations such as vertical merging do

not fit Date’s definition of denormalization. We choose to

stay with the term denormalization algorithm as it is a set of

steps taken after the normalization process to optimize an

aspect of the data model.

The organization of the paper is as follows. Section II

describes the related work and the limitations of current

methods. In Section III, we give a motivating example where

our algorithm is useful and describe our denormalization

algorithm. Section IV describes additional enhancements

through the design of business rule objects. Section V

explores reporting from the denormalized objects utilizing

the object version history stored in the journal. Section VI

contains our comparison of the proposed method and the

traditional database normalization method. We explore the

denormalization when applied to an object’s workflow and

lifecycle in Section VII. In Section VIII, we add an additional

optimization to handle one-to-many lookup storage of data.

Section X investigates the denormalization algorithm when

applied to mobile computing. Section XI considers our data

21

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

model in the context of web-service database. In Section XII,

we analyze the security vulnerabilities that are reduced

through our data modeling technique. Section XIII gives a

discussion of our experience through this work. We conclude

and consider future work in Section XIV.

II. RELATED WORK

Sanders and Shin [6] investigate the process to be

followed when denormalization is done on relational data

management systems (RDBMS) to gain better query

performance. Their research was performed before the cloud

database offerings became prevalent. In the cloud, database

performance is less of an issue to storage requirements

because the systems are designed to distribute queries across

many systems.

Conley and Whitehurst [7] patented the idea of

denormalizing databases for performance but hiding the

denormalization for the end user. Their work focuses on

merging two relations into one relationship to eliminate the

processing required to join the records back together. Their

work uses horizontal denormalization to gain performance.

Our work uses both horizontal and vertical denormalization

to minimize storage space and increase usability.

Most denormalization research work was done in the late

1990s and was focused on improvement in query

performance. The performance was an exchange for a loss of

correctness and usability of the data. Recently, folks like

Andrey Balmin have looked at denormalization as a

technique to improve the performance of querying XML data.

Like the previously mentioned research, this work differs

from our work in the desired end goal. Our end goal being

the minimization of data storage and improvement in end user

usability.

In Bisdas’ [8] blog, he demonstrates ways that end users

can improve data visualization by vertically merging

hierarchical data in the Salesforce, data model. He takes

advantage of the trigger architecture to create redundant data

in the hierarchy. Taber [9] also recommends denormalization

to improve data visualization. The problem with both

solutions is that data storage requirements are increased while

correctness is jeopardized by the redundant data.

In one of our previous publications [10], we study UML

models from the perspective of integrating heterogeneous

software systems. In this work, we create an algorithm to sort

cyclical UML class data diagrams to enable transaction

reformation in the integration. In the process, discoveries

were made on the freshness of data at different layers in the

UML graph. The knowledge is useful in this study when

considering anomalies that can happen in response to data

updates.

Additional semantics for models can be added by the

integration of the matching UML Activity and Class

diagrams. UML provides an extensibility mechanism that

allows a designer to add new semantics to a model. A

stereotype is one of three types of extensibility mechanisms

in the UML that allows a designer to extend the vocabulary

of UML to represent new model elements [11]. Traditionally

the semantics were consumed by the software developer

manually and translated into the program code in a hard

coded fashion.
Developers have implemented business rules in software

systems since the first software package was developed. Most
research has been around developing expert systems to
process large business rule trees efficiently. Charles Forgy
[12] developed the Rete Algorithm, which has become the
standard algorithm used in business rule engines. Forgy has
published several variations on the Rete Algorithm over the
past few decades. In this work, we focus on the representation
of the business rules in the data model.

Our previous work [13] on data modeling for the cloud
focuses on benefits gained by aggregating anonymous data.
These benefits and the research behind that study is covered
here along with further work to minimize data storage
requirements for one-to-many data along with schema
denormalization when using predefined object schemas.

III. DENORMALIZATION

We demonstrate our work using a Tour Reservation

System (TRS). TRS uses web services to provide a variety

of functionalities to the patrons who are visiting a museum or

historical organization. We use the UML specification to

represent the meta-data. Figure 1 shows a UML class diagram

for an implementation of this functionality. The Unified

Modeling Language includes a set of graphic notation

techniques to create visual models of object-oriented

software systems [13]. In this study, we use data collected

by the Gettysburg Foundation on visitors to their national

battlefield. The system is modeled and implemented on the

force.com [2] cloud platform.

Figure 1 shows a normalized UML class model of

reservation transactions of visitors to the Gettysburg National

Battlefield. In the model, the central object ticket represents

a pass for an entry that is valid for a specific date and time

and a specific activity. Activities are itinerary items the

visitor can be involved in while visiting the battlefield. In the

normalized model, each ticket is linked to a specific activity

Figure 1. Normalized Transaction Model.

22

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

schedule entry that will designate the date and time the pass

is valid for entry. Each activity schedule is linked to an

activity object that designates the name and location of the

activity.

Each ticket is linked to a user in the Gettysburg

organization who was responsible for the transaction. Each

ticket can be linked to a patron object. In the case of

advanced reservations, there will be a valid patron object

linked to the ticket. Advanced reservations are transactions

that take place through the organization's website or over the

phone to a reservation agent. In the case of walk-up

transactions, there will not be a linked patron. A walk-up

transaction is a transaction that takes place when a visitor

arrives on the site without a prior reservation and pays for the

ticket at the front desk.

In Figure 1, the multiplicity of the association between the

patron and the ticket is a zero or one to many. A multiplicity

that can be zero represents anonymous data. Anonymous

data is data that does not need to be specified in order for the

transaction to be valid. In the example transaction, the patron

can remain anonymous but still visit the battlefield and

partake in the activities. In the case of the sample Gettysburg

data, 60 percent of ticketing transactions were anonymous.

In the case of the force.com [2] PAAS, data storage is

charged by the tuple. With an enterprise license to the

platform, the organization is granted access to one gigabyte

of data storage. The storage is measured by treating every

tuple as two kilobytes. This form of measurement allows the

organization 500,000 tuples in the enterprise data storage

option. The data collected for the normalized data model

would allow the Gettysburg organization to store around nine

months’ worth of data. With the anonymous transaction, the

ticket and the payment data is only important on the original

transaction level for auditing. For example, the accounting

department may want to see the details behind a specific

ticket agent’s cash total for the day. Another example would

be the marketing department wants to see the ticket price

patterns within an hour of the day.

The force.com [2] platform uses an Oracle relational

database to deliver the data storage services but adds a journal

feature so history can be stored on all changes to an object

over time. This journal can be used at no additional data

storage cost. The field level changes stored in the journal

would allow aggregate data to be stored for anonymous

transactions and still have the detail to perform the audits

mentioned earlier.

If an object is used between two other objects where the

middle object is the “many” side of the one-to-many

relationship and the one side of the other relationship, then

the same data can be represented by moving the attributes to

the object on the composition side of the relationship. The

middle object is then able to be removed, reducing the

number of tuples representing the same amount of data. In

Figure 1, the “Activity Schedule” object fits this profile and

can be horizontally merged with the “Ticket” object. In our

previous work [10], we study UML data model freshness

requirements and document the relationship between data

changes and location in the UML graph. In our findings, we

see that middle object nodes are less predisposed to changes

than leaf nodes. The lower amount of data changes reduces

the change of update anomalies.

In Figure 1, we also designate objects that are updated in

transactions differently than objects that are navigated for

transactional lookup values. Two stereotypes are added to

the diagram:

• Transactional – The classes designated with the

orange color and the <<Transactional>> tag are

updated during transactional activities.

• Lookup – The classes designated with the green

color and the <<Lookup>> tag are not updated

Algorithm 1. Denormalization Algorithm.

INPUT: normalizedObjects (XMI representation of

UML class diagram)

OUTPUT: denormalizedEntities (XMI representation

of denormalized entities)

foreach object in normalizedObjects

 add entity to denormalizedEntities

 foreach attribute in object

 add attribute to entity

 if object is transactional

 mark attribute as unique

 add id attribute as primary key

 mark id as autoincrement

foreach entity in denormalizedEntities

 if entity is both a many side and a one side of two

relationships

 and a lookup object

 foreach attribute in object

 if attribute is PK

 add attributes to many side entity

 if attribute is a datetime type expand date pattern

 swap graph location entity of the one sides

foreach association in normalizedObjects

 if association is one-to-may and many side is transactional

 add foreign key to many side entity

 add quantity field to entity on many side

Figure 2. Denormalized Transaction Model.

23

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

during transactional activities. The data in these

classes are created by administrative activities.

During transactions, the data is searched for the

proper values.

The Denormalization Algorithm, Algorithm 1, transforms

a normalized model stored in a UML class diagram into a

denormalized model represented as an entity-relationship

diagram. The algorithm assumes input and output of the

models in the XMI [14] format. XMI is a standard exchange

format used to represent structural models in a non-

proprietary way.

The algorithm first loops through each object in the

normalized model and adds the object and attributes as

entities in the denormalized entity-relationship diagram. If

the object has the transactional stereotype, then the attributes

are marked unique. Surrogate Identifier fields are added to

each object’s definition to be used as an auto-incrementing

primary key.

The next pass of the algorithm is to find objects that can

be eliminated from the middle relationship of two “one-to-

many” relationships. The original model, in Figure 1, had an

activity schedule object that consumed a lot of data space by

storing a lot of tuples to represent the occurrences an activity

can take place. We use a stereotype of “PK” applied to

attributes in the original model to designate the primary

identifier for instances of an object. This designation allows

us to shift the attribute down the association and swap the

positioning of the objects. In this iteration over the objects,

we also look for date-time data types that are part of the

primary key. When we locate an occurrence, we replace the

attribute with a date-time specification occurrence. The date-

time specification includes a starting date, ending date,

starting time, ending time and day of the week pattern.

The final pass of the algorithm adds foreign keys and

aggregation counters. The aggregation significantly reduces

the count of tuples stored. An example of this is shown in

Figure 1. Instead of having an instance of each ticket, we add

the quantity field to store the aggregate count for the unique

attributes.

Figure 2 shows an entity-relationship diagram of a

transformed model of Figure 1. Unique attributes have been

applied where aggregations should be performed. The

activity schedule entity has been shifted out in the graph, and

the quantity fields have been added to the aggregated

transactional objects.

IV. BUSINESS RULES

Business rule engines have sprung up to allow the

separation of business rules from the core application code.

The systems are designed to allow the end users to change the

business rules freely without changing the original

application code. In 2007, International Data Corporation

implemented a survey where they asked 'How often do you

want to customize the business rules in your software?’.

Ninety percent of the respondents reported that they changed

their business rules annually or more frequently. Thirty-four

percent of the respondents reported that they changed their

business rules monthly [15].

Figure 2 shows two tables that implement business rules:

• Activity Schedule – This table implements the

date-time pattern mentioned earlier to store the

business rules for when a particular activity is

valid.

• Price Schedule – This table implements the date-

time pattern mentioned earlier to store the

business rules for when a particular price is

available.

In each case objects in Figure 1, which inserted instances to

represent availability, are replaced with rule instances to

represent the availability. So instead of having a tuple per

availability instance, a single tuple can represent the pattern.

In the case of activity schedules, the example year had over

26,000 instances of availability that were replaced with 30

instances of the business rule.

V. OBJECT HISTORY ANALYSIS

One of the main reasons an enterprise develops or

purchases a software solution is to allow the organization to

increase their knowledge of their operations through the

analysis of the data collected in the software solution. The

denormalization solution presented earlier may limit the data

TABLE I. EMPIRICAL RESULTS.

Table Normalized

Tuples

Denormalized

Tuples

user 31 31

patron 17,610 17,610

ticket 738,981 157,780

activity

schedule

26,697 30

price schedule 220 24

activity 17 17

Total 783,556 175,492

Algorithm 2. History Creation Algorithm.

INPUT: object

OUTPUT: collection of object’s version history

Set thisObject = newest version of object

Set objectVersions = empty list
Set fieldVersions = distinct saveDates values from object journal

Sort fieldVersions by saveDate descending

Set lastDate = maximum(saveDate)
Foreach version in fieldVersions

 If lastDate = version.saveDate

 objectVersions.add(thisObject)
 Set thisObject.[version/attribute] = version.value

 Set lastDate = version.saveDate

Return objectVersions

24

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

available from the denormalization process. The data is

presented to the users through dashboards, reports or exports.

A dashboard is presented as a graphical chart to measure

where the organization stands compared to a goal. Examples

of these would be sales to date compared to same period last

year. A report has a set of input parameters that control the

data displayed. The data displayed in the report tends to

include tables with aggregated values. Exports allow for the

exporting of data into a two-dimensional table saved as a

comma separated value (CSV) format. In this format,

attributes represent the columns of the data. Columns are

escaped with double quotes and separated by commas. For

our purposes, we will refer to all three categories generically

as reports.

Current state and historical comparison are the two

categories of reports a user may want to pull in their analysis.

In current state reports, only the latest version of the object is

needed. In historical comparison reports, all versions of an

object may be needed depending on the level of aggregation.

An example of a historical comparison report would be a

report that compares sales for the month compared to sales

last year in the same month.

In our work, we developed Algorithm 2 to create an in-

memory copy of all historical versions of a specific object.

We use code to generate the data and then generate the report

output. If the organization wanted to allow end users to report

on historical versions, they could modify Algorithm 2 to

write records as temporary tuples and then call the reporting

tool.

VI. EMPIRICAL RESULTS

The empirical results demonstrate the success of

representing the example transaction data with significantly

lower cloud storage costs. TABLE I shows the tuple counts

for the original data model and the denormalized data model.

Both data models represent the complete 2014 calendar year

of visitor transactions for the Gettysburg National Battlefield.

The denormalized model creates a 78% reduction in the

number of tuples. In the specific case of the force.com [2]

platform, the reduction in the number of tuples allows the

Figure 4. Advanced Reservation Workflow Model.

Figure 3. Order Data Model.

25

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

organization to store nearly three years of transaction data in

the data storage provided without additional subscriptions

costs. In the minimal data storage provided to an enterprise

customer of force.com [2], the organization receives 500,000

tuples. Additional data storage is available to the organization

for a monthly subscription price of 2,000 tuples per dollar.

Using the normalized data model to represent the

transactional data a complete year of cannot be stored without

purchasing more data storage.

VII. MODELING WORKFLOW

The first phase of research in this paper modeled the

reservation transactions using domain specific objects. Using

domain-specific objects is the method to use if a designer is

implementing greenfield engineering. The cloud PAAS

platform we used in the first phase of the research, includes a

full Customer Relationship Management (CRM) system to

store interactions with customers Out of the box the CRM

provides objects to hold sales orders and the workflow with

the customer before they place an order. Figure 4 shows the

model of the workflow for the advanced sales operations.

Leads are acquired through public events such as conference

tabeling and information sessions. After a lead is acquired a

marketing activity takes place where the lead is related to the

new activity. Marketing activities may include email

marketing, phone calls, in-person meetings and online

meetings using a technology such as Skype or Google

Hangouts. When more information is gathered about the

potential visit from the customer, the lead is converted into a

contact object, account object, and opportunity object. The

contact object holds an individual's biographical details such

as first name, last name, email, address, and phone numbers.

The account object holds details about the organization the

customer is associated with. This data includes organization

name, address, and phone number. The opportunity object

stores the details of the products the visitor is likely to order.

These objects are shown in Figure 3.

The workflow continues when the customer makes a

commitment about their visit. At this point, the opportunity

is converted into two new out-of-the-box objects; Orders and

OrderProducts. Finally, when the payment is made by the

customer, a PaymentSummary record, and a PaymentDetail

record is inserted into the system. The PaymentDetail record

is stored for auditing purposes and is purged after the fiscal

period is closed out. Individual payment details were only

used by the individual operators to settle out their daily cash

drawers and by management to audit individual operator cash

drawers. Once the fiscal period has closed the details of

multiple payments related to individual transactions is no

longer needed.

Figure 4 models the workflow used with non-anonymous

transactions. To model the collection of the anonymous data,

we included Figure 5. The model of the collection of

anonymous data is a much shorter workflow where less data

is collected. Figure 3 included two detail objects;

OrderProductDetails and PaymentDetails. When data is

created in the anonymous workflow the summary level object

is aggregated on the user and visitation date. The detailed data

is required on anonymous transactions for auditing purposes

until the fiscal period is reconciled. The payment and order

detail objects are purged after the fiscal period is closed.

TABLE II shows the tuple count of the normalized data and

the denormalized data from this methodology. The table

shows an eight-nine percent reduction of the tuple count.

TABLE II. EMPIRICAL RESULTS.

Table Normalized

Tuples

Denormalized

Tuples

Accounts 7,550 7,550

Contacts 15,172 15,172

OrderProducts 519,422 110,675

Orders 176526 16,545

Payments 717,446 7,310

Products 38 38

Users 178 178
Total 1,436,332 157,468

Figure 5. Frontdesk Workflow.

Figure 6. One-to-Many Relationship.

26

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. ONE TO MANY LOOKUP CODES

In traditional database design, one-to-many relationships

are represented in separate objects. Figure 6 shows a

relationship we observed in another organization. The New

York Philharmonic stores keywords as a way to tag patrons

with different attributes. This design is the output of the

normalization process used to eliminate update and deletion

anomalies [16]. Relational databases use b-tree indexes that

allow a change in the lookup value to be populated down to

the joining table in log N time.

An analysis of the data reveals that on average each

patron had six keywords associated with their record. To

represent five hundred thousand patrons with this design

requires a little over three million five hundred thousand

tuples. Bitmap indexes allow a database field to store bits to

represent different discrete values in a single field. In the

example above, a multi-select field stored in patrons to

represent the keywords associated with patrons would reduce

the tuples to around five hundred thousand. A single bit of

the multi-select field uses a bit to represent the presence or

absence of the lookup value. A bitmap index stores separate

lists of the tuples where the bitmap is turned on to allow the

search time for queries, updates, and deletes to be below N

search time. The bitmap allows more data to be stored in

fewer tuples but also allows fast retrieval time.

IX. DEPARTMENTAL FUNCTIONAL INTEGRATIONS

Enterprise transaction processing systems support several

different use cases to fulfill the entire set of requirements of

an organization. An organization will partition an enterprise

system at the department level for several different reasons.

Two of these reasons are a simplification of the functional

model and to enable geographic proximity to the users

entering the transactional data.

The result of the departmental partitioning is a

duplication of data across departmental systems, and the

management of this duplication is a difficult problem. Often

an organization will enter this data manually in each local

system. The organization is forced to tolerate the data

inconsistencies that come from the difference in human

interpretation of the source data and transcription differences.

We sampled a few enterprise organizations data in search

of duplication of biographical information (customers,

addresses, and telephone numbers). Biographical information

is easier to correct than other domains as there are standard

algorithms to clean the data. These algorithms include address

standardization using the postal service CASS database [1]

and move update database [2]. We applied the cleaning of the

biographical data to the sample. After, we found there was

still a 17% duplication of biographical data collected in the

individual departmental systems over a 10-year period.

Functional differences across enterprise departments

make it difficult for a single system to meet all the needs of

the organization. An organization could choose to relax

functional requirements in exchange for better data quality,

but this option is often not considered. We surveyed the 41

member organizations of CIO Arts [3] to find the threshold

between functional requirement priority and system partition

preference. The member organizations are performing arts

centers that have three specialized departmental system needs

(Box Office, Fund Development, and Event Management). In

the study, it is clear that even low priority functional

requirements take precedence over choosing a single

enterprise system.

Disperse Geographic locations also require departments

to use separate systems to enable each department to keep its

data local. Localization avoids network partition problems

and improves system performance. Cloud providers offering

infrastructure as a service or platform as a service are an

alternative to geographic partitioning. Unfortunately, these

platforms are relatively new compared with the live cycle of

vertical market enterprise systems. Typically, vertical market

systems are built using a client-server architecture that

requires low latency response time, making them

inappropriate for cloud providers. In our CIO Arts survey, we

found all organizations used a Microsoft Windows client-

server application.

Often system integrations are built to enable data to be

automatically exchanged between departmental systems. The

integration is instead of having a single enterprise system.

These processes can have high latency in the case of large

volumes of transactional data updates. The latency problem

can lead to incorrect data and improper decision-making.

With cloud-based enterprise systems, the data needs to be

pulled or pushed between systems.

TABLE III shows the bandwidth differences for

synchronization of one year of our example data between two

cloud systems. The denormalized data represents an eighty-

eight percent reduction in bandwidth requirements and also

represents a similar reduction in synchronization times.

X. OFFLINE MOBILE APPLICATIONS

Mobile computing has become ubiquitous over the past

decade due to the proliferation of smartphones, tablet

TABLE III. BANDWIDTH IN KB.

Table Normalized

Bandwidth

Denormalized

Bandwidth

Accounts 1,888 1,888

Contacts 3,793 3,793

OrderProducts 25,971 5,534

Orders 35,305 3,309

Payments 53,808 548

Products 8 8

Users 18 18

Keywords 1,214 0
Total 122,004 15,097

27

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

devices, and 4G mobile data coverage. Data storage and

computation for the applications running on the mobile

devices are accessed from distributed web services running

in cloud computing environments. The software industry has

responded by developing applications that require continuous

connectivity, but this assumes safe computing environments

and no user error. In reality, applications operate in a very

different environment from the software developer’s

assumptions. Internet connectivity will come and go as the

mobile device moves between cell and hotspot range.

Malicious users may want to pollute the data collection

process by replaying data packets or manipulating data in the

original request. Application users may accidentally submit

multiple times, forget to submit or submit incorrect data.

To solve the problem of providing mobile application

access to data in the presence of a network partition, we

developed a caching algorithm that persisted a local copy of

the data on the mobile device as data was retrieved from the

cloud. The data fetch operation attempts to call a web-service

to retrieve fresh data when a user interacts with the

application. If a network partition is discovered, then the

locally cached data is used instead of web-service data. The

reduced tuples required to store the data (shown in TABLE

II) and the reduced bandwidth required to transfer the data

(shown in TABLE III) allows more data to be cached locally.

These reductions are important with mobile devices that have

limited storage capacity and lower bandwidth available.

XI. FINE-GRAINED WEB-SERVICE CALLS

Many No-SQL databases handle tuple insertion via web-

services. Each tuple create, read, update and delete (CRUD)

operation requires a web-service call. When these databases

are hosted in the cloud, the latency becomes an important

bottleneck to minimize. In our testing, a back office web-

service call can be fulfilled in one to three milliseconds on

average. The same web-service call to a cloud provider

requires between thirty and sixty milliseconds to fulfill on

average.

The reduction of tuples of our design methodology assists

in reducing the combined latency required in a typical

software application. Over the workflow of a typical

application the time the reduction is significant. The client

reads data from the server to display each form. With our

methodology, make fewer calls are made on the form setup,

and there are also fewer calls made when the application

updates data.

XII. LOSS OF CLOUD DATASTORE AVAILABILITY

The loss of availability to a system deployed in the cloud

is a security risk that all enterprises must consider when

migrating from a self- hosted solution to a vendor-hosted

solution. Tuple-based licensing is a treat to availability or

budget when overages occur. Tuple and data limit overage

policies vary by cloud service provider, but, the threat of

system availability loss should cause an organization to

consider our modeling strategy to minimize the threat and the

damage when an overflow occurs. There are three overage

policies in use by cloud service providers:

• Bill for overage – The bill for overage policy

allows continued use of the system after the

overage occurs, but the organization is charged

a fee based on the amount of overage. Often the

fees are much higher per tuple then they are on

the fixed price policies. The fixed price policy

would be the pre-negotiated subscription fee the

organization pays for their typical data.

Salesforce uses the bill for overage policy for

their cloud hosting data storage system. When

an organization surpassed the tuple limits, a

warning is displayed inside the administrative

application for the platform to notify the user of

the overage.

• Data insert or web-service call denial – This

policy denies access to future writes, or system

calls until the overage has been resolved.

Salesforce uses this policy for web-service calls

per day. In the out-of-the-box web services, a

call is made per tuple affected. Once the daily

limit is reached, the organization cannot invoke

the web-service again until the next day. The

possibly of no availability represents a large

vulnerability for an organization and modeling

must take this vulnerability into effect.

• Throttling – Throttling is a policy that slows

access down once tuple limits have been

reached. The throttling policy has been used by

database systems for years in the back office, to

ensure one thread does not overwhelm other

concurrent threads on the server. In the cloud

several data stores, such as MongoDB, throttle

inserts per thread [22].

In all three of the licensing policies, a design methodology

that reduced tuples will reduce the potential of downtime and

over costs.

XIII. DISCUSSION

At first glance, the problem addressed by our research in

this study appears to be a self-inflicted problem created by a

licensing model used by several of the PAAS service

providers. As we investigated the problem in depth, we

quickly realized that traditional client-server database

normalization models did not fit distributed cloud-based data

store models. The normalization algorithms we teach and

learn in database classes are tiered assuming an iterative

approach to move down the tiered normalization level. The

approach has a single goal of minimizing redundancy to

alleviate update or deletion anomalies. The iterative approach

includes a final phase in which the designer will denormalize

the database structure to gain performance, concurrency or

28

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

storage enhancements. In exchange for the better

performance, concurrency or storage the designer or

implementer is willing to accept the greater possibilities of

deletion or update anomalies. Our initial problem was

focused on the reduction of the storage requirements. The

change was not aimed at less disk space usage, but less

subscription cost for the data service consumed.

Over the course of the research project, we realized that

the client-server model adds many other difficulties that can

be eliminated in the denormalization phase. The client-server

model has an innate preference for many smaller tables with

a few attributes each over larger tables with many attributes

stored per tuple. In practice, this has led to three major

difficulties. The first challenge is experienced when an end

user, of the application that generated the data, tries to gain

access to the data stored in the database. The difficulty stems

from the complexity of understanding the relationship

between the many individual tables and the semantics of each

table. Second, there is also complexity added to the

development of integration systems that consume and write

the data. With increased complexity comes increased

development and maintenance costs. Finally, there is

complexity in enforcing higher level constraints on data when

the data is distributed across many smaller relationships. The

need for correct data has increased as more and more data has

become available for use in Management Information

Systems (MIS) reports, data science prediction models and

Executive Information Systems (EIS) visualizations. The

best way to ensure correct data is to declare constraints as

close to the database store as possible. The constraint

declaration is simplified when the model is denormalized as

we did in this project.

XIV. CONCLUSION

In this paper, we propose several algorithms for object

denormalization when transforming an application domain

object model to a data model used in a cloud PAAS data store.

Our solution is based on navigating the relationships in a

UML class diagram and horizontally compressing classes

between multiple one-to-many relationships, aggregating

relationships on anonymous relationships, using temporal

offering patterns and rolling up one-to-many relationships.

The techniques used in our work met our goals of reduced

tuple storage while increasing the usability of the data for the

end users. Like the denormalization methods of the late

1990s, aimed at squeezing out a little more performance or a

little more storage, our methods can be applied as individual

strategies to save tuple space for a particular “use case.” For

example, if a developer needed to model data passed between

a mobile application and a cloud application, the

denormalized model could be used to represent the data

transferred. Likewise, if a developer had many one-to-many

relationships and needed to reduce tuples, then our specific

approach could be applied in that instance to reduce the

storage requirements of the many sides of the relationship.

In this research, we studied a specific application domain

related to humanities organizations. The algorithms can be

applied to similar application domains that contain entity

objects representing transactions and customers. Future work

needs to test our algorithms in other application domains to

ensure the work applies across different application domains.

REFERENCES

[1] A. Olmsted and G. Santhanakrishnan, "Cloud Data

Denormalization of Anonymous Transactions," in Cloud

Computing 2016, The Seventh International Conference on

Cloud Computing, GRIDs, and Virtualization, Rome, Italy,

March 20-24 2016, ISBN: 978-1-61208-460-2, pp 42-46.

[2] Brainsell blog, "Salesforce, SugarCRM and SalesLogix —

Data Storage Costs Compared," 2016. [Online]. Available:

https://www.zoho.com/creator/pricing-comparison.html.

[Accessed 2017.5.5].

[3] Salesforce.com, inc, "Run your business better with Force.,"

2006. [Online]. Available:

http://www.salesforce.com/platform/products/force/?d=701

30000000f27V&internal=true. [Accessed 2016.02.03].

[4] Zoho Corporation, "Creator Pricing Comparison," 2016.

[Online]. Available: https://www.zoho.com/creator/pricing-

comparison.html. [Accessed 2016.02.03].

[5] Zoho Corporation, "Compare Zoho CRM editions," 2016.

[Online]. Available:

https://www.zoho.com/crm/comparison.html. [Accessed

2016.02.03].

[6] C. J. Date, "Denormalization," in Database Design and

Relational Theory, O'Reilly Media, 2012.

[7] G. L. Sanders and S. Shin, "Denormalization Effects on

Performance of RDBMS," in Proceedings of the 34th

Hawaii International Conference on Systems Sciences, 2001.

[8] J. D. Conley and R. P. Whitehurst, "Automatic and

transparent denormalization support, wherein

denormalization is achieved through appending of fields to

base relations of a normalized database." USA Patent

US5369761 A, 29 November 1994.

[9] A. Bisda , "Salesforce Denormalization Delivers New Power

for Nurtures," DemandGen, 29 07 2014. [Online]. Available:

http://www.demandgen.com/salesforce-denormalization-

delivers-new-power-nurtures/. [Accessed 2015.5.5].

[10] D. Taber, Salesforce.com Secrets of Success: Best Practices

for Growth and Profitability, Prentice Hall, 2013.

[11] A. Olmsted, "Fresh, Atomic, Consistent and Durable

(FACD) Data Integration Guarantees," in Software

Engineering and Data Engineering, 2015 International

Conference for, San Diego, CA, 2015.

[12] Object Management Group, "Unified Modeling Language:

Supersturcture," 05 02 2007. [Online]. Available:

http://www.omg.org/spec/UML/2.1.1/. [Accessed

2015.5.5].

[13] C. L. Forgy, "Rete: A fast algorithm for the many

pattern/many object pattern match problem," Artificial

Intelligence, vol. 19, no. 1, p. 17–37, 1982.

29

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] A. Olmsted and G. Santhanakrishnan, "Cloud Data

Denormalization of Anonymous Transactions," in Cloud

Computing 2016, Rome, Italy, 2015.

[15] Object Management Group, "Unified Modeling Language:

Supersturcture," 05 02 2007. [Online]. Available:

http://www.omg.org/spec/UML/2.1.1/. [2015.5.5].

[16] Object Management Group, "OMG Formal Versions of

XMI," 06 2015. [Online]. Available:

http://www.omg.org/spec/XMI/. [Accessed 2015.11.11].

[17] Ceiton Technologies, "Introducing Workflow," [Online].

Available:

http://ceiton.com/CMS/EN/workflow/introduction.html#Cu

stomization. [Accessed 2014.15.09].

[18] J. Ullman and J. Widom , A First Course in Database

Systems, Pearson, 2007.

[19] "Certification Programs," United State Postal Service,

[Online]. Available:

https://www.usps.com/business/certification-programs.htm.

[Accessed 2015.5.5].

[20] United States Postal Service, [Online]. Available:

https://www.usps.com/business/move-update.htm.

[Accessed 2015.5.5].

[21] CIO Arts, Inc, [Online]. Available: http://www.cioarts.org/.

[Accessed 2015.5.5].

[22] Normally Pleasant Mixture, "mongo-throttle," [Online].

Available: https://www.npmjs.com/package/mongo-throttle.

[Accessed 2017.01.27].

30

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

