
Interface Construction, Deployment and Operation – a Mystery Solved

Alexander Hagemann

Hamburger Hafen und Logistik AG
Bei St. Annen 1

20457 Hamburg, Germany
Email: hagemann@hhla.de

Gerrit Krepinsky

Hamburger Hafen und Logistik AG
Bei St. Annen 1

20457 Hamburg, Germany
Email: krepinsky@hhla.de

Christian Wolf

Hamburger Hafen und Logistik AG
Bei St. Annen 1

20457 Hamburg, Germany
Email: wolf@hhla.de

Abstract—The increasing digitalization pressure within the in-
dustry resulted in a continuously growing demand on IT sup-
ported business processes over the past decades. This pressure
changed singular mainframe applications into large, distributed
application landscapes usually operated in a 24/7 hours mode.
Simultaneously, this enforced increased support demands to the
application management as well as further application integration
requirements during development. Therefore, decoupled, robust
and supervise able applications are required. Since the behavior
of these applications is determined solely by their communication
behavior on interfaces, it becomes apparent that interfaces
are of overall significance within such distributed application
landscapes. But in our experience, interfaces usually do not get
the required attention during design, construction, deployment
and operation, which is in contrast to their importance. Instead,
only technical reports like, e.g., syntactical descriptions, are
usually given and important functional as well as operational
aspects have been omitted. This leads to unstable and unnecessary
complex interface implementations threatening the 24/7 hours
mode of operation. To address the aforementioned issues, this
paper contributes a new comprehensive approach on interface
design, construction, deployment and operation for distributed
application landscapes. This includes guidelines for a functional
interface design and interface migration patterns for deploying
application interfaces into a 24/7 hours running environment.

Keywords–interface; interface aspects; communication require-
ments; communication services; messaging; communication error
handling; business process; interface design; interface versioning;
interface migration; interface operation.

I. INTRODUCTION

In recent years, growing business demands enforced an in-
creasing information technology (IT) support of many business
processes. To rule the resulting functional complexity within
the IT, several applications are usually necessary. A direct con-
sequence of this fragmentation is the distribution of business
processes over applications, which have to communicate with
each other in order to fulfill the requirements of the business
processes. This communication requires well defined interfaces
between applications due to functional [1] as well as technical
reasons.

Generally, the design of application interfaces is a difficult
and critical task [1], [2], [3], since the behavior of applications
belonging to the class of reactive systems, i.e., applications
responding continuously to the environment, is determined
by their interfaces only [4]. Consequently, badly designed
interfaces may lead to functional misbehavior and may prop-
agate internal application problems directly to communication
partners [5], [6].

Wrong assumptions during the interface design phase about
functional domain behavior and communication technologies
can have devastating effects with respect to interface operations
and the integration of further applications into the application
landscape [7], [8]. Furthermore, interfaces have relatively long
life cycles and their implementations are usually costly to
modify. A change of an interface specification always requires
either its backward compatibility to previous interface versions,
or a change of all applications implementing the interface.

Operating a large application landscape in a 24/7 hours
mode imposes additional challenges concerning interface de-
ployment and operation because all applications implementing
a new interface must be launched into an already running en-
vironment [8]. Once this has been done, interface supervision
and communication error detection by the application man-
agement are also necessary to enable the agreed operational
availability of the application landscape [9].

To overcome the above mentioned restrictions, this paper
gives an overall overview on all aspects concerning interfaces.
It extends the approach for functional interface design and
interface transition into operation presented in [1] by adding
further important aspects like communication technology se-
lection and transmission protocol definition, including error
handling and runtime supervision. Further examples are given
presenting an implementation of the proposed transmission
protocol and illustrating the functional interface design ap-
proach in more detail.

Beginning with a review on related work in Section II,
Section III presents some interface theory and resulting aspects
necessary to be considered for a successful interface design. By
introducing typical requirements enabling a founded selection
of an appropriate communication technology in Section IV,
Section V deals with a transmission protocol offering further
communication services thus enabling a reliable and robust
communication. Further details on error handling and commu-
nication supervision are described in Section VI, followed by a
conrete implementation example of the transmission protocol
in Section VII.

Thereafter, Section VIII gives an introduction and com-
parison of different design approaches for the construction of
a functional interface specification, followed by an industrial
example of a concrete interface design in Section IX. Finally,
Section X deals with the interface launch into an already
running application landscape.

61

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. RELATED WORK

The increased distribution and complexity of business func-
tionalities enforces IT personal responsible for complex appli-
cation landscapes to use well-designed integration solutions.
Due to the ever increasing dependencies between applica-
tions on functional, semantic, technical and operational levels,
a holistic integration approach is necessary to successfully
manage changes within application landscapes [8]. Thus, the
design of interfaces becomes the key for successful application
integration.

Within the literature, a lot of information exists regarding
different aspects of interfaces like performance, reliability,
routing etc. Typically, these documents either deal with tech-
nical protocols only and omit functional interface properties,
like, e.g., the Internet Protocol (IP) [10], the Hypertext Transfer
Protocol (HTTP) [11], File Transfer Protocol (FTP) [12], Java
Messaging Service (JMS) [13], Remote Method Invocation
(RMI) [14], Advanced Message Queueing Protocol (AMQP)
[15] and the Blink Protocol [16], or are bound to specific
functional domains like the Financial Information eXchange
[17], the FIX Adapted for Streaming [18] or the various U-
nited Nations Electronic Data Interchange for Administration,
Commerce and Transport (UN/EDIFACT) protocols [19]. But
none of them gives explicit guidelines for an interface design.
Other common approaches like service oriented architectures
(SOA) [20] or the representational state transfer (REST) [21]
protocol represent rather general architectural styles. Both are
more suitable giving architectural guidelines for application
design, than for the construction of concrete interfaces.

More specific work on interface design has been done
by Henning [2] and Bloch [3] defining principals and high
level processes for good interface designs. Both authors argue
that it is hard to design good interfaces due to the required
understanding of the underlying functional context. Additional
aspects on interface design have been introduced by Iridon [22]
to decouple application implementations from domain models
[7], using a canonical model, as well as Bonati et al. [8]
for supporting different interface versions in parallel during
operations.

However, none of these works gives a holistic view on
interface design, construction, deployment and operation as
presented in this paper. This includes specific guidelines for a
functional interface design as well as interface migration pat-
terns for deploying application interfaces into an environment
operating 24/7.

III. INTERFACE BASICS

In order to design an appropriate interface, the general
structure of an interface must be considered. Once this has
been done, it will become obvious which information must be
provided to define an interface. Drilling down into an interface,
which is located in the application layer in the Open Systems
Interconnection model (OSI model) [23], [24], typically, a
three layered structure, as shown in Figure 1, becomes visible.
Each of these layers has a dedicated important purpose that
can be summarized as follows:

• functional layer: this topmost layer is responsible for
the functional semantics of the information exchanged.
Using the analog of natural speech, the functional
layer defines the meaning of words spoken.

Figure 1. The different layers of an interface. Dotted arrows denote virtual
connections within each layer. The communication takes part using the
connections denoted by solid arrows. Note that the functional and the

protocol layers are located within the application layer of the OSI model,
while the transport layer typically encapsulates all layers below the

application layer [23], [24].

• protocol layer: Within this layer the transmission
protocol used to exchange the information is defined.
Similar to natural speech, the protocol layer represents
the language spoken, e.g., English.

• transport layer: Here, the necessary physical trans-
portation of the information is carried out. This layer
correlates to the signal transfer using sound waves in
a manner similar to natural speech.

Each of these layers communicates virtually with its coun-
terpart located at the other application. Therefore, a layer
physically passes the information to its underlying layers
until the information is physically transported to the other
application. At this point, the information is passed upwards
up to the corresponding layer. Only if both sides within one
layer use identical functional models or transmission protocols,
respectively, communication will take place. Otherwise, the
communication is broken.

Given the layered structure of an interface, different aspects
arise, which must be considered during the design, implemen-
tation, integration and operational phases of an interface life
cycle. These aspects focus on different issues and enable the
development of robust interfaces. All aspects are independent
with respect to each other, focusing on a specific property an
interface must satisfy.

A. Functional aspect

While two or more applications are communicating with
each other over an interface, the applications assume different
functional roles, called server and client, respectively. An
application is called server with respect to an interface if it
is responsible for the business objects, business events and
related business functions that are exposed to other applications
through this interface. If business objects and business func-
tions of different business processes are affected, the necessary
messages may be combined into a single interface.

Providing an interface is equivalent to defining an interface
contract [8] that must be signed by an application in order
to communicate with the server. The interface may support
synchronous and asynchronous communication as well as
message flows in both directions, i.e., sending and receiving
messages.

Note that this definition deviates slightly from the common-
ly used client-server definition where the server offers a service

62

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Applications assuming multiple roles simultaneously, i.e., one part
of the application serves as a server while another part serves as a client, as

indicated in the top part of the figure. Note that both supported interfaces
are not identical.

which can be accessed by clients via a synchronous request-
reply communication protocol only [25]. Because synchronous
communications couples server and client tightly at runtime,
asynchronously based communication should generally be
preferred, avoiding these disadvantages [9].

A client is an application consuming an interface provided
by a server. Despite the fact that the interface contract is
initially defined by the server, a common agreement on the
contract is made when the client connects to the server.
Thereafter, none of the participating applications may change
the interface contract without agreement of the other party.

Often an application assumes multiple roles with respect
to different interfaces concurrently, i.e., the application can be
server and client simultaneously, see Figure 2. It is important to
emphasize that this behavior is valid with respect to different
interfaces only while for a single interface, the roles of the
participating applications are always unambiguous.

B. Semantical aspect
The semantical aspect focuses on the kind of information

that may be exposed by the server via an interface. Generally,
any internal implementation detail of the server, i.e., the server
model, must never be exposed on an interface. Instead, the
information exposed must always be tied to the underlying
business processes, thus binding the interface implementation
to the domain model [7], [8].

Integration within an IT application landscape requires the
decoupling of business and software design due to different
responsibilities. In other words the domain model and its
related implementations in the server and client usually have
different life cycles, which must be decoupled to reduce the
dependencies between business and software development.
Therefore, an integration model, linked to the domain model,
should be used on interfaces [9], [22], which decouples their
implementations from the domain model. Additionally, the
integration model conceals all internal application models and
details thus decoupling server and client from each other, as
shown in Figure 3.

An interface itself consists of a set of messages, containing
business objects and business events only [26]. This set of
exposed information is naturally restricted due to the respon-
sibility of the server, i.e., only the business objects or business

Figure 3. Decoupling the domain model from its implementation using an
integration model. Note that different server and client implementation

models are also decoupled in this way [22].

events the server is responsible for may be communicated via
the interface.

C. Technical aspect
Exchanging information via an interface using messaging

[9], i.e., by sending and receiving messages, results in specific
communication styles depending on the thread behavior of the
sender. The resulting communication style should be indicated
on the interface using different message types as follows:

• asynchronous communication: a message of type No-
tification is sent and the thread resumes execution.

• synchronous communication: a message of type Re-
quest is sent and the thread execution is stopped until
a message of type Reply has been received.

• communication supervision: a message of type Error
is used to asynchronously report communication er-
rors, that cannot be handeled by the application itself,
to the application management. Introducing Error
messages as an own type emphasizes their semantical
difference to Notifications.

This set of message types leads to a technical view of an
interface. Depending on the functional role of an application,
not all message types may be send by all applications. Instead,
valid message types sent by an application depend on its
functional role with respect to the interface considered.

As depicted in Figure 4, a server may send Notification and
Reply messages only. The former message type represents a
business event communicated to the environment of the server.
The Reply answers a synchronous Request of the client. A
server may not send a Request to a client due to the functional
responsibility of the requested data; doing this would reverse
the roles of server and client and therefore, this Request must
be part of another interface provided by the former client.

The client may send Notifications and Requests to the
server. Both message types represent accesses to services
provided by the server. A Reply may not be send by a client to
a server because a client has no functional responsibility with
respect to the interface considered. Again, doing this would
reverse the roles of client and server between both applications.
The fourth message type, the it Error message, may be send
by all applications in case of communication problems only.
This message type is by no means part of a functional interface
and send to dedicated communication channels only. In fact,
Error messages are part of the interface to the application
management for supervising ongoing IT operations.

D. Dynamical aspect
An important aspect of an interface is its dynamic behavior

describing all valid message sequences on the interface. Since

63

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Representation of the message types that a server or a client may
send. Message types depicted in green are allowed to send while red

message types may only be received. The Error message type has been
omitted due to its pure technical nature.

all messages received are processed within a specific context
inside the application, there exist important constraints with
respect to the message sequence. Thus, a message received
out of the defined sequence will not be processed by the
application, instead this will result in an error.

Consequently, the dynamic behavior must be described us-
ing an appropriate description. Using sequence diagrams of the
Unified Modeling Language (UML) [27] is not sufficient for
this case, since they describe specific communication examples
only. Especially runtime problems, e.g., race conditions, cannot
be described holistically using sequence diagrams. Instead, it
is strongly recommended to use finite state machines [28],
which allow a complete description of the dynamic behavior,
as shown in the example of an interface between a container
device and a terminal control system depicted in Figure 5.

E. Nonfunctional aspect
Interfaces must be able to provide enough context to

execute the desired parts of the business processes within
an application since they separate the application from its
environment and determine its behavior [4]. Besides the func-
tional and semantical aspects imposed on an interface, this
context contains nonfunctional design aspects also, covering
robustness, performance and understandability. An application

Figure 5. Example of a simplified state machine describing the dynamic
behavior of an interface.

will correctly execute the business processes only if these
nonfunctional aspects are fully satisfied.

The robustness of an interface is crucial with respect to the
stability of the overall application landscape. Poorly designed
interfaces may propagate internal application errors during
runtime, thus causing severe damage within other applications
of the application landscape [2], [5].

Robustness of interfaces is achieved by

• functional coherence, i.e., assigning a unique function-
al responsibility to each application according to the
underlying domain model thus avoiding inconsistent
states of business objects within the application land-
scape,

• a non-transactional behavior between applications
[29] thus dropping complex and time consuming
coordination problems resulting from the underlying
commit protocols [30],

• integrated content constraints, i.e., using functional
appropriate range restrictions of field values, and

• an independent field structure where the content of
fields must not depend on the content of other fields
within the same message.

Obviously, interfaces must satisfy the required performance
too. Otherwise, business processes will not work correctly
since required business functions may not be executed in time
[4]. Using

• a minimalised interface design, i.e., a design contain-
ing a minimal set of messages only without imposing
undue inconvenience for the clients [2] and

• a purely asynchronous communication style thus tech-
nically decoupling the client from the server at run-
time [31]

covers performance issues at design time already.
Furthermore, well designed interfaces must have a strong

and documented relation to the underlying business context
thus being easier to learn, remember and use correctly [2],
[7]. This will enhance the interface cost efficiency over time
due to the enhanced acceptance of the interface within the
development teams. This understandability can be achieved
through

• a functional consistent message naming schema,
where message names must be functionally meaning-
ful and short to support a clear and understandable
integration model on the interface and

• its binding to the application model using an appro-
priate adapter, see Figure 6 for details.

F. Operational aspect
Usually, each interface requires the usage of a specific

infrastructure depending on the used communication technol-
ogy, e.g., a web server in case of REST over HTTP or a
JMS server. To ensure the correct usage of an interface the
required infrastructure, its deployment and the communication
channel topology must be defined also. The latter one defines
the general communication structure, i.e., broadcast or point-
to-point communication [9].

64

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Binding of the integration model to a given application model.
Note that the integration model is aligned to the domain model. The

required adapter, implementing this binding, can either be a part of the
application itself or be realised as a seperate component.

G. Interface components
Given the different aspects presented so far, each of them

describing a different important issue with respect to interfaces,
the necessary components for a complete interface specifica-
tion can be derived:

• message description: Syntactical descriptions of all
messages exchanged over the interface.

• semantic description: The meaning of messages on
the interface must be specified, i.e., their functional
behavior within the comprehensive business process.
This description must include the meaning of all
individual message fields.

• dynamic description: The dynamic behavior of the
interface must be fully specified. This specification
includes all possible message sequences and the be-
havior of the applications in case of errors.

• infrastructure description: A description of the neces-
sary infrastructure must be provided.

• quantity description: The non-functional performance
requirements for the interface must be described.

It is important to notice that an interface specification is a
signed bilateral contract, which may be changed by mutual
agreement of all participating parties only [8]. This contract is
represented by the set of artifacts as described above, so none
of the artifacts given there may be missed.

IV. COMMUNICATION TECHNOLOGY

In order to enable communication between applications
an appropriate communication technology is necessary. Com-
munication technologies like, e.g., HTTP, FTP, JMS or RMI,
have specific transmission properties and often require specific
middleware components to fulfill common communication
tasks, like, e.g., routing or address resolution [23]. Specific
requirements, derived from the typical 24/7 hours mode of
operation, guide the selection of appropriate communication
technologies.

A. Communication requirements
Large application landscapes often require a set of different

communication technologies to satisfy all requirements of IT
operations and to fulfill the underlying service level agree-
ments. In order to keep the IT operation costs low, only a
few and proven mainstream technologies should be considered
for the complete application landscape [8]. Suitable commu-
nication technologies typically satisfy an appropriate subset
of the following requirements depending on communication
properties defined by the enterprise itself.

1) Coupling: The degree of coupling between applications
is one of the most important requirements concerning com-
munication technologies. Since modern application landscapes
typically involve applications from a wide set of different
software vendors, a loose application coupling is usually
required [8], since applications

• use different software technologies, e.g., programming
languages,

• assume different runtime behaviors, e.g., the number
of threads or processes used by an application is
completely transparent and independent from all other
applications and

• have different life cycles, i.e., they should be replace-
able during runtime if they implement the same inter-
face contract without imposing technical interferences
to other applications [9].

Loose coupling is directly supported by the communication
technology if an asynchronous communication style is used
[9], [22]. Furthermore, this requirement usually has a direct
impact on maintenance and support costs of an application
landscape.

2) Stability: In modern application landscapes things will
happen during runtime that cannot be foreseen at development
time [5]. Introducing stability into the application landscape
reduces the effects of such faults and consequently lowers
support costs. Stability is gained by preventing the propagation
of failures over application boundaries. A common pattern to
achieve this goal is a decoupling of applications during runtime
[5], [6], i.e., all applications must technically run completely
independ from each other.

3) Flexibility: Applications and middleware can be de-
ployed to different physical or logical machines without having
more effort than configuration costs [32], i.e., IP adresses,
port numbers etc. are specified in appropriate configuration
files. Therefore, the required middleware components of the
communication technology have to be flexible enough in order
to ensure this arbitrary application distribution. Note that this
flexibility usually has a direct impact on maintenance and
support costs for application landscapes.

4) Reliability: To minimize support costs for application
landscapes the communication must be reliable, i.e., the
communication technology has to be able to guarantee the
delivery of information. Note that this guarantee usually does
not comprise a guaranteed time slot within the information
will be delivered to the receiver. Additionally, the request-
ed guarantee of delivery holds for common problems like
network breakdown, system breakdown, disc crash etc. only
but usually not for disaster scenarios destroying the complete
infrastructure. Failing to deliver information to the receiver
leads to communication faults that must be cleared by the
application management. Consequently, this requirement has
a direct impact on the amount of fault clearings.

5) Performance: The communication technology has to be
fast enough to handle the predicted information throughput
thus guaranteeing the performance specified in the underlying
service level agreements. It must also be able to deal with in-
formation burst situations during communication. Furthermore,
while communicating with another application, the sender
should not be delayed by the communication technology, i.e.,

65

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sending an information is completely decoupled from its trans-
mission. Note that more specific performance requirements
depend on individual application requirements and therefore
cannot be specified here.

6) Monitoring: To supervise the communication between
applications, access points should exist in the communication
lines [9]. Using these access points, the application manage-
ment can

• monitor occurred communication errors,
• monitor the load of the communication channels,
• directly read all information exchanged by the appli-

cations for debugging purposes and
• insert test information into the communication chan-

nels.

This supports a reduction of the fault clearing time thus
reducing the support costs for the application landscape. Ad-
ditionally, new applications must be integrable into existing IT
monitoring tools without further adjustment. In case an appli-
cation has a technical problem, e.g., a database crash, it should
be possible to communicate the problem to the application
management using special communication channels [9].

7) Costs: The application communication should be stan-
dardized in order to minimize development and operational
costs for application integration [8]. It should also be possible
to encapsulate most parts of the communication resulting in a
minimal code invasion of the application software [9].

In order to minimize the efforts during system integration
tests, access to the communication technology should be easily
replaceable by mocks [22]. This will minimize software license
costs because middleware components of the communication
technology must not be used on the various environments used
during development and integration testing stages [32].

8) Technical security: If something goes wrong, security
has to provide a degree of confidence that the application
landscape can remain in a state of normal operation [33].
Communication technology, being one part that ensures the
technical security of the application landscape, has to protect
the authenticity and integration of all messages exchanged
[33]. Additionally, an automated communication recovery is
typically required after an application or communication fail-
ure in order to minimize the failure recovery time.

B. Selecting a communication technology
Adequate communication technologies have to be selected

depending on the communication requirements to be satisfied.
These requirements are usually determined by given service
level agreements. For example, requirements like Coupling and
Stability typically exclude the use of synchronous communi-
cation technologies like RMI [14] or HTTP [11]. Other re-
quirements, e.g., Performance, either demand very specialized
communication technologies like the Blink Protocol [16] or
prevent specific technologies such as shared databases [9].

In contrast, using communication technologies explicitly
supporting asynchronous messaging as integration style like,
e.g., JMS [13] or AMQP [15] commonly satisfy all require-
ments. Since messaging is considered to be the best application
integration approach [9], it is usually best suited for most
integration purposes.

V. TRANSMISSION PROTOCOL

While the selected communication technology enables ex-
change of information between applications, further commu-
nication services like, e.g.,

• robust communication,
• support of synchronous and asynchronous communi-

cation in parallel,
• business process logging,
• support of enterprise integration patterns [9],
• automated reconnect behavior and
• ongoing communication supervision

are typically required in order to support a 24/7 hours main-
tenance of an application landscape. These communication
services are typically not fully provided by the communi-
cation technology; instead they must be implemented at the
application layer of the OSI model [23], [24]. Consequently,
an implementation of these communication services requires
an additional transmission protocol layered on top of the
communication technology, see Figure 1 for details.

This section introduces such a transmission protocol based
on messaging to provide the above mentioned communication
services. Using messaging to transmit information between
applications requires sending and receiving of structured mes-
sages using specific communication channels identified by
destination names. This messages are exchanged using com-
munication channels addressed by unique destination names.
A message consists of a header containing some necessary
meta-information to safely transmit the message between ap-
plications and a body containing the functional payload data
[9].

A. Message header
The meta-information within the header is organized in a

set of fields and represents an important part of the transmis-
sion protocol. Consequently, a message sender has to use these
header fields as described in the following.

1) Message ID: This field contains a unique identification
of the message. It is typically provided by the messaging
infrastructure itself, see, e.g., [13].

2) Message type: Each message send by an application
must belong to one of the four message types Notification,
Request, Reply or Error, as described in Section III.

3) Message reply to: Generally, using messaging leads to
an asynchronous communication behavior between applica-
tions. In order to implement synchronous communication, i.e.,
the sender stops and resumes processing after receiving the
reply message, the Request-Reply and Return Address patterns
[9] can be used. A request message, which is always of
message type Request, has to use this field, where the name
of the reply destination must be inserted. The receiver of the
request will send its answer to the given reply destination
specified in this field.

4) Message correlation ID: In case of synchronous com-
munication, the requester can identify the answer, which
always has the message type Reply, to his Request using the
correlation ID. According to the Correlation Identifier pattern
[9], the sender of the reply must include the original message
ID of the request as correlation ID in the reply. The field must

66

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

not be used in all other cases. Note that the sender of the
request must store the message ID of the request in order to
compare it to the correlation ID of the Reply.

5) Message expiration: This field is used for the Message
Expiration pattern [9]. If the sender specifies a time to live
for a message, the messaging infrastructure will deliver the
message to the receiver only if it is within the time to live.
If the time to live is expired and the message couldn’t be
delivered to the receiver, the message will be destroyed in the
messaging infrastructure. In case of Requests, which usually
have a timeout [5], the time to live should always be set equal
to the timeout, which will decrease the load for the message
receiver.

6) Message name: The field message name contains the
name of the message. Message names should be meaningful
and unique.

7) Message sender: The field message sender contains the
name of the sender of the message. This name must be unique
within the application landscape and should be as precise
as possible. For example, a naming schema could follow an
inverse URL like naming style where single parts of the name
are separated by capital letters.

8) Error text: The field error text is used for Error mes-
sages only and contains the exception text, see Section VI for
further details.

9) Message version: In case of distributed applications
problems always occur while operating different interface
versions in parallel. In order to deal with future changes
of an interface, the Format indicator pattern [9] is used,
where each message carries its corresponding interface version
number in this field. All applications should have an external
editable list of version numbers, called compatibility list, for
each implemented interface that defines all valid interface
versions. The receiver of a message compares the version of a
received message with its compatibility list and calculates the
compatibility state. The following compatibility states exist:

• true, if the version of the message is contained in the
compatibility list

• false, in all other cases.

If the compatibility state is true, the message will be processed,
otherwise the message will be redirected to an error message
channel, as described in detail in Section VI.

Note that a standard downward compatibility behavior as
given by some communication technologies like, e.g., HTTP
[11] cannot be used at the protocol layer because functional
semantics may change significantly between different interface
versions thus leading to an incorrect functional behavior. Using
an explicit compatibility list avoids these semantical problems.

10) Sequence number: Using the patterns Resequencer and
Message Sequence [9], the receiver can get a stream of out-of-
sequence messages back into the original sequence. Therefore,
the sequence number field can be used, containing a unique
sequence number. Each sender generates his own stream of
unique sequence numbers; they need not to be unique across
different applications. If the range of numbers is exceeded, the
sequence will start with the lowest number again.

Note that messaging infrastructures typically guarantee to
keep the sequence of all messages sent via a single destination
only. There is no guarantee, however, if multiple destinations

between sender and receiver are used in parallel to transmit
messages.

11) Trace ID: The field trace ID can be used in distributed
systems to trace an activity over individual application bound-
aries. A common usage of the trace ID is, e.g., for logging
purposes within the business processes.

B. Message body
The body of a message contains the functional payload,

i.e., its content is the reason why this message has been sent.
The content must be a valid structure fulfilling the following
issues:

• In order to avoid technical dependencies based on,
e.g., compiler issues, only text messages should be
used.

• The content of the body should follow a formal
document structure like, e.g., the Extensible Markup
Language (XML) [34].

• This structure must allow a complete formal syntacti-
cal validation of the message, e.g., the XML Schema
Definition Language (XSD) [35] in case of XML.

• Only the Universal Time Coordinated (UTC) format
may be used for content concerning time. The time
format used must follow the international norm ISO
8601 including the time zone designator [36].

• Binary data must be converted using, e.g., a Base64
encoding [37].

For the required encoding, i.e., the transformation between
a byte sequence and a unicode string, to transmit a text doc-
ument, usage of the Universal Character Set Transformation
Format (UTF) UTF-8 or UTF-16 is strongly recommended.

VI. COMMUNICATION ERROR HANDLING

During interface operations, failures may occur within the
communication of applications. These communication prob-
lems can be categorized into connection problems, resulting
from infrastructure issues in the transport layer, or communi-
cation problems, resulting from message computation failures
in the functional and protocol layers, respectively. Each failure
category requires its own error handling procedures, which are
described in the following subsections.

A. Connection problems
Connection problems usually result from issues within the

communication technology, preventing an application from
sending or receiving information and thus interrupting its com-
munication. Consequently, connection errors always represent
severe problems, which require immediate activities by the ap-
plication management. Since the application management can
solve connection errors at runtime, applications should support
their activities through an automated reconnect behavior to the
messaging infrastructure as follows.

Connection failures can occur at any point in time and
are signaled by the communication technology to the appli-
cation. Once this has been done, a configurable timer, called
connection timeout, must be started by the application. After
this connection timeout expires, the application must signal the
connection error to the application management and disconnect
itself from the infrastructure of the communication technology,

67

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. The left figure shows the behavior for Notification and Error
messages, here commonly denoted as messages. Once the connection is

broken, the connection timeout starts. If the connection remains broken the
application disconnects from the middleware infrastructure, once the

connection timeout has been reached. After reestablishing the connection,
the message is sent. For Reply messages only, as shown in the right figure,

nothing happens after the first attempt to send the Reply message.

followed by a reconnect attempt to it. The advantage of this
behavior, which shall be repeated forever until the connection
has been successfully reestablished, is, that changes within
the network infrastructure may be executed during application
runtime.

The connection timeout must be stopped immediately if
the connection error has been solved within the time period
spanned by the connection timeout. No reconnect attempt will
occur in this case.

If an application fails to send a message due to connection
errors, the following behavior must be adopted by the appli-
cation, depending on the message type sent:

• Notification and Error: Periodically retry to send the
message until it has been sent successfully.

• Request: Periodically retry to send the message until
it has been sent successfully or a request timeout, see
below, has been reached. In the latter case, the ap-
plication decides all further communication behavior,
e.g., if the Request message will be dropped or resend.

• Reply: Drop the message.

The rationale behind the deviating behavior for Reply mes-
sages is, that reply destinations may be temporary destinations
which may have ceased to exist and thus will never reappear,
see, e.g., [13]. Figure 7 visualizes the reconnect behavior in
case of Notification or Error messages on the left side. After
the connection timeout has been exceeded, the application
automatically disconnects from the communication system and
tries to reconnect itself to it. Once the connection has been
reestablished, the message is send. In contrast, a Reply message
is dropped once sending the message fails, as shown on the
right side of Figure 7.

For Request messages, the behavior depends on the rela-
tionship between the request timeout, and the time necessary to
reestablish the connection, as shown in Figure 8. The Request
will only be send once the connection has been reestablished
if the request timeout has not been exceeded.

B. Communication problems
Functional errors resulting from message computation

should always be handled by the application itself. All other
kinds of exceptions are based on either configuration or
programming errors and usually cannot be corrected by the
application during runtime. Therefore, this kind of errors must
be signaled to the application management.

Figure 8. Timeout behavior in case of a Request. If the connection is
reestablished within the request timeout time, see left figure, the message is

sent after reestablishing the connection. If the connection cannot be
reestablished within the request timeout, the application decides if the

Request message will be dropped or resend, as shown in the right figure.

C. Communication supervision
In order to inform the application management promptly,

the protocol layer uses a mechanism based on the Control Bus
pattern [9]. If necessary, Error messages are sent to separate
destinations, supervised by the application management.

1) Error message construction: Like other message types,
Error messages consist of a header and a body section. The
header contains a set of header fields as described in Table
I, while the body content depends on the cause of the Error
message. If the latter has been triggered by another message,
the body of the Error message should contain a copy of the
content of the original triggering message. Otherwise, the body
of the Error message will be empty.

2) Error destinations: All messages that are either

• syntactically incorrect, i.e., those failing the syntacti-
cal validation, or

• out-of-sequence, i.e., those received unexpected from
the defined message flow of the interface, or

• have an insufficiently defined set of message header
fields, or

• have an incompatible version number

must result in an Error message sent to a destination called,
e.g., invalid message channel.

In case of synchronous communication being used between
applications, crack propagation due to blocked threads or slow
responses must be prevented using a timeout pattern [5].
Whenever a sender sends a Request to another application, the
sender will wait for a configurable amount of time, denoted
request timeout, to receive the Reply. If the request timeout
exceeds, the sender converts the Request message into an Error

TABLE I. Header fields and their valid content for an Error message
.

field name field content

message ID the message ID

message type Error

message name invalid message error or timeout message error or fatal
error, where the message name used depends on the cause
of the error.

message sender name of the application sending this message

error text a short and meaningful text describing the error

version the version number of the interface

68

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

message and sends it to a destination called, e.g., timeout
message channel.

For severe errors that cannot be handled by the appli-
cation itself, e.g., connection problems or broken database
connections, an Error message should be sent to a destination
called, e.g., fatal error channel. Obviously, this can be done
in case of connection problems only, if the connection to the
application management still exists. Note that these kind of
failures typically threaten the running state of applications.

D. Communication monitoring
All errors reported to one of the error destinations, i.e., in-

valid message channel, timeout message channel or fatal error
channel, have to be analyzed by the application management to
supervise the application landscape. In other words, the error
destinations act as part of the Control Bus pattern [9].

The required activities of the application management in
conjunction with the error destinations is described in the
following subsections. For a better overview, a short tabular
summary of the most important facts is given at the end of
each subsection, consisting of

• the priority necessary to react to an Error message,
• the strategy necessary to deal with an Error message,
• the environment, i.e., development, test or production

stages [32], within most Error messages will be pro-
duced and

• the information when the Error message should be
deleted from the error destination.

1) Invalid message channel: Messages sent to this destina-
tion mainly occur due to syntactical or dynamic problems, so
each message within this destination is important. None of the
errors will directly threaten the running state of an application
but business processes may degrade depending on their design.

All errors reported to the invalid message channel are
based on programming or process design errors and cannot
be solved during runtime. Instead, they must be delegated to
the second level support. Exceptions are Error messages due
to incompatible interface version numbers. In this case, the
application management should first check whether the inter-
face configurations of the involved applications are correct,
second, try, if convenient, to up- or downgrade one of the
participating applications to a new version that supports the
required interface version and third, inform the second level
service if none of the before mentioned activities leads to the
desired behavior. Once an Error message has been analyzed, it
should be directly deleted from the invalid message channel. It
is expected that the main load for the invalid message channel
occurs within the test stage. Normally, no Error messages
should be produced in the production stage, otherwise this
indicates misbehavior due to unsufficient test cases.

TABLE II. Monitoring of the invalid message channel

summary

production priority medium, may effect execution of business processes

evaluation strategy based on single error messages

main error occurances test stage

error message deletion immediately after analysis by application management

2) Timeout message channel: An individual Error message
within the timeout message channel has no further meaning
and can be ignored, but the history of the message amount
within the timeout message channel is very important. The
rationale behind this property lies in the unique source of
Error messages within the timeout message channel: in case of
synchronous communication the Request has not been replied
within the request timeout by the targeted application. For
a single Error message this behavior is not problematic, but
large amounts of errors indicate either severe load problems
within the target application of the Request or problems with
the communication infrastructure used for sending the Request
and Reply. The running state of the requesting applications is
not threatened, but the problem may influence the business
processes.

All messages within the timeout message channel should
be analyzed in real time per targeted application. It is rec-
ommended that this analysis should result in a graphical
illustration projecting the number of Error messages in the
timeout message channel over time to indicate behavior trends
of the targeted applications. If certain thresholds are exceeded,
the application management should have a closer look to
the targeted application and the corresponding communication
infrastructure.

Messages exceeding a configurable amount of time, e.g.,
one hour, within a timeout message channel should be au-
tomatically deleted. Failing this will result in resource al-
location problems within the corresponding communication
infrastructure. It is expected that the main load for the timeout
message channel occurs in the production stage since these
errors typically occur during unexpected load scenarios.

TABLE III. Monitoring of the timeout message channel

summary

production priority low, serves as a general health status indicator of
applications

evaluation strategy based on multiple error messages

main error occurances production stage

error message deletion after a given time frame of, e.g., one hour

3) Fatal error channel: Errors within this destination can
be categorized as either severe programming errors, which
must be handled by the second level support or resource errors,
e.g., missing table space or wrong port numbers, that can
be handled by the application management directly. Once an
Error message has been analyzed, it should be directly deleted
from the fatal error channel. It is expected that the load for the
fatal error channel occurs equally in the test and production
stages.

TABLE IV. Monitoring of the fatal error channel

summary

production priority high, immediate action necessary

evaluation strategy based on single error messages

main error occurances test and production stages

error message deletion immediately after analysis by application management

69

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. The JCA framework can be used in any Java application. A
provider specific JMS client has to be included in the application classpath.

VII. EXAMPLE: IMPLEMENTATION OF AN INTEGRATION
FRAMEWORK

Based on the recommendation for the communication
technology given in Section IV, a Java based integration
framework has been developed at the Hamburger Hafen und
Logistik AG (HHLA) supporting a standardized integration.
The framework, which is based on JMS [13] satisfies the
transmission protocol and communication error handling re-
quirements described in Sections V and VI, respectively. This
section gives an overview about the resulting implementation,
which currently guarantees a robust communication within the
HHLA production environment since three years.

A. Communication adapter framework
The Java Communication Adapter (JCA) framework is

organized by two modules, core and gateway, to support the
required communication services, see Figure 9 for an overview.
It is packaged as Java Archive (JAR) to be easily deployed
and reused while integrating applications into the HHLA
application landscape. In case of products, which cannot be
modified directly, or applications using different programming
languages, appropriate adapter have been introduced to tech-
nically integrate applications by reusing this framework.

1) Core module: This module encapsulates the transport
layer, see Figure 1, i.e., it is responsible for establishing a
robust connection to the underlying communication technolo-
gy. Therefore, the standard transmission protocol JMS [13] has
been used, implemented by a JMS provider. The JCA supports
all JMS providers that are compatible to the JMS Specification,
version 1.1 [13]. It was developed and tested with two different
JMS providers, ActiveMQ [38] and SwiftMQ [39], the former
one representing an open source implementation and the latter
being a commercial product.

As main functionality, the core module of the JCA es-
tablishes the connection to the JMS server and extends the
standard JMS communication behavior to handle connection
and communication problems as described in Section VI.

When connection or communication problems occur, they
are directly reported to the corresponding error message chan-
nel, which are supervised by the application management. Bro-
ken connections are automatically detached by the core module
once the configurable connection timeout has been reached
and reinitialized immediately, until the connection has been
successfully reestablished. Additionally, a thread and timeout
handling has been realized to support synchronous and asyn-
chronous communication in parallel via standard JMS. Fur-
thermore, the core module constructs the JMS message itself
using the Session.createTextMessage() method of
the JMS standard application programming interface and sets
the corresponding JMS message header fields JMSMessage-
ID, JMSType, JMSReplyTo, JMSCorrelationID, MessageName,
MessageSender, MessageError, MessageVersion and TraceID,

according to the message type being send. Note that all header
fields starting with JMS represent standard JMS header fields
that always exist, while all other header fields have to be added
using the appropriate message.set<Type>Property()
method, where <Type> denotes one of, e.g., String, Long,
etc.

When receiving JMS messages, the header fields are read
and provided to the gateway module to handle extra communi-
cation services like business process logging. All transmitted
messages are logged with the message header field TraceID,
which can be used for error analysation in correlation with the
related business process.

2) Gateway module: As shown in Figure 10, the Commu-
nicationService is the central interface containing all relevant
operations to integrate applications. It offers the following
principal communication services:

• Connection handling: start, stop and isStarted
• Create messages: getMessageFactory
• Report errors: reportError
• Send messages: sendNotification and sendRequest
• Receive messages: registerReceiver and unregister-

Receiver

The gateway module, encapsulating the protocol layer of
Figure 1, extends the functionality of the core module by
mapping Java objects onto XML representations and vice
versa while sending and receiving messages, respectively.
This marshalling and unmarshalling is realized by the Java
Architecture for XML Binding (JAXB) framework, which is
part of every Java Runtime Environment (JRE) [40]. Addition-
ally, the required message header fields and their content are
determined and given to the core module.

The robust communication of the core module is extended
within the gateway module by a validation of message head-
er fields and message content. Furthermore, a configurable
support of different interface versions has been realized here.
Validation errors, i.e., syntactical errors, are directly reported
to the supervised invalid message channel via the core module.
All converted Java objects are logged with the message header
field TraceID, which, again, can be used for error analyzation
in correlation with a business process.

VIII. INTERFACE DESIGN STYLES

The main problem to be solved in interface design concerns
the intended functional semantic on the interface, i.e., the
construction of the functional layer shown in Figure 1. It
directly influences the kind of service offered by the server
and therefore the necessary number and style of all messages.

Looking at existing interfaces, they can be categorized in
our experience by their semantic design styles: CRUD based
interfaces, use case based interfaces and business process based
interfaces, each of them described in detail in the following
sections.

A. CRUD based design
The Create, Read, Update, Delete (CRUD) based design

directly uses the business objects described within the require-
ments and ignores any given business context. This results in
interfaces consisting of a minimal set of messages, representing

70

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. UML class diagramm depicting the main interface structure and methods of the JCA application programming interface (API).

a set of CRUD messages for every business object the server
is functionally responsible for. Besides the advantages of
requiring very little design efforts and being very stable, this
interface design style has some important disadvantages.

First, the interface bears absolutely no business context,
leading to severe difficulties in understanding the underlying
business processes [2]. Second, the read operation demands
synchronous communication, which represents an explicit con-
trol flow leading to a tight coupling of applications [5], [26]
and third, missing business context either leads to a distribution
of business functions over the clients or to business objects
incorporating the results of applied business functions.

B. Use case based design
An interface design based on use cases rests upon require-

ments formulated from the perspective of the primary actors
for individual systems only [41], i.e., the underlying business
process is not directly present. Due to the characteristics of use
cases, describing non-interrupted interactions with the system
[42] that represent the view of the primary actor [41], these
requirements are limited to the context of single activities,
which are typically independent with respect to each other.
A representation of the underlying business process triggering
the desired activities is missing and therefore difficult to
reconstruct.

These preconditions usually lead to rather fine granular and
use case oriented interfaces comprising of a large number of

messages, carrying specific use case based information only.
Some important consequences arise from this design style.
First, all business functions that are identical from the business
process point of view, are hard to identify based on a use case
analysis only. The absence of a business context leads to an
interface design supporting individual use cases, which bear
no evident business process semantics. Consequently, these
interfaces usually offer a broad range of identical function-
alities named differently. Second, the missing business context
significantly increases the difficulty to understand the function-
al behavior of the interface over time [2], leading to serious
problems in its usage. As a consequence, further unnecessary
messages are often introduced in order to provide some use
case specific information. Third, the lower level of abstraction
of a use case - compared to the business process - leads to
a rather fine granular interface structure. Performance issues
may arise with this interface style due to the enforced frequent
interface access [9]. And fourth, synchronous communication
often arises in order to collect all necessary information to
execute the use case, so a control flow arises [26] leading,
again, to a tight coupling of applications [5], [31].

Note that using a use case based design must not lead
compulsorily to a bad interface design. But given the size
of current applications with their numerous use cases and
the typical usage of distributed programming teams within
industrial projects, the necessary refactoring to introduce an
appropriate abstraction on the interface is usually omitted in

71

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

our experience.

C. Business process based design
This design uses business process descriptions and further

requirements formulated with respect to those descriptions,
to align between individual business process activities and
applications. Using the Business Process Model and Notation
(BPMN) [43] and representing applications via pools, inter-
faces can be directly derived from the exchanged information
between individual business activities within the pools.

The resulting interfaces focus on business semantics and
directly support objects, events and functions of the business
processes, thus leading to a domain model bound to inter-
faces [7] with the following consequences. Business processes
support a high level of abstraction, thus leading to rather
coarse granular interfaces with respect to the number of
messages. The communication is driven by business events, so
asynchronous communication is naturally supported, leading
to data flows [26]. Finally, the functionality provided by the
server within the business processes becomes rather clear, i.e.,
the business context is represented on the interface.

D. Design example
To explain and clarify the differences between these design

styles, the simplified process of loading a truck at a container
terminal will serve as an example throughout this section. This
process consists of the following steps, executed in the given
order:

• order clearance: the customer gives an order to the
container terminal to load a container on a truck.

• load clearance: in order to deliver the container,
several clearances must be given, e.g., by customs and
the container owner.

• transport planning: the container terminal plans the
necessary equipment to execute the order.

• load container: the container is loaded on the truck
using the planned equipment.

Two applications shall be constructed in order to implement
the process: the Administration, dealing with the administrative
parts of the process, and Operating, handling the physical
transport of the container. An interface between both applica-
tions will be designed according to the design style considered,
thus showing the differences between the design approaches.

1) CRUD based design: All relevant business objects of
the truck loading process are represented in a data model
that provides methods to create, read, update and delete
the objects. These methods represent the interface of the
owning application, i.e., the server, and are called by the
clients, in order to execute the business process. For ex-
ample, after creating an order using createOrder(),
the Administration calls createInstruction() to start
the loading of the container on a truck. Subsequent-
ly, Operating calls readCustomsClearance() and
readReleaseOrder() to check if the container is re-
leased to be loaded on a truck. The corresponding return
objects must be interpreted within Operating to make this
decision. If the container has been loaded, Operating final-
ly calls deleteOrder(), deleteCustomsClearing()
and deleteReleaseOrder() to clear the Administration.

Figure 11. Constructed interface (right) resulting from applying the use case
based design approach.

It becomes clear that both applications, i.e., Administration
and Operating must implement some part of the underlying
business logic to deal with these type of interfaces. Since
the interface style bears no business semantics, the underlying
business process cannot be reconstructed easily. Note that the
size of the interface directly depends on the number of business
objects the server is responsible for.

2) Use case based design: Based on the requirements of
the truck loading process, corresponding use cases like order
clearance or create instruction can be derived, as shown in
Figure 11. Each of these use cases handles a specific functional
aspect with respect to its primary actor. The underlying busi-
ness process is executed through a set of use cases interacting
with each other.

For example, if an order has been given, Administration
calls createTruckLoadInstructions() to initiate the
container transport. Prior to loading, Operating checks the
container release status, using isCustomsCleared() and
isContainerReleased(). If the container has been re-
leased, it is loaded on truck and Operating informs Administra-
tion via containerLoadedOnTruck() that the order has
been executed. Administration may then clean up its internal
data structures.

As depicted on the right side of Figure 11, the resulting
interface contains a lot of methods for specific actions, i.e., the
level of abstraction is rather low. Consequently the interface is
valid for truck operations only and would require a couple
of additional methods to incorporate, e.g., vessel and train
operations.

Furthermore a use case based interface introduces
synchronous communication, as indicated by, e.g., the
method pairs isCustomsCleared() and customs-
ClearanceResult(), leading to a blocking of Operating
while accessing the information.

3) Business process based design: In this case, the business
process itself serves as basis for interface design. Using
BPMN, the process of truck loading can be mapped onto the
applications as shown on the left side of Figure 12. Due to the
given high level of abstraction within the business process, it
is valid for all types of carriers, i.e., no further messages are
necessary to include vessel and train operations.

Once an order has been given, Administration informs
Operating via orderPlaced() that a new order has been

72

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Constructed interface (right) resulting from applying the business
process based design approach.

accepted. Within Operating, all necessary instructions for con-
tainer loading will be created. Once the truck has arrived and
Administration has published via containerReleased()
that the container is released to be loaded on a truck, the phys-
ical moves are executed. Afterwards, orderExecuted()
informs Administration, to clean up its internal data structures.

The dynamic behavior of the interface can be derived
directly from the BPMN description, as shown on the left side
of Figure 12. The resulting interface is quite small, meaningful
and abstract, so it can be easily extended to other carriers.
Additionally, the communication between both applications is
asynchronous. Note that both applications, Administration and
Operating, do not technically depend on each other, instead
they simply publish their information without knowing the
receiver, resulting in a data flow [26].

E. Comparison

To give a recommendation for a specific interface design
style all design approaches described above have been com-
pared to each other using typical interface design goals like
robustness, performance and understandability [2].

1) Robustness: Interfaces are crucial with respect to the
stability of the overall application landscape. Poorly designed
interfaces may propagate internal application errors during
runtime, thus causing damage within other applications [2],
[5]. Robustness is achieved by avoiding functional distribution,
distributed transactions [6] and semantical ambiguity.

In case of a CRUD interface, the information provided by
the interface must be functionally interpreted by the client
since the server informs about changes on business objects
only without any functional context. This leads to multiple and
distributed implementations of business functions according to
the usage of the interface. In contrast, the use case and business
process based design styles can both concentrate the business
functions within the server, so no functional distribution will
arise.

In general, distributed technical transactions can be avoided
in all three design approaches. But modeling a control flow
instead of a data flow bears a higher risk of introducing
distributed transactions within the application landscape, due to
the usage of synchronous communication. None of the design
approaches specifically supports the construction of an efficient

message field structure nor prohibits the introduction of content
based constraints.

2) Performance: Obviously, interfaces must satisfy the
required performance, i.e., they must be able to deal with the
given quantity description. Otherwise, the business process will
not work correctly since required business functions may not
be executed in time. Performance is supported by designing
minimal interfaces with respect to the number of messages
and avoiding synchronous communication [4], [9].

The more abstract the interface is, the less messages are
needed due to the restriction of transmitting core concepts
only. With a CRUD based design, the most abstract design
is chosen while a use case based design includes relatively
less functional abstraction. Asynchronous communication is
usually directly supported in the business process based design,
while the other two approaches support a rather synchronous
communication style. This holds especially for the CRUD
based design, where the read() operation always enforces
synchronous communication.

3) Understandability: Well designed interfaces must have
a strong and documented relation to the underlying business
context [2], thus ensuring a good usability of the interface.
This will enhance the cost efficiency of the interface over
time since a much better acceptance of the interface within
the development teams will arise because the interface will be
easier to learn, remember and use correctly [2].

Understandability is given by a strong functional binding
between the domain model and the implementation [7], the
usage of business objects and business events as message
content [4], [9] and a meaningful message naming schema.

Naturally, a business process based design leads to a direct
mapping between interface and business process description
thus enriching the interface with a comprehensive business
context. On the contrary, a CRUD based design bears no
business context at all due to its high level of abstraction.

Although all three approaches directly support the ex-
change of business objects, differences occur considering the
publication of business events. A CRUD based design supports
none of them per se, i.e., this approach forces a mapping
of business events onto business objects. This will lead to
serious problems in understanding the dynamic behavior of
the application landscape. Using a business process based
design instead, the published business events can be directly
derived from the underlying business process. In contrast, a use
case based design does not primarily focus on business events
but on individual user operations thus obscuring the business
context. While the business process and the use case based
designs both support message naming schemas providing a
rich functional context, a CRUD based design uses only the
given names for create, read, update and delete messages.

4) Recommendation: Considering the above mentioned de-
sign goals and the important advantage of supporting a direct
link between domain model and interface design, the business
process based design is the recommended design style for
interfaces, leading to the best design compromise.

IX. EXAMPLE: INTEGRATING AN APPLICATION USING
THE BUSINESS PROCESS BASED DESIGN

The business process based design approach has been
used at the HHLA to integrate a new application into an

73

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Business process for vessel handling.

TABLE V. Responsibility of applications for business objects.

administrative system

business object description

carrier order order to handle a vessel

work instruction planned instruction to move a container

work queue planned list of work instructions for a specific device type

vessel geometry vessel type geometry

.

terminal control system

business object description

container physical data of a container

carrier physical data of a carrier, e.g., a vessel

devices equipment to move a container, e.g., straddle carrier

device instruction instruction for a specific device to move a container

.

existing complex application landscape. This new application
will be responsible for the required order management and
planning tasks involved with vessel handling processes at
a deep sea container terminal. A critical aspect during this
integration was the required design of a new interface to an
existing terminal control system, which controls all devices
and logistical aspects on a container terminal.

Starting with a business process definition at a level show-
ing a rather general process context, i.e. the summary level
[41] as depicted in Figure 13, the business process has been
further detailed. Using a domain model for HHLA container
terminals, this refining leads to all relevant business objects
required within this process.

Thereafter, these business objects have been assigned to the
administrative system and terminal control system as given in
Table V. Being assigned to an application implies that this
application acts as a server for that specific business object,
i.e., only this application is responsible for the business objects
entire lifecycle. Consequently, each of the applications has to
provide an interface to enable an access to its business objects
and events.

The assignment of business objects to applications is usual-
ly guarded by the existing functional scope of the applications.
In case of ambiguities, i.e., cases where business objects are
required by multiple applications, the domain model of the
HHLA has been used to determine the server. Note that other

TABLE VI. Mapping of business objects onto existing application objects.
To decouple them, an integration model has been introduced. A — denotes a

missing object in that application.

business object integration
model

administrative
system

terminal control
system

carrier order carrier order carrier visit —

work instruction work instruction work instruction transport order

work queue transport directive work queue transport order

vessel geometry carrier geometry vessel master data vessel geometry

container container unit container

carrier carrier vessel vessel

device device — device

device instruction device instruction — order

clients may still use caches for these business objects, which
have to be updated properly using an appropriate interface of
the server.

Once this has been done, an IT alignment took place
mapping each business object onto existing application objects.
Since applications use different internal objects to represent
these business objects, an integration model will be derived,
decoupling applications and the domain model from each
other. Table VI shows the resulting mapping for the vessel
handling process.

Given the integration model, the business process based de-
sign approach described in the previous section can be applied.
Using BPMN, all applications have been represented as pools
with the functional activities being assigned accordingly, see
Figure 14 for details. Note that all functional activities of the
vessel handling process as well as their sequence have been
adapted to the existing functionalities and process sequences
within the corresponding applications. Furthermore, one of the
given pools directly represents the vessel itself instead of an
application. Incorporating the vessel into the BPMN model is
helpful in this case since it represents an important physical
event source for the whole process.

Looking at Figure 14, nearly all messages functionally
required to exchange the necessary information between the
administrative system and the terminal control system can
be grasped directly from the BPMN description. Table VII
summarizes the resulting interfaces of both applications. Note
that some messages required for resilience are still missing,
e.g., messages that allow a complete download of business
objects from the server to reset caches located at clients.

Finally, individual XML structures using appropriate el-
ements and/or attributes have to be designed for each mes-
sage. Since most messages contain business objects only, the
required information within a message is usually determined
by the attributes of the business objects. In case of business
events, the information to be carried is usually the event itself
enriched with the business object identifier to whom the event
applied.

Using the business process based design approach offers
a structured approach for designing a functionally complete
interface while supporting the nonfunctional aspects given in
Section III-E.

74

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. Resulting business process description using the business process based approach. All messages received are UN/EDIFACT messages carrying
required order and storage information. Note that the events vessel arrived and vessel departed will be recorded manually in the administrative system.

TABLE VII. Resulting interfaces using the business process based design
approach. All messages have been assigned to an interface according to the

application responsibilities for business objects. For each message, its
message type and its semantical content is given.

interface of the administrative system

message name message type message content

RequestCarrierGeometry Request requesting vessel geometry

CarrierGeometry Reply vessel geometry

TransportDirective Notification work queue assigned to a quay crane

interface of the terminal control system

message name message type message content

CarrierArrived Notification business event

DeviceInstructionExecuted Notification transport acknowledgement

CarrierDeparted Notification business event

X. INTERFACE OPERATIONS

Large application landscapes are usually operated in a
24/7 hour mode, requiring appropriate control, maintenance
and support by an application management. The application
management has to solve upcoming communication failures
and supports application updates due to business changes and
life cycle management requirements. Updating applications
and communication infrastructure components requires deploy-
ment into an already running application landscape, resulting
in business acceptable downtimes only.

To achieve these goals, interfaces must be versioned and the
implementing applications have to be deployed during runtime,
using migration patterns as described below.

A. Interface versioning
Every interface specification evolves over time due to

syntactic, semantic or dynamic changes on the interface. These
changes lead to different versions of the interface specification

that are not compatible to each other. Therefore, the imple-
menting applications must implement the correct version of
the interface specification. In a complex application landscape,
this is a common situation [8].

In order to guarantee a unique identification of a specific
interface occurrence over time, each individual interface oc-
currence must have a version number [1], [8]. Note that any
change on an interface leads to a new interface version [8].
This includes syntactical changes in any message, changes
within the message sequence flow, i.e., all changes of the
dynamic behavior, and changes of the semantic behavior.
Even the obviously simple cases of adding either a field to
an existing message or introducing a new message to an
interface represents a semantical change of the interface. This
requires compatibility of the receiving application with the new
interface specification version. Otherwise, severe problems
may arise, if, e.g., a client executes syntactical message checks
based on a specific interface version.

B. Migration patterns
Rolling out a new interface version in an application

landscape operating 24/7 hours, requires the usage of an
appropriate migration pattern.

1) Big bang migration pattern: The simplest approach of
an interface migration is big bang, where all applications are
shutdown, redeployed and restarted at the same time, resulting
in

1 + c (1)

migration steps, where c denotes the number of participating
clients. In case of a fall-back, the server and all clients must
be redeployed again.

2) Client first migration pattern: Within this pattern, the
migration path is dominated by the clients. Each client will
be successively migrated onto a new version that can handle
both interface versions in parallel, as shown in Figure 15. In

75

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15. Steps of the client first migration pattern. The new interface
version is denoted red.

steps 1 and 2, the clients are changed to support additionally
the new interface specification version. In step 3, the server
is merged to the new interface implementation. Steps 4 and 5
are necessary to remove the support of the previous interface
specification version from the clients. After finishing all client
migrations, the server will be upgraded to support the new
interface version. Afterwards, all clients will be updated a
second time in order to remove the support of the old interface
version. During steps one to four of this migration path, the
server will receive messages with a wrong interface version
that must be ignored by the server.

The client first migration pattern will result in

1 + 2 ∗ c (2)

deployments, where c denotes the number of clients connected
to the server. An advantage of this migration path is that
clients can be upgraded independently from each other, i.e.,
no temporal coupling of the individual client migrations exist.
The price for this migration behavior is the necessary number
of deployments: each client must be deployed two times, while
the server is deployed only once. Furthermore, in case of a
failure, the operational safe position of step 2 must be reached
again. This is done by falling back with the server supporting
the old interface version only and all clients whose support of
the old interface version has been removed so far, requiring

1 + c+ (3)

steps, where c+ denotes the number of clients migrated after
the server migration.

3) Server first migration pattern: In contrast to the client
first migration approach, the migration path can be reversed
resulting in a server migration first followed by client migra-
tions, see Figure 16. At step 1, the server provides support
for two interface specification versions. In steps 2 and 3,
both clients are merged successively. Finally, support of the
previous interface specification version is removed from the
server implementation, resulting in

2 + c (4)

Figure 16. Steps of the server first migration pattern.

deployments. Again, c denotes the number of participating
clients. The advantage of this pattern is, that the number of
deployments is

(1 + 2 ∗ c)− (2 + c) = c− 1 (5)

less than with the client first migration pattern. Note that during
steps one to three of the migration path both clients A and B
will receive invalid messages, which must be ignored, due to
the concurrent interface version support of the server. If a
failure on the interface occurs within the migration path, all
clients upgraded so far must fall back onto the previous inter-
face version using c+ roll-out steps, where, again, c+ denotes
the number of clients migrated after the server migration. Thus,
the operational safe position of step 1 is reached again.

4) Mixed migration pattern: If the migration of an interface
starts as a client first migration it could be changed to a server
first migration at any time. The resulting mixed migration pat-
tern is depicted in Figure 17. A mixed migration always starts
with some client migrations followed by the server migration.
Thereafter the remaining clients are migrated, resulting in

2 + 2 ∗ c− + c+ (6)

deployments, where c− denotes the number of clients migrated
prior and c+ the number of clients migrated after the server
migration. Important within this migration path is step 2, where
the server and all clients migrated so far, i.e., c− clients,
must be deployed as a big bang. Otherwise, the server and
these clients would communicate using two different interface
versions in parallel usually leading to race conditions and
doubled messages.

5) Comparison: The main differences between the migra-
tion patterns are the number of roll-out and fall-back steps as
shown in Table VIII and the required support of multiple in-
terface versions within the applications. Beside the advantages
of a lacking necessity to support multiple interface versions
and a minimal number of roll-out steps, the big bang pattern
bears a high risk during fall-back situations where multiple
applications must fall-back in parallel. Therefore, this pattern
is only recommended if the number of clients is very small
and a simultaneous fall-back is organizational manageable.
Considering the other strategies, the mixed migration pattern
suffers similar problems due to the required big bang at

76

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 17. Steps of the mixed migration pattern.

migration step 2. Being a more complex pattern than big bang,
its usage is not recommended. In contrast, client first migration
and server first migration patterns reduce the risk involved
with a possible fall-back compared to big bang at the cost of
some additional roll-out steps. Since the server first migration
pattern requires less roll-out and fall-back steps than the client
first migration pattern, it is the recommended roll-out strategy.

XI. CONCLUSION

Due to the growing distribution of business functionali-
ties, interfaces have become most important while operating
applications within an application landscape. Badly designed
interfaces have a critical impact on their functional and op-
erational behavior [4]. To overcome these issues, this paper
presents a structured and holistic approach to construct inter-
face specifications considering all aspects and requirements of
the business domain as well as IT operations.

Depending on the nonfunctional communication require-
ments to be satisfied to successfully integrate an application,
adequate communication technologies have to be selected.
Using messaging as integration style typically results in a
good integration behavior for applications. In addition, further
communication services encapsulated in an appropriate trans-
mission protocol should be offered to deal with integration
and error handling issues during operations. As a result, all
applications implementing this transmission protocol can com-
municate in a robust and consistent way. This is a fundamental
property for professional application management to support
24/7 hour operations in a large application landscape.

Interface specifications serve as contracts between appli-
cations. Thus, it is inevitable to define the artifacts mes-
sage description, dynamic description, semantic description,

TABLE VIII. Comparison of the migration patterns with respect to the
number of migration steps necessary and the number of applications that

must be redeployed in case of a fallback.

pattern rollout steps application fallbacks

big bang migration 1 + c 1 + c

client first migration 1 + 2 ∗ c 1 + c+

server first 2 + c c+

mixed migration 2 + 2 ∗ c− + c+ c+

infrastructure description and quantity description to properly
describe an interface with respect to these different aspects.
In order to construct an interface, different design approaches
have been presented and compared to each other. It turns
out that the business process based design approach is most
likely leading to the best result with respect to robustness,
performance and understandability.

Finally, different migration patterns have been presented
introducing a new interface version into production stage. Due
to the minimal number of required fallback steps in case
of a severe error and one additional roll-out step compared
to the big bang pattern the server first migration pattern is
recommended, at least for larger application landscapes.

XII. ACKNOWLEDGMENT

The authors would like to thank Andreas Henning for
valuable comments.

REFERENCES

[1] A. Hagemann and G. Krepinsky, “(Inter)facing the Business,” in FASSI
2016 - The Second International Conference on Fundamentals and
Advances in Software Systems Integration. IARIA, Jul. 2016, pp.
1–7, ISBN: 978-1-61208-497-8.

[2] M. Henning, “API Design Matters,” ACM Queue Magazine, vol. 5,
2007.

[3] J. Bloch, “How to Design a Good API and Why it Matters,” 2006,
URL: http://landawn.com/HowtoDesignaGoodAPIandWhyitMatters.pdf
[accessed: 2016-06-08].

[4] R. J. Wieringa, Design Methods for Reactive Systems. Morgan
Kaufmann Publishers, 2003, ISBN: 1-55860-755-2.

[5] M. Nygard, Release It!: Design and Deploy Production-Ready Software.
O’Reilly, Apr. 2007, ISBN: 978-0978739218.

[6] U. Friedrichsen, “Patterns of Resilience,” 2016, URL: http://de.
slideshare.net/ufried/patterns-of-resilience [accessed: 2016-06-06].

[7] E. Evans, Domain Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley, 2004, ISBN: 0-321-12521-5.

[8] B. Bonati, F. Furrer, and S. Murer, Managed Evolution. Springer
Verlag, 2011, ISBN: 978-3-642-01632-5.

[9] G. Hohpe and B. Woolf, Enterprise Integration Patterns. Addison-
Wesley, 2012, ISBN: 978-0-133-06510-7.

[10] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Speci-
fication,” The Internet Society, Specification, 1998.

[11] R. Fielding and J. Reschke, “Hypertext transfer protocol (http1.1):
Message syntax and routing,” 2014, URL: https://tools.ietf.org/html/
rfc7230\#section-2.6 [accessed: 2017-01-09].

[12] “File Transfer Protocol,” 1985, URL: https://tools.ietf.org/html/rfc959
[accessed: 2017-02-13].

[13] M. Happner, R. Burridge, R. Sharma, J. Fialli, and K. Stout, “Java
Message Service,” Sun microsystems, Specification, 2002.

[14] “Java Remote Method Invocation API,” 2016, URL: http://docs.oracle.
com/javase/7/docs/technotes/guides/rmi/ [accessed: 2017-18-01].

[15] “Advanced Message Queuing Protocol (AMQP) specification,” 2014,
URL: http://www.iso.org/iso/home/store/catalogue\ tc/catalogue\
detail.htm?csnumber=64955 [accessed: 2017-25-01].

[16] “Blink Protocol,” 2012, URL: http://blinkprotocol.org/ [accessed: 2016-
06-06].

[17] “Financial Information eXchange,” 2016, URL: https://en.wikipedia.
org/wiki/Financial\ Information\ eXchange [accessed: 2016-06-06].

[18] “FAST protocol,” 2016, URL: https://en.wikipedia.org/wiki/FAST\
protocol [accessed: 2016-06-06].

[19] “UN/CEFACT Domains,” 2017, URL: https://www2.unece.org/cefact/
pages/viewpage.action?pageId=9603195 [accessed: 2017-18-01].

[20] “Service-oriented architecture,” 2016, URL: https://en.wikipedia.org/
wiki/Service-oriented\ architecture [accessed: 2016-06-08].

77

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[21] R. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” dissertation, University of California, Irvine,
2000.

[22] M. Iridon, “Enterprise Integration Modeling,” International Journal on
Advances in Software, vol. 9, no 1 & 2, 2016, pp. 116–127, ISSN:
1942-2628.

[23] H. Kerner, Rechnernetze nach ISO-OSI, CCITT. H. Kerner, 1989,
ISBN: 3-900934-10-X.

[24] “OSI model,” 1984, URL: https://en.wikipedia.org/wiki/OSI\ model
[accessed: 2017-01-26].

[25] “Client-server model,” 2016, URL: https://en.wikipedia.org/wiki/
Client-server\ model [accessed: 2016-03-03].

[26] R. Westphal, “Radikale Objektorientierung - Teil 1: Messaging als
Programmiermodell,” OBJEKTspektrum, vol. 1/2015, 2015, pp. 63–69.

[27] “OMG Unified Modeling Language,” 2017, URL: http://www.omg.org/
spec/UML/2.5/PDF/ [accessed: 2017-24-01].

[28] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 2001, ISBN:
0-201-44124-1.

[29] U. Friedrichsen, “The promises and perils of microser-
vices,” 2017, URL: https://www.slideshare.net/ufried/
the-promises-and-perils-of-microservices [accessed: 2017-02-24].

[30] P. Bernstein and E. Newcomer, Principles of Transaction Processing.
Elsevier Inc., 2009, ISBN: 978-1-55860-623-4.

[31] U. Friedrichsen, “Watch your communication,” 2016, URL: https://
www.slideshare.net/ufried/watch-your-communication [accessed: 2017-
02-24].

[32] J. Humble and D. Farley, Continous Delivery. Addison-Wesley, 2010,
ISBN: 978-0-321-60191-9.

[33] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann,
and P. Sommerland, Security Patterns, ser. Software Design Patterns.
John Wiley & Sons, Ltd, 2005.

[34] “Extensible Markup Language,” 2008, URL: https://www.w3.org/TR/
2008/REC-xml-20081126/ [accessed: 2017-02-13].

[35] “XML Schema Definition Language,” 2012, URL: https://www.w3.org/
TR/2012/REC-xmlschema11-1-20120405/ [accessed: 2017-02-13].

[36] “ISO 8601,” 2016, URL: https://en.wikipedia.org/wiki/ISO\ 8601 [ac-
cessed: 2016-11-10].

[37] “Base64,” 2016, URL: https://en.wikipedia.org/wiki/Base64 [accessed:
2016-11-10].

[38] “ActiveMQ,” 2017, URL: http://activemq.apache.org [accessed: 2017-
05-25].

[39] “SwiftMQ,” 2017, URL: http://www.swiftmq.com [accessed: 2017-05-
25].

[40] “Java Language and Virtual Machine Specifications,” 2017, URL: http:
//docs.oracle.com/javase/specs/ [accessed: 2017-05-25].

[41] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2001,
ISBN: 978-0-201-70225-5.

[42] B. Oestereich, Objektorientierte Softwareentwicklung: Analyse und
Design mit der UML 2.0. Oldenbourg, 2004, ISBN: 978-3486272666.

[43] “Information technology – Object Management Group Business Process
Model and Notation,” 2013, URL: http://www.iso.org/iso/catalogue
detail.htm?csnumber=62652 [accessed: 2017-02-14].

78

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

